

Etude de la qualité des cours d'eau 2016 Bassin versant de l'Hérault

Rapport final du suivi 2016

Aout 2017

Technopole d'Angers - 1 avenue du Bois l'Abbé - 49070 Beaucouzé - Tél. : 02 41 22 01 01 - Fax : 02 41 48 04 14 - aqua@aquascop.fr Domaine de Cécélès - 1520 route de Cécélès - 34270 Saint Mathieu de Tréviers - Tél. : 04 67 52 92 38 - Fax : 04 67 52 93 23 - aqua2@aquascop.fr

Etude de la qualité des cours d'eau 2016 Bassin versant de l'Hérault

Rapport final du suivi 2016

Aout 2017

Version	Date	Nom et signature du (des) rédacteur(s)	Nom et signature du vérificateur
V0	Aout 2017	Sylvie Dal Degan Aurélia Marquis	Jacques Niel

SOMMAIRE

1. PREAMBULE	
1.1. Objectifs de l'étude	6
1.2. Contexte	6
2. METHODOLOGIE ET PROGRAMME D'ETUDE	7
2.1. Bibliographie	7
2.2. Campagnes de mesures	
2.2.1.1. Stations de mesures	
2.2.1.2. Dates de prélèvements	11
2.2.1.3. Paramètres analysés	11
3. CARACTERISTIQUES DU BASSIN VERSANT DE L'HERAULT	14
3.1. Topographie et géologie	14
3.2. Population et occupation du sol	14
3.3. Réseau hydrographique	
3.4. Hydrologie	15
3.4.1. Les crues	15
3.4.2. Les étiages	16
3.5. Ouvrages hydrauliques	16
3.6. Prélèvements d'eau	17
3.6.1. Les prélèvements pour l'alimentation en eau potable	18
3.6.2. Les prélèvements agricoles	19
3.6.3. Les centrales hydroélectriques	19
4. SOURCES POTENTIELLES DE POLLUTION	20
4.1. Rejets domestiques	20
4.1.1. Les stations d'épuration du bassin versant de l'Hérault en 2016	20
4.1.2. Les efforts réalisés en matière d'assainissement collectif depuis 20)11 22
4.1.3. Travaux d'amélioration des systèmes d'assainissement du dysfonctionnements constatés	23
4.1.4. L'assainissement non collectif	24
4.2. Autres sources de pollution	25
4.2.1. Les rejets industriels	25
4.2.2. Les rejets agricoles	25
5. QUALITE DES EAUX DE L'HERAULT ET DE SES AFFLUENTS	26
5.1. Conditions d'intervention	26
5.1.1. Conditions climatiques	26
5.1.1. Débits lors des 4 campagnes de prélèvement	28

5.2. Qualité physico-chimique et bactériologique	40
5.2.1. Qualité de l'Hérault	45
5.2.2. Qualité des affluents de l'Hérault	49
5.2.2.1. La Vis	49
5.2.2.2. La Foux	50
5.2.2.3. La Buèges	
5.2.2.4. La Lergue	
5.2.2.5. Le Salagou	
5.2.2.6. La Boyne	
5.2.2.7. La Peyne	
5.2.2.8. La Thongue	
5.2.3. Manifestation de l'eutrophisation des cours d'eau	
5.2.4. Teneurs en pesticides dans l'eau	
5.2.5. Teneur en micropolluants sur bryophytes	
5.2.6. Données complémentaires	
5.2.6.1. Origine des données complémentaires	
5.2.6.2. Informations sur l'Hérault apportées par ces données complémentaires	
5.2.6.3. Informations sur les affluents de l'Hérault apportées par ces données compléments	aires 72
5.3. Qualité biologique IBGN (invertébrés benthiques)	75
5.3.1. L'Hérault	75
5.3.2. Les affluents de l'Hérault	78
5.3.3. Données complémentaires	81
5.3.4. Evolution par rapport aux suivis précédents	82
5.3.5. Conclusion	84
5.4. Qualité biologique IBD (diatomées benthiques)	85
5.4.1. L'Hérault	
5.4.2. Les affluents de l'Hérault	
5.4.3. Données complémentaires	
5.4.4. Evolution par rapport aux précédents suivis	
5.4.5. Conclusion	
5.4.5. Coliciusion	
6. CONCLUSION	100
6.1. Conclusion sur la qualité actuelle et son évolution	100
6.1.1. L'Hérault	
6.1.2. Les affluents de l'Hérault	
6.2. Orientations d'action	
6.2. Orientations d'action	120
7. BIBLIOGRAPHIE	123
8. ANNEXES	124
8.1. Stations d'étude – fiches descriptives	125
8.2. Extrait du SEQ-Eau version 2.	
U.4. LAHAH UU JLY-LAU YCI SIVII 4	

8.3. Ex	ktrait de l'arrêté du 25/07/2015152
8.4. Pe	esticides: NQE-VGE154
8.5. Pi	nysico-chimie156
8.5.1.	Fiches descriptive des conditions de prélèvements
8.5.2. Compa	
	Résultats des analyses de pesticides réalisées en 2016 dans le cadre des réseaux de llance
	Résultats des analyses physico-chimiques réalisées en 2016 dans le cadre des réseaux de llance
	Résultats des analyses physico-chimiques réalisées en 2016 par le Conseil Départemental rd
8.5.6. Gard	Résultats des analyses de pesticides réalisées en 2016 par le Conseil Départemental du
8.5.7.	Résultats des analyses de métaux réalisées en 2016 par le Conseil Départemental du Gard
8.5.8.	Résultats des analyses bactériologiques réalisées en 2016 par l'ARS 224
8.6. In	vertébrés benthiques228
8.6.1.	Rapports d'essai macro-invertébrés petits cours d'eau
8.6.2.	Plan d'échantillonnage et listes faunistiques macro-invertébrés grands cours d'eau 279
8.6.3.	Schémas d'échantillonnage des macro-invertébrés
8.7. Di	atomées
8.7.1.	Spécificités des diatomées
8.7.2.	Traitement des échantillons de diatomées
8.7.3.	Calcul et grille de valeurs des indices diatomiques
8.7.4.	Classification écologique de Van Dam et al. (1994)
8.7.5.	Fiches de prélèvement des diatomées
8.7.6.	Listes floristiques des diatomées de l'Hérault
8.7.7.	Listes floristiques des diatomées des affluents de l'Hérault

1. PREAMBULE

Depuis 2007, avec la mise en œuvre de la Directive Cadre européenne sur l'Eau (Agence de l'Eau et DREAL), des réseaux de suivi de la qualité des eaux ont été reconfigurés ou créés, comme les réseaux de référence, de surveillance ou de contrôle opérationnel.

Le réseau du département de l'Hérault et son suivi ont également été adaptés pour être cohérents et complémentaires à ces derniers.

Ainsi, depuis 2012, chacune des 3 grandes zones géographiques du département est échantillonnée à tour de rôle deux années consécutives, ce qui permet de couvrir le département en 6 années et de revenir sur une même zone pour deux années consécutives tous les 6 ans.

Les stations de suivi ont été localisées sur ces zones de manière à fournir des informations complémentaires à celles des autres réseaux tant en termes de paramètres analysées que de fréquence d'échantillonnage.

Ce rapport d'étude présente les résultats du suivi réalisé sur le bassin versant de l'Hérault en 2016, seconde année consécutive de prélèvements et d'analyses. En effet, en 2015 des investigations similaires avaient été réalisées sur ce territoire. Toutefois, les analyses concernant le lac du Salagou réalisées en 2015 n'ont pas été poursuivies en 2016.

1.1. OBJECTIFS DE L'ÉTUDE

Ce suivi poursuit 3 objectifs :

- établir un diagnostic physico-chimique, bactériologique et hydrobiologique annuel aussi précis que possible des principaux cours d'eau du bassin de l'Hérault;
- comparer cet état à ceux dressés les années antérieures et mettre en relation les évolutions constatées avec les travaux réalisés en matière de réduction des flux de pollution ;
- fournir les éléments nécessaires à la définition du programme d'investissement qui sous-tend la reconquête des milieux aquatiques du bassin.

1.2. CONTEXTE

Cette étude bénéficie des résultats des suivis antérieurs.

- Dans le cadre du réseau départemental, une première étude de suivi du bassin versant de l'Hérault a été réalisée par Aquascop entre juillet 2002 et mai 2003. Ce suivi comporta 19 stations sur l'Hérault et 13 sur les affluents du fleuve qui furent échantillonnées 4 fois : juillet 2002, octobre 2002, mars 2003 et mai 2003. Ce diagnostic permit de mieux évaluer l'impact des investissements réalisés en termes d'amélioration de la qualité des milieux aquatiques. Les résultats traités suivant les règles du SEQ-Eau permirent également d'établir un état initial précis de la qualité des eaux du bassin versant. Ces résultats furent ensuite utilisés pour la réactualisation des cartes de qualité du département (Aquascop, pour le compte de la DIREN LR octobre 2004).
- Une seconde étude de suivi du bassin versant fut réalisée, toujours dans le cadre du réseau départemental, par Aquascop de mars à octobre 2007. Ce suivi s'appliqua à 19 stations sur l'Hérault et 15 sur les affluents du fleuve (dont la Foux et le Lamalou, deux nouveaux points). Ces 34 stations furent échantillonnées 4 fois : mars, mai, juillet et octobre 2007.
- L'année 2011 a donné lieu à un troisième diagnostic porté par le Conseil Départemental. 25 stations ont été échantillonnées par Aquascop en mars, mai, août et novembre, dont 15 implantées sur le fleuve et 10 sur ses affluents.
- Un quatrième diagnostic a eu lieu en 2015. 25 stations ont été échantillonnées par Aquascop en mars, mai, août et octobre, réparties sur l'Hérault et ses affluents.

2. METHODOLOGIE ET PROGRAMME D'ETUDE

Le programme d'étude comprend 3 phases :

- phase 1 : analyse bibliographique, recueil des données et reconnaissance du terrain,
- phase 2 : campagnes de mesures sur 25 stations cours d'eau,
- phase 3 : interprétation et analyse des données du bassin et établissement du diagnostic.

2.1. BIBLIOGRAPHIE

Les documents et les données relatifs à la qualité physico-chimique et hydrobiologique des cours d'eau concernés, publiés depuis les derniers suivis, ont été consultés.

Les données issues des suivis effectués dans le cadre de la DCE : RCS (réseau de contrôle de surveillance) et RCO (réseau de contrôle opérationnel) et RRP (réseau de référence), ont été collectées auprès de l'Agence de l'Eau et utilisées pour l'élaboration des cartes de qualité.

Toutefois, certaines données issues de ces réseaux, comme les résultats hydrobiologiques (IBG, IBD) n'étaient pas disponibles à la date de production de ce rapport.

Les résultats du suivi de l'Hérault effectué par le Conseil Départemental du Gard ont également été analysés.

Les informations concernant la collecte et le traitement des eaux usées, notamment les investissements réalisés depuis les derniers suivis ont été recueillies, entre autres, auprès des services techniques du Conseil Départemental de l'Hérault et du Gard.

Les données publiées par l'Agence Régionale de Santé (ARS) ont également été consultées.

2.2. CAMPAGNES DE MESURES

2.2.1.1. Stations de mesures

Le réseau de mesures 2016 comprend 25 stations de prélèvement réparties sur l'Hérault et ses affluents. Une fiche descriptive de chaque station est présentée en annexe 8.1.

Il existe également 13 stations suivies en 2016 dans le cadre du Réseau de Contrôle de Surveillance (RCS), du Réseau de Contrôle Opérationnel (RCO) et du Réseau de Référence Pérenne (RRP). Parmi elles, 8 stations sont situées dans le département de l'Hérault et 5 dans le département du Gard.

Le Conseil Départemental du Gard effectue également un suivi pour la partie gardoise du bassin versant de l'Hérault qui porte sur 10 stations. Ces stations n'ont pas fait l'objet de prélèvement dans le cadre de la présente étude mais les données disponibles auprès de l'Agence de l'Eau et du Conseil Départemental 30 sont intégrées à l'analyse.

La localisation de ces stations est représentée sur la carte suivante.

LOCALISATION DES STATIONS DE PRELEVEMENTS



Tableau 1 – Stations d'analyse de la qualité de l'eau du bassin versant de l'Hérault (tous suivis)

Code station	Station (libellé Agence)	Code du suivi départemental	Localisation	Suivi
06181910	HERAULT A VALLERAUGUE	HER1	Amont Valleraugue	RCS
06181925	HERAULT A VALLERAUGUE 1	HER 2	Aval Valleraugue	CD30
06181930	HERAULT A ST ANDRE-DE- MAJENCOULES	HER 3	Amont confluence avec Arre	CD30
06181901	ARRE A ARRIGAS	ARRE 1	Amont Arre	CD30
06181902	ARRE A ARRE	ARRE 2	Aval Arre	CD30
06181850	GLEPE A POMMIERS	GLE1	Amont Avèze	CD30
06181210	GLEPPE A AVEZE		Amont confluence avec Arre	RCS
06181904	ARRE A AVEZE	ARRE 3	Aval Avèze, amont du Vigan	CD30
06181550	ARRE A LE-VIGAN 3	ARRE 5	Arre dans la traversée du Vigan	CD30
06181500	ARRE A LE-VIGAN 2	ARRE 4	Arre en aval du Vigan	CD30
06181906	ARRE A SAINT-ANDRE-DE- MARJENCOULES			RCS
06300048	HERAULT A SUMENE	HER4	Aval de la confluence avec l'Arre (Pont d'Hérault)	CD30
06181800	RIEUTORD A SUMENE	RIE1	Amont des pertes	CD30
06181990	HERAULT A CAZILHAC	H5	Hérault amont Ganges aval Vis	CD34
06181945	VIS A BLANDAS	Vis0	Amont Navacelles	RRP (REF)
06181950	VIS A ST-MAURICE-NAVACELLES	Vis1	Vis aval Navacelles	CD34
			Vis après pisciculture et usine	
06181960	VIS A GORNIES	Vis2	hydroélectrique	CD34
06181960 06195330	VIS A GORNIES CRENZE A ST-LAURENT-LE-MINIER	Vis2		CD34 RCO
		Vis2 Vis3		
06195330	CRENZE A ST-LAURENT-LE-MINIER		hydroélectrique Vis aval Crenze Hérault aval Ganges	RCO
06195330 06181980	CRENZE A ST-LAURENT-LE-MINIER VIS A ST-LAURENT-LE-MINIER	Vis3	hydroélectrique Vis aval Crenze Hérault aval Ganges Hérault aval Laroque amont St	RCO CD34
06195330 06181980 06182000	CRENZE A ST-LAURENT-LE-MINIER VIS A ST-LAURENT-LE-MINIER HERAULT A LAROQUE	Vis3 H6	hydroélectrique Vis aval Crenze Hérault aval Ganges	RCO CD34 CD34
06195330 06181980 06182000 06182020	CRENZE A ST-LAURENT-LE-MINIER VIS A ST-LAURENT-LE-MINIER HERAULT A LAROQUE HERAULT A AGONES HERAULT A ST-BAUZILLE-DE-	Vis3 H6 H7	Vis aval Crenze Hérault aval Ganges Hérault aval Laroque amont St Bauzille	RCO CD34 CD34 CD34
06195330 06181980 06182000 06182020 06182030	CRENZE A ST-LAURENT-LE-MINIER VIS A ST-LAURENT-LE-MINIER HERAULT A LAROQUE HERAULT A AGONES HERAULT A ST-BAUZILLE-DE-PUTOIS	Vis3 H6 H7 H8	Nydroélectrique Vis aval Crenze Hérault aval Ganges Hérault aval Laroque amont St Bauzille Hérault aval St Bauzille	RCO CD34 CD34 CD34 CD34
06195330 06181980 06182000 06182020 06182030 06184640	CRENZE A ST-LAURENT-LE-MINIER VIS A ST-LAURENT-LE-MINIER HERAULT A LAROQUE HERAULT A AGONES HERAULT A ST-BAUZILLE-DE- PUTOIS RUISSEAU DE BRISSAC A BRISSAC	Vis3 H6 H7 H8 Fo1	hydroélectrique Vis aval Crenze Hérault aval Ganges Hérault aval Laroque amont St Bauzille Hérault aval St Bauzille Foux à Brissac Hérault entrée des gorges St Etienne	RCO CD34 CD34 CD34 CD34 CD34 CD34
06195330 06181980 06182000 06182020 06182030 06184640 06182050	CRENZE A ST-LAURENT-LE-MINIER VIS A ST-LAURENT-LE-MINIER HERAULT A LAROQUE HERAULT A AGONES HERAULT A ST-BAUZILLE-DE-PUTOIS RUISSEAU DE BRISSAC A BRISSAC HERAULT A BRISSAC 1 BUEGES A PEGAIROLLES-DE-	Vis3 H6 H7 H8 Fo1 H9	hydroélectrique Vis aval Crenze Hérault aval Ganges Hérault aval Laroque amont St Bauzille Hérault aval St Bauzille Foux à Brissac Hérault entrée des gorges St Etienne d'Issensac	RCO CD34 CD34 CD34 CD34 CD34 CD34 RCS- RCO
06195330 06181980 06182000 06182020 06182030 06184640 06182050 06182062	CRENZE A ST-LAURENT-LE-MINIER VIS A ST-LAURENT-LE-MINIER HERAULT A LAROQUE HERAULT A ST-BAUZILLE-DE- PUTOIS RUISSEAU DE BRISSAC A BRISSAC HERAULT A BRISSAC 1 BUEGES A PEGAIROLLES-DE- BUEGES	Vis3 H6 H7 H8 Fo1 H9 Bu0	hydroélectrique Vis aval Crenze Hérault aval Ganges Hérault aval Laroque amont St Bauzille Hérault aval St Bauzille Foux à Brissac Hérault entrée des gorges St Etienne d'Issensac Buèges à Pégairolles de Buèges	RCO CD34 CD34 CD34 CD34 CD34 RCS-RCO RCS
06195330 06181980 06182000 06182020 06182030 06184640 06182050 06182062 06184620	CRENZE A ST-LAURENT-LE-MINIER VIS A ST-LAURENT-LE-MINIER HERAULT A LAROQUE HERAULT A ST-BAUZILLE-DE- PUTOIS RUISSEAU DE BRISSAC A BRISSAC HERAULT A BRISSAC 1 BUEGES A PEGAIROLLES-DE- BUEGES BUEGES A ST-JEAN-DE-BUEGES 2	Vis3 H6 H7 H8 Fo1 H9 Bu0 Bu1	Nydroélectrique Vis aval Crenze Hérault aval Ganges Hérault aval Laroque amont St Bauzille Hérault aval St Bauzille Foux à Brissac Hérault entrée des gorges St Etienne d'Issensac Buèges à Pégairolles de Buèges Buèges aval St Jean de Buèges	RCO CD34 CD34 CD34 CD34 CD34 RCS-RCO RCS CD34

Code station	Station (libellé Agence)	Code du suivi départemental	Localisation	Suivi
06184510	HERAULT A ST-JEAN-DE-FOS 3	H12	Hérault pont du diable	CD34
06182400	HERAULT A GIGNAC	H14	Hérault aval Gignac	CD34
06182900	HERAULT A POUZOLS	H15	Hérault amont confluence Lergue aval ruisseau Garelle	CD34
06300053	LERGUE A LODEVE 2	Ler2	Lergue aval Lodève	CD34
06183000	LERGUE A BRIGNAC	Ler3	Amont confluence avec Hérault	RCS-RCO
06182600	SALAGOU A LE-BOSC	Slg1	Salagou aval lac du Salagou	CD34
06183200	HERAULT A CANET	H16	Hérault amont Canet	CD34
06183500	HERAULT A ASPIRAN	H17	Hérault aval Canet	RCS
06183685	HERAULT A ST-PONS-DE- MAUCHIENS	H18	Hérault aval Paulhan amont confluence Boyne	CD34
06183700	HERAULT A PEZENAS 1	H19	Hérault aval Montagnac amont confluence Peyne	CD34
06183900	BOYNE A CAZOULS-D'HERAULT 2	Bo1	Boyne fermeture de bassin	CD34
06183750	PEYNE A ROUJAN	P1	Peyne amont Pézenas	CD34
06183800	PEYNE A PEZENAS	P2	Peyne fermeture du BV	RCO
06183820	HERAULT A PEZENAS 2	H20	Hérault aval Pézenas (amont St Thibéry)	CD34
06183840	TONGUE A SERVIAN	Th1	Thongue aval Abeilhan	CD34
06183850	THONGUE A ST-THIBERY	Th2	Thongue fermeture du BV	RCS- RCO
06183835	HERAULT A PEZENAS 3	H21	Hérault aval St Thibéry et Thongue amont Florensac	CD34
06184000	HERAULT A FLORENSAC	H22	Hérault aval Florensac	RCS- RCO
06184200	HERAULT A AGDE 6	H23	Hérault à Bessan	CD34

2.2.1.2. Dates de prélèvements

Les 25 stations suivies par le Conseil Départemental de l'Hérault ont été échantillonnées 4 fois en 2016 :

- du 21 au 22 mars 2016 (campagne hivernale),
- du 23 au 24 mai 2016 (campagne printanière),
- du 01 au 02 août 2016 (campagne estivale),
- du 10 au 11 octobre 2016 (campagne automnale).

Des indices biologiques ont été déterminés à chaque station pour les IBD et en 21 stations pour les invertébrés benthiques. Les prélèvements ont été réalisés entre le 24 juin et le 08 novembre 2016.

Le tableau ci-après résume ce programme d'analyses.

Tableau 2 - Analyses programmées et nombre de prélèvements dans les cours d'eau

Campagnes	Mars 2016	Mai 2016	Août 2016	Octobre 2016
*Débit	25	25	25	25
Mesures in situ (Temp., O2, pH, conductivité)	25	25	25	25
Prélèvements d'eau pour analyses : DBO5, COD, NH4, NO2, NO3, PO4, Ptotal, MES; Coliformes fécaux, streptocoques fécaux	25	25	25	25
***Prélèvements d'eau pour analyses : chlorophylle et phéopigments	25	25	25	25
***Prélèvement de bryophytes pour analyses : micropolluants minéraux (8 éléments)			6	
***Prélèvements d'eau pour analyses : Pesticides dans les eaux	5	6	4	4
IBG-DCE			21	
IBD 2007			25	

^{*} le nombre affiché cumule les valeurs mesurées et les valeurs calculées.

2.2.1.3. Paramètres analysés

Mesures de débits

Les débits ont été évalués à partir de jaugeages réalisés à l'aide de micro-moulinets selon les préconisations de l'IRSTEA, ou calculés par interpolation à partir des valeurs de débits enregistrées aux stations limnigraphiques proches figurant dans la banque HYDRO.

Analyses physico-chimiques

Les analyses physico-chimiques comprennent :

- des mesures in situ : température de l'eau, conductivité, pH, concentration en oxygène dissous et pourcentage de saturation en oxygène (mesurés à l'aide de sondes portatives HACH et WTW par Aquascop);
- des analyses en laboratoire :
 - matières en suspension, DBO₅, COD, azote ammoniacal (NH₄⁺), nitrites (NO₂⁻), nitrates (NO₃⁻), orthophosphates (PO₄³⁻) et phosphore total (Ptotal) (analysés par le laboratoire départemental vétérinaire de l'Hérault LDV34).
 - pesticides de la liste régionale CERPE du Languedoc-Roussillon plus des substances régionales optionnelles. Le laboratoire CARSO a pris en charge ces analyses.

^{**} analyses faites par le laboratoire départemental vétérinaire.

^{***} analyses faites par le laboratoire CARSO.

Analyses bactériologiques

La qualité bactériologique a été évaluée par comptage des germes témoins de contamination fécale que sont les *Escherichia coli* et les entérocoques (prestation assurée par le laboratoire LDV34).

Biomasses phytoplanctoniques

La biomasse phytoplanctonique a été évaluée par dosage dans les eaux des phéopigments et de la chlorophylle «a» (prestation réalisée par le laboratoire CARSO).

Analyses de métaux sur bryophytes

Les bryophytes ont été confiées au laboratoire CARSO pour analyse des 8 micropolluants minéraux : As, Hg, Pb, Cu, Zn, Cr, Cd, Ni.

Invertébrés benthiques

La faune benthique a été analysée en suivant les protocoles «macro-invertébrés» mis en œuvre dans le cadre du réseau de surveillance des cours d'eau. Plusieurs méthodologies ont étés mises en œuvre :

- la norme AFNOR XP T90-333 traitant des prélèvements en rivières peu profondes (pour 17 stations),
- le protocole expérimental d'échantillonnage des «macro-invertébrés» en cours d'eau profond de décembre 2009 (pour 4 stations),
- la norme AFNOR XP T 90-388 traitant de la phase «laboratoire» (pour toutes les stations).

Ces protocoles sont plus précis que la méthode normée de l'IBGN (NF 90-350 de mars 2004), à la fois sur le terrain (échantillonnage des habitats dominants et accessoires) et en laboratoire (détermination au genre). Ils permettent également un calcul de l'équivalent IBGN.

Diatomées

Le prélèvement, la préparation des lames, le comptage et le calcul de l'IBD ont été effectués en respectant la norme de l'Indice Biologique Diatomées NF T 90 354 d'avril 2016.

Les indices IPS et IBD ont été calculés pour l'ensemble des prélèvements de diatomées ; ces calculs, basés sur le comptage et l'identification des taxons, ont été effectués à l'aide du programme informatique OMNIDIA (version 5.3).

Traitement des résultats

Sur le plan méthodologique, les résultats d'analyses sont interprétés en s'appuyant sur le SEQ-Eau (Système national d'évaluation de la Qualité des Eaux, version 2) et sur l'arrêté du 27 juillet 2015 modifiant l'arrêté du 25 janvier 2010 relatif aux méthodes d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface.

L'outil SEQ-Eau permet d'obtenir, pour chaque station ayant fait l'objet de prélèvements, deux types d'information :

- un niveau d'aptitude à la fonction «potentialité biologique» ou aux « usages » par «altération»,
- une classe de qualité par «altération».

L' «altération» est définie par le SEQ-Eau comme étant un groupe de paramètres de même nature ou de même effet sur le milieu. On distingue ainsi l'altération Matières Organiques et Oxydables (qui regroupe O₂, DBO₅, DCO, NH₄...), l'altération Matières Azotées (qui regroupe NH₄, NO₂...), l'altération Nitrates, etc.

La fonction «potentialité biologique» exprime l'aptitude de l'eau à permettre les équilibres biologiques. Pour chaque altération, 5 classes d'aptitude à cette fonction ont été définies qui traduisent une simplification progressive de l'édifice biologique ; elles correspondent pour chaque paramètre de l'altération à 5 seuils de concentrations.

Les «usages» introduits dans le SEQ-Eau sont au nombre de 5 : la production d'eau potable, les loisirs et sports aquatiques, l'irrigation, l'abreuvage et l'aquaculture. Pour une altération donnée, les 5 niveaux d'aptitude à ces usages correspondent à des seuils de concentrations issus la plupart du temps de travaux scientifiques ou de réglementations.

Une classe de qualité par « altération » est définie par une série de seuils de concentration (quatre par paramètre de l'altération). Ces seuils ont été choisis en référence aux aptitudes à la biologie ou aux usages telles que définies précédemment. Pour chaque altération, 5 classes ont été délimitées : bleue, verte, jaune, orange et rouge. Une eau de classe bleue permet la vie, la production d'eau potable par simple désinfection ainsi que les loisirs, tandis qu'une eau de classe rouge ne permet plus de satisfaire au moins un de ces deux usages ou de maintenir les équilibres biologiques. Les classes vertes, jaune et orange sont des classes intermédiaires.

Le SEQ cours d'eau version 2 propose des seuils de qualité pour l'eau, les sédiments, les bryophytes. Il n'intègre pas les indices biologiques. Pour ces derniers, on s'appuiera à la fois sur la norme de chaque méthode indicielle et sur l'arrêté du 27/07/2015.

L'arrêté du 27 juillet 2015 modifiant l'arrêté 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R.212-10, R. 212.11 et R.212-18 du code de l'environnement, définit les éléments de qualité (éléments biologiques, éléments physico-chimiques généraux, polluants spécifiques de l'état écologique, éléments hydromorphologiques, chimiques) et les seuils à prendre en compte pour déterminer la classe d'état d'une masse d'eau.

Pour les cours d'eau, des valeurs seuils sont définies pour la biologie (indices IBD, IBG, IPR) et la physicochimie des eaux.

Des extraits des grilles du SEQ-eau et de l'arrêté du 25/07/2015 sont donnés en annexes 8.2 et 8.3.

3. CARACTERISTIQUES DU BASSIN VERSANT DE L'HERAULT

3.1. TOPOGRAPHIE ET GÉOLOGIE

L'Hérault, premier fleuve côtier du département de l'Hérault par sa taille, prend naissance sur le flanc méridional de l'Aigoual à 1 288 m d'altitude. Il traverse une partie du département du Gard, entre dans celui de l'Hérault en amont de Ganges et rejoint la Méditerranée à Agde après avoir parcouru 150 km environ et capté les eaux d'un bassin versant d'environ 2 580 km².

Trois grandes unités géologiques se succèdent du Nord au Sud pour donner au cours d'eau une morphologie très variée.

On distingue tout d'abord sur la partie gardoise du fleuve le socle cristallin cévenol formé de granites et schistes au relief très accentué conférant au lit une pente importante (5 % en moyenne). Ces roches sont naturellement riches en métaux tel que l'arsenic.

La partie héraultaise amont jusqu'à Saint-Jean-de-Fos se situe sur les calcaires du jurassique et du crétacé inférieur (ère secondaire) qui, de Causse-de-la-Selle à la plaine alluviale, ont été fortement entaillés pour donner naissance à de profondes gorges.

En aval, du pont du Diable à Saint-Jean-de-Fos, s'ouvre la vaste plaine alluviale qui s'organise en terrasses de part et d'autre du fleuve (altitude inférieure à 200 m). Il s'agit de formations gréseuses, marneuses et argileuses du crétacé et du tertiaire.

Au Sud, la plaine alluviale se prolonge par la plaine littorale de la région d'Agde (alluvions récentes).

3.2. POPULATION ET OCCUPATION DU SOL

Le bassin versant de l'Hérault est à cheval sur 166 communes dont 136 situées dans le département de l'Hérault. La population du bassin versant est d'environ 170 000 habitants, dont 148 000 habitants sur le seul département de l'Hérault (recensement INSEE 2012). Elle est inégalement répartie entre le nord du bassin, où la densité est inférieure à 50 habitants/km², et la plaine, où elle dépasse les 100 habitants/km². De plus, en période estivale, la population augmente considérablement avec l'affluence touristique, essentiellement à proximité de la Méditerranée, mais également dans les terres autour des lieux touristiques très fréquentés (lac du Salagou, gorges de l'Hérault). Ainsi, la population de la ville d'Agde est multipliée par neuf 1 en été.

Les principaux pôles d'attraction hors période estivale sont :

- Le Vigan (en amont de H5)
- Ganges Laroque -Saint-Bauzille-de-Putois (entre les stations de suivi H5 et H8),
- Gignac Saint-André-de-Sangonis Aniane (entre H12 et H15),
- Pézenas Montagnac (entre H18 et H20),
- Florensac Bessan Agde (aval H22),
- Lodève (amont L2),
- Clermont-l'Hérault (amont L3).

Les boisements (chênes verts et chênes blancs notamment) ou les pelouses dominent le bassin versant de l'Hérault en amont de Saint-Jean-de-Fos.

L'occupation du sol des têtes des bassins versants des affluents situés à l'aval de Saint-Jean-de-Fos, en rive droite du Fleuve (Lergue, Boyne, Peyne, Thongue) est également très naturelle.

¹ Etat des lieux SAGE 2005

A l'inverse, les cultures sont majoritaires dans la moyenne et basse vallée de l'Hérault et de ses affluents. Ainsi, le vignoble s'est établi sur les terrasses alluviales et quelques productions céréalières occupent des terrains plus proches du fleuve. A elle seule, la vigne occupe de 70 à 80 % du territoire agricole de la moyenne et basse vallée de l'Hérault (aval de la Lergue), contre moins de 13 % dans les hauts cantons et le Lodévois.

3.3. RÉSEAU HYDROGRAPHIQUE

L'Hérault reçoit ses principaux affluents en rive droite : Arre, Vis, Buèges, Lergue, Dourbie, Boyne, Peyne et Thongue. Les affluents rejoignant l'Hérault en rive gauche sont de faible étendue : le Rieutord, le Lamalou et la Rouviège.

Nous donnons ci-dessous quelques caractéristiques des rivières faisant l'objet de mesures dans le cadre de cette étude.

Tab	leau 3	- (Caractéristiques	principales c	les cours d	'eau du	ı bassin ver	sant de l'	Hérault (département 34)).
-----	--------	-----	------------------	---------------	-------------	---------	--------------	------------	-----------	-----------------	----

Cours d'eau	Surface du bassin versant*	Altitude maximum	Altitude minimum	Linéaire	Pente moyenne
	km²	m	m	km	%
Hérault	2580	1288	0	150	0,86
Vis	500	1410	140	55	2,3
Buèges	50	170	100	11,5	0,6
Lamalou	120	218	102	17	0,7
Lergue	470	720	29	40	1,7
Boyne	80	360	17	25	1,4
Peyne	120	491	13	36	1,3
Thongue	150	375	10	33	1,1

^{*} superficies approximatives

3.4. HYDROLOGIE

Le régime hydrologique de l'Hérault est de type pluvial cévenol. Il se caractérise en hiver par de hautes eaux d'origine pluviale, rehaussées au printemps par des précipitations souvent importantes auxquelles s'ajoutent, certaines années, des eaux de fonte de neige. L'été est généralement peu arrosé donnant lieu à des étiages sévères, voire des assecs pour certains affluents (Buèges, Lamalou). Dès le mois d'octobre, les fortes pluies cévenoles (précipitations journalières supérieures à 300 mm et parfois 500 mm) engendrent des hausses subites de débits.

3.4.1. Les crues

Le bassin versant de l'Hérault est concerné par deux types de crue²:

- les crues amont qui résultent de fortes précipitations sur la partie montagneuse relativement imperméable du bassin versant. Elles sont caractérisées par des temps de montée courts et des débits élevés au droit des gorges,
- les crues dans la partie aval qui engendrent des débordements importants dans la plaine. Elles résultent davantage de précipitations intenses sur les bassins affluents rive droite du fleuve : Lergue, Peyne, Boyne et Thongue.

En 2016, il n'y a pas eu d'épisode de crue important sur les cours d'eau du bassin versant. Les plus forts débits ont été relevés mi-octobre mais restent bien inférieurs aux valeurs relevées au cours des épisodes hydrologiques qui ont eu lieu en septembre et octobre 2015.

² SAGE Hérault 2005, cahier N°2 Crues et inondations

3.4.2. Les étiages

Globalement, les débits d'étiage de l'Hérault sont faibles du fait des conditions de sécheresse estivale et des prélèvements effectués en particulier dans la basse et moyenne vallée. Les apports souterrains importants provenant notamment des karsts du Larzac et des garrigues nord-montpelliéraines, ainsi que de la propre nappe alluviale du fleuve, ne compensent pas ce déficit.

Dans la plus grande partie des gorges, jusqu'à St-Guilhem-le-Désert, le débit d'étiage de l'Hérault est soutenu par les apports réguliers de la Vis et des résurgences karstiques. Le débit estival de la Vis, assuré par les résurgences karstiques des causses du Larzac et de Blandas, représente jusqu'au 2/3 du débit aval confluence.

Dans le dernier secteur des gorges et dans la traversée de la plaine, le fleuve ne bénéficie plus d'apport karstique alors que les prélèvements directs ou dans sa nappe alluviale augmentent. L'étiage y est ainsi plus important, spécialement dans les zones d'influence des prélèvements. Cependant le fleuve bénéficie, à l'aval des gorges, des apports de la Lergue dont le débit d'étiage est assez soutenu (cf. la station hydrométrique de Lodève).

Certains cours d'eau du bassin versant de l'Hérault sont quasiment à sec une partie de l'année. C'est le cas des cours d'eau des bassins de la Boyne, de la Peyne et de la Thongue, ainsi que des cours d'eau soumis à des pertes d'origine karstique : certains secteurs de la Vis, de la Virenque, du Rieutord, du Lamalou et de la Buèges.

Le tableau suivant présente quelques débits caractéristiques du bassin :

Tableau 4 – Débits caractéristiques du bassin de l'Hérault, source banque Hydro (17/01/2017)

Stations	Superficie BV km²	VCN3 Biennal m³/s	Module interannuel Quinquennal sec m³/s	QMNA Biennal m³/s	Module m³/s	QIX Décennal m³/s
Hérault à Laroque	912	2,40	13	2,90	19,30	1100
Hérault à Agde	2550	2,60	24	4,40	42,00	1300
Vis à St-Laurent-du-Minier	499	1,60	6,9	2,00	9,85	570
Lergue à Lodève	228	0,78	2,7	0,97	4,54	260

Légende du tableau :

QMNA : débit mensuel minimal naturel,

VCN3: débit minimal ("moyen") calculé sur 3 jours consécutifs,

Module : moyenne pondérée des 12 écoulements mensuels moyens, sur l'ensemble de la période connue, QIX : débit de crue obtenu par ajustement d'une loi de Gumbel aux débits instantanés maximaux mensuels

3.5. OUVRAGES HYDRAULIQUES

Les cours d'eau sont jalonnés de nombreux seuils et ouvrages hydrauliques.

- Sur le cours de l'Hérault, les principaux sont les suivants³ :
 - les installations hydroélectriques :
 - Saint-Julien-la-Nef (amont H5)
 - Moulin de Bertrand (amont H10),
 - Belbezet (amont H12),
 - La Meuse (H13), à Brissac
 - Carabotte (amont H15),

³ On précise leur localisation par rapport aux stations de suivi de la qualité.

- Cazouls-d'Hérault (amont H19),
- Saint-Thibéry (amont H22),
- le barrage de prise du canal de Gignac en amont de Saint-Guilhem-le-Désert (station H11),
- le barrage de prise pour l'alimentation en eau potable de Ganges (H5),
- le barrage de Bladier-Ricard pour la gestion de nappe alluviale au niveau du champ captant de Florensac (aval H22),
- le barrage anti-sel d'Agde (aval H23).
- Sur la Foux, une microcentrale hydro-électrique se situe à Brissac en amont de Fo1,
- Sur la Vis, sont implantées 2 usines hydroélectriques :
 - Madières, qui prélève en amont de la station Vis1 et rejette en amont de Vis2,
 - le Martinet en amont de Vis3.
- La Lergue est équipée de 7 centrales hydroélectriques dont 4 dans la traversée de Lodève.
- Sur le Salagou, le barrage du Salagou,
- Sur l'Arre, dans le Gard, 3 centrales se situent au droit du Vigan et 1 à l'aval de la commune.

Suite à la crue exceptionnelle de la Lergue fin 2014 et fin 2015, deux microcentrales situées à l'aval de la station Ler2 sont hors service. Le seuil de la centrale de Cartel (au Bosc) a été partiellement emporté par la crue. Le seuil de Cartel sera reconstruit à l'étiage en 2017 et 2018 (arrêté DDTM34 2017-04-08285). Les installations électriques de la centrale de Rabieux (au droit de Saint-Félix-de-Lodez) ont été endommagées et la remise en état de cette centrale n'est pas envisagée pour le moment (montant des travaux très élevé).

Le barrage du Salagou alimente une centrale hydroélectrique qui se trouve à l'aval de la station de mesure SLG1. Le règlement d'eau ne prévoit pas de restitution de débit réservé au Salagou en amont de la centrale. L'eau du Salagou à l'aval du barrage provient de fuites sur les vannes de la prise d'eau et des vannes de fond.

3.6. PRÉLÈVEMENTS D'EAU

Les prélèvements directs en rivières ou dans leur nappe d'accompagnement sont susceptibles de modifier le régime hydrologique des cours d'eau et par voie de conséquence leur qualité physico-chimique et hydrobiologique. Les informations présentées sont issues :

- du plan de gestion de le ressource en eau : «PGRE du bassin du fleuve Hérault, bilan des prélèvements- Etat quantitatif – demandes 2030» réalisé par le Syndicat Mixte du Bassin du Fleuve Hérault en juin 2017,
- de l'étude: «Elaboration du schéma directeur de la ressource en eau sur le bassin de l'Hérault, détermination des volumes maximums prélevables », réalisée en 2016 par Cereg ingénierie et qui nous a été transmise par le Syndicat Mixte du Bassin du Fleuve Hérault,
- de l'état des lieux de la «Gestion quantitative de l'eau» du SAGE Hérault (2005).

98% des prélèvements nets sont destinés à l'irrigation et à la production d'eau potable pour les collectivités. Les autres usages de l'eau (utilisation industrielle ou captages privés) sont négligeables à l'échelle du bassin versant.

3.6.1. Les prélèvements pour l'alimentation en eau potable

Le bilan des prélèvements réalisé de 2007 à 2011 indique que les volumes prélevés sur le bassin versant⁴ représentent 14,6 Mm³ pendant la seule période d'étiage (4 mois)⁵. On note une tendance à la diminution de ces volumes prélevés pour l'eau potable puisque les prélèvements effectués en 2014 (année de sécheresse précoce) ont été nettement inférieurs : environ 12 Mm³.

La répartition des prélèvements et les volumes annuels estimés dans le cadre du SAGE sont présentés dans le Tableau 5.

Tableau 5 - Volumes prélevés pour la production d'eau potable dans le bassin versant de l'Hérault (SAGE 2005)

	Volume annuel production eau potable (Mm³)	% du volume annuel
Eau superficielle	0,8	2,3
Domaine cristallin	1,3	3,6
Système karstique Larzac	2,4	7
Système karstique source du Lez	0,5	1,4
Domaines sans grand système aquifère	2,8	8,1
Karst et schistes	0,7	2,1
Karst pli de Montpellier	0,03	0,1
Nappes alluviales	26,2	75,5

L'eau superficielle ne représente que 2,3 % des volumes utilisés pour la production d'eau potable dans le bassin versant (partie amont, cévenole). Le principal prélèvement en eau superficielle est situé à Ganges.

Pour tout le reste du bassin versant, la production d'eau potable est assurée à partir des ressources souterraines (98 % de la production du bassin).

Les différents aquifères sont sollicités de manière très contrastée :

- domaine cristallin, domaine sans grand système aquifère, karst et schistes; 14 % de la production;
- grands systèmes aquifères :
 - les karsts (Larzac, système source du Lez, pli de Montpellier) : 8 % de la production,
 - les nappes alluviales : 75 % de la production ; la nappe de l'Hérault fournit les ¾ de l'eau potable issue du bassin versant (220 000 habitants permanents, 520 000 en été).

Jusqu'à Florensac, les prélèvements en eau potable sont répartis de manière homogène sur le bassin versant, au gré des secteurs urbanisés. A Florensac est implanté le champ captant du Syndicat du Bas Languedoc qui alimente plus de 500 000 personnes l'été, dont une bonne partie située à l'extérieur du bassin de l'Hérault. Ce prélèvement est le plus important prélèvement pour l'eau potable. Il représente 70 % des prélèvements dans la nappe (20 Mm³/an), 2/3 des volumes prélevés dans le bassin versant pour l'eau potable et 38 % du volume total prélevé (calculé sur 2007-2011).

Les prélèvements effectués dans l'Hérault pour l'AEP de Ganges (SIAEP Région de Ganges) et Gignac devraient prochainement être supprimés.

Malgré cela, le Plan de gestion de la ressource en eau (2017) met en évidence une augmentation importante de la demande à l'horizon 2030, principalement dans la partie aval du bassin versant.

_

⁴ Y compris la partie gardoise.

⁵ Etude volumes prélevables 2016, PRGE 2017

3.6.2. Les prélèvements agricoles

Le bilan des prélèvements réalisé de 2007 à 2011 indique que les volumes prélevés sur le bassin versant⁶ pour l'irrigation représentent 13.3 Mm³ pendant la seule période d'étiage (4 mois)⁷. Les prélèvements effectués en 2014 (hors barrage des Olivettes et Salagou) ont été légèrement inférieurs : 12,9 Mm³ pour 5339 ha irrigués...

Les prélèvements agricoles s'effectuent majoritairement dans le réseau hydrographique superficiel. L'Hérault est fortement sollicité.

On compte six zones d'irrigation principales :

- 2 zones en tête de bassin (4,1 % de la superficie irrigable) :
 - haute vallée de l'Hérault (surface irriguée 200 ha / 696 000 m³),
 - bassin amont de la Lergue (Asa Aubaygues surface irriguée 60 ha / 150 000 m3).
- 2 secteurs développés à partir de grands réservoirs artificiels (14,7 % de la superficie irrigable) :
 - autour du Lac du Salagou (360 ha irrigués / 370 000 m³/an),
 - à partir des lâchés du barrage des Olivettes (583 ha irrigués / 300 000 m³/an).
- 2 secteurs principaux autour du fleuve Hérault (75 % de la superficie irrigable soit 5139 ha irrigués / 12,2 Mm³):
 - le secteur de l'ASA de Gignac,
 - la basse vallée de l'Hérault et ses affluents.

Dans le secteur de l'ASA de Gignac, l'eau est prélevée directement dans l'Hérault au niveau du barrage de la Combe du Cor. L'ASA dispose d'un droit d'eau de 3,5 m³/s. Environ 40 millions de m³ par an sont dérivés en moyenne à la prise d'eau (estimation BRL) ; 20 millions de m³ circulent dans les canaux puis sont restitués directement dans l'Hérault en divers points. L'impact du prélèvement sur le débit d'étiage de l'Hérault est très fort entre le barrage de prise et le barrage de régulation, soit 3 km; il reste important jusqu'à la sortie des gorges (répartiteur), soit 4 km.

Dans la basse vallée de l'Hérault, BRL a développé 4 réseaux d'irrigation à partir de prélèvements dans l'Hérault et sa nappe alluviale. Les 2 captages principaux sont Gourbideau (aval H17): 1,02 Mm³/an, et Devèze (aval H20): 1,2 Mm³/an⁸.

L'évolution des prélèvements liés à l'usage agricole est présentée dans le plan de gestion de la ressource en eau. En 2030, les volumes prélevés augmenteront nettement, surtout dans la plaine (secteur aval des gorges).

3.6.3. Les centrales hydroélectriques

21 centrales hydroélectriques sont présentes sur le fleuve et ses affluents (voir paragraphe 3.5). Toutes les centrales du cours aval du fleuve Hérault fonctionnent au fil de l'eau (sans secteur court-circuité). Sur la Lergue, l'impact de ces ouvrages est fort : 7 microcentrales sont implantées.

Le ruisseau du Salagou est court-circuité sur environ 3 km entre le barrage du Salagou et la centrale. Sur ce tronçon, les débits sont très faibles. La centrale turbine 500 l/s. L'été, ce débit, bien supérieur au débit naturel du ruisseau, soutient les étiages de la Lergue et de la moyenne vallée de l'Hérault.

⁶ Y compris la partie gardoise, les prélèvements des Olivettes et du Salagou.

⁷ Etude volumes prélevables 2016, PRGE 2017

⁸ Moyennes des volumes annuels prélevés en 2008, 2009 et 2010 fournis par BRL

L'eau de la Vis est dérivée sur 12 km environ entre Navacelles et Madières. Le débit réservé est de 700 l/s pendant les 4 mois d'été et 500 l/s le reste de l'année.

4. SOURCES POTENTIELLES DE POLLUTION

Les informations qui suivent proviennent de différentes sources :

- état des lieux de la «Gestion qualitative de la ressource et des milieux» du SAGE Hérault (2005),
- entretien avec l'animateur du SAGE Hérault,
- entretien avec le responsable du SATESE 34,
- base de données de l'Observatoire Départemental Eau Environnement 34,
- communications du service du SATE 30.

4.1. REJETS DOMESTIQUES

4.1.1. Les stations d'épuration du bassin versant de l'Hérault en 2016

La quasi-totalité des zones agglomérées du bassin versant dispose de systèmes d'épuration collectifs. L'équipement en stations d'épuration a connu un fort développement dans les années 90 suite au contrat de rivière. Une amélioration importante de la qualité de l'eau des cours d'eau s'en est suivie notamment pour l'Arre et l'Hérault dans sa partie aval.

Le bassin versant de l'Hérault compte 166 communes dont 136 dans le département de l'Hérault. On dénombre 129 stations d'épuration⁹ fonctionnelles en 2015 dans le bassin versant de l'Hérault (département Hérault), soit une capacité épuratoire totale de près de 410 000 équivalents habitants. Le parc est composé surtout d'équipements de petite taille puisque 77 stations ont une capacité épuratoire inférieure à 1 000 éq/hab et 42 une capacité comprise entre 1 000 et 5 000 éq/hab. Seules 10 stations dépassent le seuil des 5 000 équivalent habitants, dont celle d'Agde qui représente avec plus de 200 000 éq/hab environ 50 % de la capacité épuratoire du bassin.

D'après les données 2015 de l'Observatoire Départemental Eau Environnement 34, parmi les 136 communes situées dans la partie héraultaise du bassin versant, certaines ne sont pas raccordées à un système d'assainissement collectif (Celles, Ferrières-les-Verreries, Lauroux, Merifons, Montoulieu, Moulès-et-Baucels, Olmet-et-Villecun, St André-de-Buèges, Soumont). Il s'agit essentiellement de petites communes rurales. Notons qu'à Celles une station d'épuration sera mise en service prochainement et que des stations d'épuration sont en projet à Olmet-et-Villecun.

D'autres stations d'épuration sont situées dans le bassin versant de l'Hérault en dehors du département de l'Hérault :

- 3 stations d'épuration rejettent leurs effluents dans l'Arre, la plus importante étant celle située au Vigan (15 000 EH),
- 6 installations concernent la Vis, notamment à Saint-Laurent-le-Minier (en amont du point Vis3),
- 5 stations d'épuration se rejettent dans l'Hérault principalement à Valleraugue où 3 installations comptabilisent 3 600 EH,
- les effluents de la station d'épuration de Sumène (2 500 EH) se déversent dans le Rieutord, un affluent direct de l'Hérault en amont de H5.

Toutes ces stations ont été reportées sur la carte suivante.

⁹ A noter qu'une même commune peut compter plusieurs stations d'épuration et que plusieurs communes peuvent être raccordées à une même station.

IMPLANTATION DES STATIONS D'EPURATION

4.1.2. Les efforts réalisés en matière d'assainissement collectif depuis 2011

Depuis 2011, plusieurs installations ont été mises en service et sont présentées dans le Tableau 6. Il s'agit soit de modernisations d'installations existantes soit de créations de stations d'épuration dans des communes qui ne possédaient pas d'assainissement collectif avant 2011. Les améliorations qui ont eu lieu en 2015 et 2016 sont présentées en caractères gras.

Tableau 6 - Stations d'épuration mises en service (nouvelle ou modernisation) entre le 1/01/2012 et le 31/12/2016.

Nom de la STEP	En service	Capacité EH	Localisation du rejet
St ANDRE DE SANGONIS	2014	8000	Hérault amont H15
JONQUIERES (Bourg)	01/12/2013	800	Rau de l'Argenteille puis Hérault amont H16
POUZOLS	2015	n.c	Hérault amont H16
TRESSAN	31/03/2015	600	Hérault amont H17
AUMELAS (Bourg)	03/12/2012	300	Rau de Rouvièges amont H18 (éloigné)
ADISSAN	01/04/2014	1500	Rau de Vareille puis Hérault amont H19
BESSAN	2015	n.c.	Hérault en amont de H23
PAIGAIROLLES-DE-BUEGES	2016	n.c.	Buèges amont BU1
St ETIENNE DE GOURGAS	01/09/2015	201	Brèze puis Lergue amont Ler1
SOUBES	01/07/2015	1500	Rau de Canet puis Lergue amont Ler1
ST PIERRE DE LA FAGE(Parlatge)	01/01/2012	80	Brèze puis Lergue amont Ler1 (éloigné)
BOSC (LE) (Loiras)	01/09/2015	470	Rau du Merdanson puis Lergue aval Ler2
LACOSTE	2016	n.c.	Salagou amont Slg1
LACOSTE (Mas Audran)	01/12/2013	70	Salagou amont Slg1
NOTRE DAME DE LONDRES	01/01/2014	250	Rau de Tourguille puis Lamalou amont Lam1 (éloigné)
MAS de LONDRES	01/03/2013	600	Lamalou amont Lam1 (éloigné)
COULOBRES (bourg)	2016	n.c.	Thongue amont de Th1 (éloigné)
MARGON	2015	n.c.	Thongue amont de Th1 (éloigné)
FOS (Bourg)	01/12/2015	250	Thongue amont de Th1 (éloigné)
VALMASCLE	01/12/2013	18	Boyne amont de Bo1 (éloigné)
AGDE	27/11/2013	>200 000	Hérault aval H23

Source : Département de l'Hérault - Observatoire Départemental Eau Environnement 34 - avril 2016

Notons que les effluents de Tourbe (amont H21) ont été raccordés à la station d'épuration de Pézenas en septembre 2016.

4.1.3. Travaux d'amélioration des systèmes d'assainissement collectif en cours et dysfonctionnements constatés

Les informations communiquées par les services en charge de l'assainissement collectif au Conseil Départemental de l'Hérault (SATESE 34) et du Gard (SATE 30), ainsi que par le Syndicat Mixte du Bassin du Fleuve Hérault et le SIVU du Pays Viganais sont synthétisées sans le tableau suivant.

Tableau 7 - Communes concernées par des travaux ou des dysfonctionnements du système d'assainissement collectif en 2016.

Commune	Nature des travaux / dysfonctionnements	Travaux en cours (fin 2016)	Localisation du rejet
Aumessas (Gard)	Vétusté de la station d'épuration, eaux parasites		Amont H5 (Arre)
Valleraugue (Gard)	Stations Ardailles et Espérou vétustes, nouvelle station Espérou en construction	✓	Amont H5
Le Vigan	Rejets dans l'Arre par temps de pluie		Amont H5 (Arre)
Sumène (Gard)	Mauvais fonctionnement de la station d'épuration, projet de construction d'une nouvelle station		Amont H5 (Rieutord)
Pont-d'Hérault (Gard)	Système collectif insuffisant, pollution bactériologique dans l'Hérault (interdiction de baignade)		Amont H5
Ganges	des rejets directs dans l'Hérault sont signalés à proximité de la clinique ; des défauts de raccordement entraînent des débordements en période pluvieuse dans le Rieutord – travaux sur certains postes de relevage prévus	☑	Amont H6
Saint-Bauzille-de- Putois	Nouvelle station en projet commune avec Agonès (2018)		Amont H8
Brissac	Seconde station en construction au hameau de Coupiac (automne 2017)	\checkmark	Amont H9
Aniane	Travaux liés au problème d'eaux parasites, projet de construction d'une nouvelle station avec traitement de la bactériologie (2020)	✓	Amont H14
Saint-Jean-de-Fos	Lagunage en limite de capacité		Amont H14
Argelliers	Dysfonctionnement de la station d'épuration neuve, utilisation de l'ancienne station		Amont H14
Lagamas	Problèmes de fonctionnement de la station d'épuration	\checkmark	Amont H14
Montpeyroux	Problèmes sur la station Saint-Etienne		Amont H14
Aumelas	Regroupement des stations en une seule	\checkmark	Amont H18
Gignac	Réseau unitaire dans le centre ancien, rejets par temps de pluie		Amont H15
Canet	Nouvelle STEP avec traitement azote et phosphore (projet démarré)	\checkmark	Amont H18
Vendémian	Mauvais fonctionnement de la station		Amont H18
Saint-Pargoire	Surcharge et dysfonctionnement de la station actuelle		Amont H18
Nizas	Dysfonctionnement des bio-disques de la STEP	V	Amont H19
Lézignan-La-Cèbe	Amélioration de la STEP prévue en 2017 – réseau unitaire remplacé par du séparatif en 2016	abla	Amont H19
Nézignan	travaux d'amélioration du réseau en 2015-2016	\checkmark	Amont H21
Celles	Construction d'une station au hameau des Vailhes	\checkmark	Lac Salagou
Saint-Maurice-de- Navacelles	Nouvelle station en projet pour le village de Navacelles		Amont Vis1
Saint-Laurent-le- Minier (Gard)	STEP détruite par la crue de fin 2014 – Assainissement mauvais en 2015 et 2016 ¹⁰	✓	Amont Vis3
Saint-Martin-de- Londres	Nouvelle STEP prévue en 2017	✓	Amont Lam1

¹⁰ Suite à la destruction de la STEP lors de la crue de septembre 2014, l'assainissement de la commune était mauvais en 2015 et 2016. Des rejets directs ont eu lieu durant la restauration et la remise en service des installations en 2015. La nouvelle installation présente des dysfonctionnements et un dimensionnement insuffisant. Un nouveau projet, assurant un meilleur assainissement, doit être prochainement présenté aux services de l'état.

Commune	Nature des travaux / dysfonctionnements	Travaux en cours (fin 2016)	Localisation du rejet
Saint-Jean-de- Buèges	Vétusté de la station d'épuration		Amont Bu1
Lavalette	Nouvelle STEP prévue en 2017	✓	Amont Ler2
Paygairolles-de- l'Escalette	Problèmes d'exploitation de la station et du réseau	✓	Amont Ler2
Lodève	Problème d'eaux parasites dans le centre – rejets directs par temps de pluie		Amont Ler2
Olmet-et-Villecun	Station d'épuration en projet à Villecun		Amont Ler2
Poujols	Construction d'une STEP en cours		Amont Ler2
Le Bosc	Surcharge des stations de la commune (excepté Loiras), nouvelle station en projet	✓	Amont Ler3
Fontes	STEP en limite de capacité Schéma directeur d'assainissement en cours		Amont Bo1
Gabian	Augmentation de la capacité et de mise en place du traitement du phosphore	✓	Amont Th1
Abeilhan	Modernisation de la STEP prévue en 2017		
Puissalicon	Rénovation des réseaux et demande pour la rénovation de la STEP	\checkmark	Amont Th2
Alignan-du-Vent	Projet d'agrandissement de la station et mise en place d'un traitement de l'Azote		Amont P2

Par ailleurs, la station d'épuration de Brignac (aval Ler2) a connu en 2014 et 2015 des problèmes de désinfection de ses effluents (communication du SATESE34). Ces dysfonctionnements ont été supprimés fin 2015.

4.1.4. L'assainissement non collectif

D'après les données de l'état des lieux 2005 du SAGE Hérault, une faible partie de la population du bassin ne serait pas raccordée à un système d'assainissement collectif.

Il s'agit en particulier de hameaux situés essentiellement dans la partie gardoise du bassin versant. Dans le département de l'Hérault, ces situations sont plus rares mais l'animateur du SAGE Hérault nous a fait part de perturbations dans la partie amont du bassin versant de la Lergue. En effet, certains affluents de la Lergue, dont notamment le Laurounet, sont impactés par des rejets issus de villages et hameaux ne disposant pas d'assainissement collectif.

Le service ressource en eau et SPANC de l'agglomération de Béziers nous a signalé des situations problématiques à proximité de la Thongue. Certains hameaux, situés entre Servian et Abeilhan ont été déclarés non conformes lors des contrôles, d'autres ont été récemment réhabilités. L'eau prélevée dans les captages de Servian notamment présente des teneurs élevées en nitrates. Une étude de l'aire d'alimentation des captages (AAC) sera prochainement menée par l'agglomération de Béziers. Elle comportera un état des lieux précis des filières d'assainissement non-collectif.

4.2. AUTRES SOURCES DE POLLUTION

4.2.1. Les rejets industriels

Le bassin versant de l'Hérault est caractérisé par une faible activité industrielle. Les établissements potentiellement polluants sont équipés de systèmes épuratoires. Des dysfonctionnements ponctuels pourraient occasionner des pollutions temporaires.

Parmi les installations industrielles potentiellement polluantes, on peut citer¹¹:

- 2 usines textiles à Sumène qui sont raccordées aux stations d'épuration locales et dont les effluents peuvent entraîner un dysfonctionnement de ces dernières ;
- 1 usine textile Well au Vigan raccordée à la station d'épuration ;
- 5 distilleries dans la vallée de l'Hérault : St-André-de-Sangonis, Montagnac, Pézenas, St-Thibéry et Servian ; elles sont toutes équipées de dispositifs épuratoires. Toutefois, des dysfonctionnements, notamment par temps de pluie, peuvent entraîner temporairement des rejets à forte teneur en matières organiques ;
- les centres d'embouteillage de St-Félix-de-Lodez et de Clermont-l'Hérault. Des défaillances des systèmes épuratoires ont entraîné dans le passé un départ d'effluents à forte charge organique vers le ruisseau de l'Arnoux et le Rhonel;
- la conserverie d'olives d'Aniane ; elle est équipée d'un bassin d'évaporation des effluents ;
- un établissement de production d'engrais à Montagnac;
- l'ancienne mine d'uranium de Lodève qui a été réaménagée en parc économique et où une centrale solaire photovoltaïque est implantée depuis 2013 ;
- l'installation de stockage des déchets non dangereux (ISDND) résiduels de Soumont qui fait l'objet d'un suivi spécifique;
- l'ancienne mine des Malines sur la commune de St-Laurent-le-Minier. L'exploitation s'est arrêtée en 1991. La Société Métalleurop y exploitait du minerai de zinc et de plomb. Actuellement, plusieurs sites de stockage de déchets miniers sur les bords de la Crenze et de la Vis en aval de la papeterie continuent de polluer en zinc et en plomb les eaux de la Crenze, puis celles de la Vis et de l'Hérault. Durant l'hiver 2010, suite à des travaux réalisés sur la prise d'eau de la microcentrale de la papeterie (ou de Martinet) sur la Vis à St Laurent-le-Minier, des sédiments de la retenue, fortement chargés en zinc et plomb, ont été remobilisés vers l'aval.

4.2.2. Les rejets agricoles

Dans la partie héraultaise du bassin versant de l'Hérault, **les terres agricoles** représentent 76 000 ha (surface agricole utilisée, données du RGA 2010), soit 38 % du bassin versant (34). **Les terres cultivées** représentent environ 45 000 ha. 90 % des terres cultivées se trouvent dans la partie basse du bassin, à l'aval des gorges de l'Hérault. La viticulture est largement dominante puisqu'elle représente 80 % des cultures. Cette culture est faiblement consommatrice de fertilisants azotés ou phosphorés. En revanche, elle utilise des herbicides ainsi que des insecticides et fongicides.

Les préparations phytosanitaires utilisent un grand nombre de molécules différentes dont il est difficile de mesurer la concentration dans les eaux de ruissellement et d'évaluer leur impact sur le milieu.

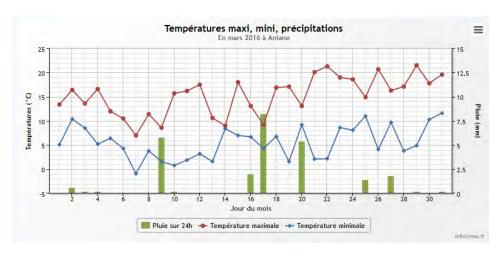
¹¹ Présentés dans le SAGE Hérault, volet gestion qualitative

La production de vin, d'après les données du SAGE Hérault 2005, se répartit entre 49 caves coopératives (1,6 millions d'hectolitres) et environ 220 caves particulières (0,4 millions d'hectolitres). Les chiffres issus des données de redevance 2015 auprès de l'Agence de l'Eau font état de seulement 19 caves coopératives dans le bassin versant. Le bassin versant de l'Hérault produit environ 30 % de la production totale du département. Cette activité entraîne la production d'effluents à forte charge organique. Actuellement, presque toutes les caves coopératives sont équipées de systèmes épuratoires ou raccordées à des systèmes collectifs. D'après l'animateur du SAGE Hérault, la plupart des caves particulières du bassin de l'Hérault serait équipée d'un système de dépollution. Cependant, des rejets provenant de caves particulières persistent dans la Thonque et impactent la qualité du cours d'eau.

L'activité d'élevage est très réduite dans le bassin de l'Hérault. Le recensement général agricole de 2010 fait état de 8 500 unités gros bétail (UGB) (département 34 uniquement). L'élevage (ovins, bovins) se concentre sur la partie haute du bassin (amont de Gignac). Le mode d'élevage est plutôt extensif ce qui permet une dispersion et donc une atténuation des impacts.

Quelques piscicultures sont implantées sur les cours d'eau (Hérault, Vis, Buèges).

5. QUALITE DES EAUX DE L'HERAULT ET DE SES AFFLUENTS

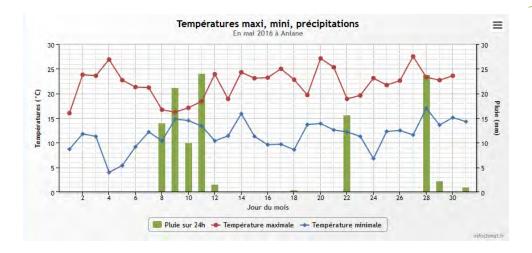

5.1. CONDITIONS D'INTERVENTION

5.1.1. Conditions climatiques

Les conditions climatiques des campagnes réalisées dans l'Hérault et ses affluents dans le cadre de ce suivi sont présentées pour chaque campagne dans un graphique¹².

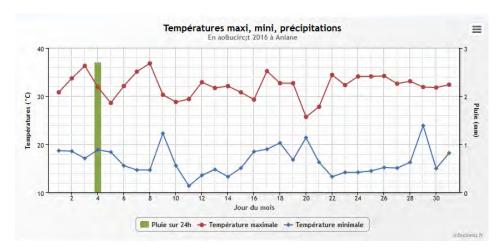
• C1 - Campagne hivernale

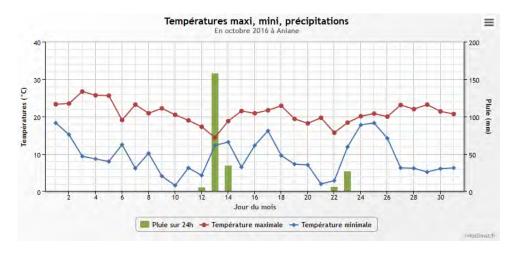
La première campagne de suivi s'est déroulée du 21 au 22 mars 2016. Le temps était ensoleillé et sec. Des pluies ont eu lieu les jours précédents (15 mm à Aniane entre le 16 et le 20 mars).



C2 - Campagne printanière

La deuxième campagne de suivi s'est déroulée du 23 au 24 mai 2016. Le temps était ensoleillé, sec et venteux durant ces deux journées. 15 mm de pluie sont tombés à Aniane la veille de la campagne.

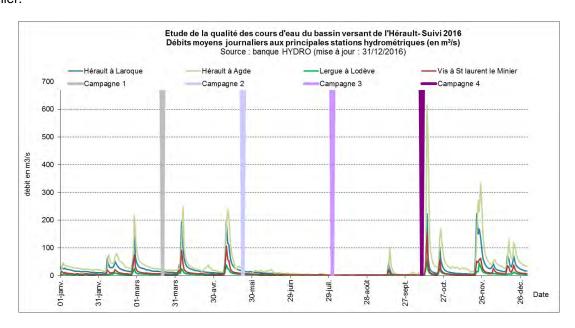

¹² Pluviométrie relevée à Aniane diffusée par infoclimat.fr


• C3 - Campagne estivale

La troisième campagne de suivi s'est déroulée du 1 au 2 août 2016. Le temps était ensoleillé et chaud. Une légère pluie (moins de 2 mm) est tombée au cours des 2 jours précédents.

C4 - Campagne automnale

Cette dernière campagne de suivi de l'année 2016 a eu lieu les 10 et 11 octobre par un temps ensoleillé et sec. Cette deuxième semaine du mois d'octobre marque le début de la baisse des températures.



5.1.1. Débits lors des 4 campagnes de prélèvement

La banque HYDRO fournit des débits journaliers qui permettent de situer les campagnes de mesures dans le contexte hydrologique.

La DREAL indique que certaines stations hydrométriques (Ganges, Canet et Agde), conçues pour l'annonce des crues, fournissent des valeurs peu fiables à l'étiage.

Les graphiques suivants présentent l'évolution des débits de l'Hérault à l'amont du bassin versant (Laroque) et à l'exutoire (Agde) ainsi qu'au niveau de certains affluents : la Lergue à Lodève et la Vis à Saint-Laurent-le-Minier.

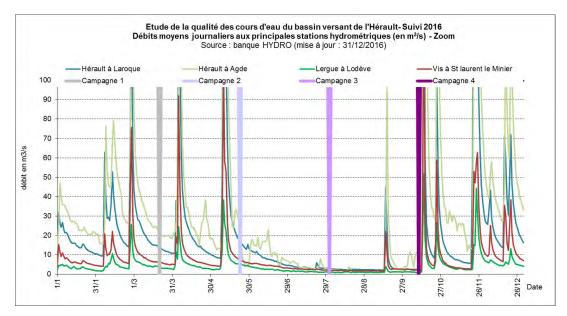


Figure 1 - Evolution des débits moyens journaliers dans l'Hérault, la Lergue et la Vis (source Banque HYDRO)

Les valeurs de débit relevées à ces différentes stations au cours de chaque campagne sont comparées aux données de références disponibles dans la Banque Hydro. Cette analyse permet de situer les conditions hydrométriques des campagnes de mesures de l'année 2016 par rapport aux observations réalisées au cours des cinquante dernières années.

Tableau 8 - Comparaison des débits mesurés aux débits de référence de l'Hérault, de la Vis et de la Lergue en 2016.

		Campagne hivernale		Campagne p	rintanière	Campagne	estivale	Campagne automnale		
Stations	Module quinquenn al sec m³/s	Module Moyen m³/s	Q moyen mensuel interannuel m³/s	Q observé m³/s						
Hérault à Laroque	13	19,3	21,8	13,8	18	17,7	3,61	3	23,5	2,37
Hérault à Agde	24	42	61,3	20,5	34,6	16,4	7,02	6,26	54,7	4,25
Vis à St-Laurent- du-Minier	6,9	9,85	11,8	6,17	8,7	7,38	2,61	2,07	12,5	2,06
Lergue à Lodève	2,7	4,54	6,45	3,42	4,14	4,91	1,27	1,03	5,26	1,04

C1 - Campagne hivernale

Cette campagne a été réalisée au cours d'une période où l'hydrologie de l'Hérault était relativement basse.

Le débit mesuré dans l'Hérault à Laroque (environ 13,8 m³/s) est proche du module quinquennal sec (13 m³/s) et nettement inférieur au débit moyen interannuel du mois de mars (21,8 m³/s).

De la même manière, le débit mesuré dans l'Hérault à Agde (environ 20,5 m³/s) est proche du module quinquennal sec (24 m³/s) et très inférieur au débit moyen interannuel du mois de mars (61,3 m³/s)

Le tableau suivant présente les débits issus de nos jaugeages et ceux calculés à partir des valeurs enregistrées dans la banque HYDRO lors de cette première campagne de mesures.

Tableau 9 - Débits mesurés ou calculés au cours de la campagne de mars 2016

					1 0			
Station physico-chimie	n°	Date	Superficie drainée à la station de prélèvement km²	Débit jaugé (I/s)	Superficie drainée à la station hydrométrique de référence d'après la banque HYDRO	Banque HYDRO (I/s)	Débit calculé * (I/s)	Stations hydrométriques et/ou méthode utilisées pour le calcul de débit
HERAULT								
HERAULT A CAZILHAC	H5	21/03/2016	804		807	16400	16339	Hérault à Ganges
HERAULT A LAROQUE	H6		870				14705	Hérault à Ganges et Laroque
HERAULT A AGONES	H7	21/03/2016	915		912	13800	13845	Hérault à Laroque
HERAULT A ST- BAUZILLE-DE-PUTOIS	H8	21/03/2016	952	13162				
HERAULT A CAUSSE-DE- LA-SELLE 1	H10		1184				14241	débits en H8 et H11
HERAULT A PUECHABON	H11		1230	14455				estimé
HERAULT A ST-JEAN-DE- FOS 3	H12		1288				17839	Hérault à Gignac (aval)
HERAULT A GIGNAC	H14	22/03/2016	1444		1312	20000	22012	Hérault à Gignac (aval)
HERAULT A POUZOLS	H15		1490				22713	Hérault à Gignac (aval)
HERAULT A CANET	H16	22/03/2016	1498				22835	Hérault à Gignac (aval)
HERAULT A ST-PONS-DE- MAUCHIENS	H18	22/03/2016	2089		1865	20700	23186	Hérault à Aspiran
HERAULT A PEZENAS 1	H19	22/03/2016	2180				24196	Hérault à Aspiran
HERAULT A PEZENAS 2	H20		2312				25661	Hérault à Aspiran
HERAULT A PEZENAS 3	H21		2347				26050	Hérault à Aspiran
HERAULT A AGDE 6	H23	22/03/2016	2535		2550	20500	20379	Hérault à Agde
AFFLUENTS								
VIS A ST-MAURICE- NAVACELLES	VIS1	21/03/2016	199		198	4080	4101	Vis à Blandas
VIS A GORNIES	VIS2		451				5850	Vis à Blandas et Saint-Laurent-le-Minier
VIS A ST-LAURENT-LE- MINIER	VIS3	21/03/2016	499		499	6170	6170	Vis à Saint-Laurent-le- Minier
RUISSEAU DE BRISSAC A BRISSAC	FO1	21/03/2016	7	530				
BUEGES A ST-JEAN-DE- BUEGES 2	BU1	21/03/2016	28	425				
LERGUE A LODEVE 2	LER2	22/03/2016	256		228	3420	3840	Lergue à Lodève
SALAGOU A LE-BOSC	SLG1	22/03/2016	81	9				
BOYNE A CAZOULS- D'HERAULT 2	BO1	22/03/2016	77	59				
PEYNE A ROUJAN	P1	22/03/2016	49	6				
TONGUE A SERVIAN	TH1	22/03/2016	72	31				

^{*}Calculs réalisés par interpolation et/ou extrapolation à partir des surfaces de bassins versants et de valeurs relevées à une ou plusieurs stations hydrométriques.

■ C2 – Campagne printanière

Une montée des eaux importante a eu lieu une quinzaine de jours avant cette campagne. Les prélèvements ont été réalisés en fin de décrue, l'hydrologie de l'Hérault était relativement basse.

Le débit mesuré dans l'Hérault à Laroque (environ 17,7 m³/s) est proche du débit moyen interannuel du mois de mai (18,03 m³/s).

Le débit mesuré dans l'Hérault à Agde (environ 16,4 m³/s) est inférieur au module quinquennal sec (24 m³/s) et inférieur au débit moyen interannuel du mois de mai (34,6 m³/s).

Le tableau suivant présente les débits issus de nos jaugeages et ceux calculés à partir des valeurs enregistrées dans la banque HYDRO lors de cette seconde campagne de mesures.

Tableau 10 - Débits calculés ou mesurés au cours de la campagne de mai 2016

Station physico-chimie	n°	Date	Superficie drainée à la station de prélèvement km²	Débit jaugé (I/s)	Superficie drainée à la station hydrométrique de référence d'après la banque HYDRO	Banque HYDRO (I/s)	Débit calculé * (l/s)	Stations hydrométriques et/ou méthode utilisées pour le calcul de débit
HERAULT								
HERAULT A CAZILHAC	H5	23/05/2016	804		807	19700	19627	Hérault à Ganges
HERAULT A LAROQUE	H6		870				18370	Hérault à Ganges et Laroque
HERAULT A AGONES	H7	23/05/2016	915		912	17700	17758	Hérault à Laroque
HERAULT A ST- BAUZILLE-DE-PUTOIS	H8	23/05/2016	952	22000				
HERAULT A CAUSSE-DE- LA-SELLE 1	H10		1184				23091	débits en H8 et H11
HERAULT A PUECHABON	H11		1230	23307				estimé
HERAULT A ST-JEAN-DE- FOS 3	H12		1288				24261	Hérault à Gignac (aval)
HERAULT A GIGNAC	H14	24/05/2016	1444		1312	27200	29937	Hérault à Gignac (aval)
HERAULT A POUZOLS	H15		1490				30890	Hérault à Gignac (aval)
HERAULT A CANET	H16	24/05/2016	1498				31056	Hérault à Gignac (aval)
HERAULT A ST-PONS- DE-MAUCHIENS	H18	24/05/2016	2089		1865	30200	33827	Hérault à Aspiran
HERAULT A PEZENAS 1	H19	24/05/2016	2180				35301	Hérault à Aspiran
HERAULT A PEZENAS 2	H20		2312				37438	Hérault à Aspiran
HERAULT A PEZENAS 3	H21		2347				38005	Hérault à Aspiran
HERAULT A AGDE 6	H23	24/05/2016	2535		2550	16400	16304	Hérault à Agde
AFFLUENTS								
VIS A ST-MAURICE- NAVACELLES	VIS1	23/05/2016	199		198	4930	4955	Vis à Blandas
VIS A GORNIES	VIS2		451				7006	Vis à Blandas et Saint-Laurent-le-Minier
VIS A ST-LAURENT-LE- MINIER	VIS3	23/05/2016	499		499	7380	7380	Vis à Saint-Laurent-le- Minier
RUISSEAU DE BRISSAC A BRISSAC	FO1	23/05/2016	7	741				
BUEGES A ST-JEAN-DE- BUEGES 2	BU1	23/05/2016	28	738				
LERGUE A LODEVE 2	LER2	24/05/2016	256		228	4910	5513	Lergue à Lodève
SALAGOU A LE-BOSC	SLG1	24/05/2016	81	11				
BOYNE A CAZOULS- D'HERAULT 2	BO1	24/05/2016	77	70				
PEYNE A ROUJAN	P1	24/05/2016	49	60		58		
TONGUE A SERVIAN	TH1	24/05/2016	72	49				

^{*}Calculs réalisés par interpolation et/ou extrapolation à partir des surfaces de bassins versants et de valeurs relevées à une ou plusieurs stations hydrométriques.

■ C3 – Campagne estivale

Cette campagne a été réalisée en pleine période d'étiage.

Le débit mesuré dans l'Hérault à Laroque (environ 3 m^3/s) est proche au débit moyen interannuel du mois d'août (3,61 m^3/s).

De la même manière, le débit mesuré dans l'Hérault à Agde (environ 6,3 m³/s) est proche du débit moyen interannuel du mois d'août (7 m³/s).

Le tableau suivant présente les débits issus de nos jaugeages et ceux calculés à partir des valeurs enregistrées dans la banque HYDRO lors de cette troisième campagne de mesures.

Tableau 11 - Débits calculés et mesurés au cours de la campagne d'août 2016

						0		
Station physico-chimie	n°	Date	Superficie drainée à la station de prélèvement km²	Débit jaugé (I/s)	Superficie drainée à la station hydrométrique de référence d'après la banque HYDRO	Banque HYDRO (I/s)	Débit calculé * (l/s)	Stations hydrométriques et/ou méthode utilisées pour le calcul de débit
HERAULT								
HERAULT A CAZILHAC	H5	01/08/2016	804		807	3140	3128	Hérault à Ganges
HERAULT A LAROQUE	H6		870				3040	Hérault à Ganges et Laroque
HERAULT A AGONES	H7	01/08/2016	915		912	3000	3010	Hérault à Laroque
HERAULT A ST- BAUZILLE-DE-PUTOIS	H8	01/08/2016	952	3593				
HERAULT A CAUSSE-DE- LA-SELLE 1	H10		1184				2103	débits en H8 et H11
HERAULT A PUECHABON	H11		1230	1807				estimé
HERAULT A ST-JEAN-DE- FOS 3	H12		1288				2533	Hérault à Gignac (aval)
HERAULT A GIGNAC	H14	01/08/2016	1444		1312	2840	3126	Hérault à Gignac (aval)
HERAULT A POUZOLS	H15		1490				3225	Hérault à Gignac (aval)
HERAULT A CANET	H16	02/08/2016	1498				3243	Hérault à Gignac (aval)
HERAULT A ST-PONS- DE-MAUCHIENS	H18	02/08/2016	2089		1865	4640	5197	Hérault à Aspiran
HERAULT A PEZENAS 1	H19	02/08/2016	2180				5424	Hérault à Aspiran
HERAULT A PEZENAS 2	H20		2312				5752	Hérault à Aspiran
HERAULT A PEZENAS 3	H21		2347				5839	Hérault à Aspiran
HERAULT A AGDE 6	H23	02/08/2016	2535		2550	6260	6223	Hérault à Agde
AFFLUENTS								
VIS A ST-MAURICE- NAVACELLES	VIS1	01/082016	199		198	1930	1940	Vis à Blandas
VIS A GORNIES	VIS2		451				2057	Vis à Blandas et Saint- Laurent-le-Minier
VIS A ST-LAURENT-LE- MINIER	VIS3	01/08/2016	499		499	2070	2070	Vis à Saint Laurent-le- Minier
RUISSEAU DE BRISSAC A BRISSAC	FO1	01/08/2016	7	156				
BUEGES A ST-JEAN-DE- BUEGES 2	BU1	01/08/2016	28	74				
LERGUE A LODEVE 2	LER2	02/08/2016	256		228	1030	1156	Lergue à Lodève
SALAGOU A LE-BOSC	SLG1	02/08/2016	81	4,7				
BOYNE A CAZOULS- D'HERAULT 2	BO1	02/08/2016	77	3				
PEYNE A ROUJAN	P1	02/08/2016	49	84		79		
TONGUE A SERVIAN	TH1		72					

^{*}Calculs réalisés par interpolation et/ou extrapolation à partir des surfaces de bassins versants et de valeurs relevées à une ou plusieurs stations hydrométriques.

■ C4 – Campagne automnale

Le débit mesuré dans l'Hérault à Laroque (environ 2,37 m^3/s) est très inférieur au débit moyen interannuel du mois d'octobre (23,5 m^3/s) et atteste d'un étiage tardif.

De la même manière, le débit mesuré dans l'Hérault à Agde (environ 4,3 m³/s) est bien inférieur au débit moyen interannuel du mois d'octobre (54,7 m³/s).

Le tableau suivant présente les débits issus de nos jaugeages et ceux calculés à partir des valeurs enregistrées dans la banque HYDRO lors de cette quatrième campagne de mesures.

Tableau 12 - Débits calculés et mesurés au cours de la campagne d'octobre 2016

						0		
Station physico-chimie	n°	Date	Superficie drainée à la station de prélèvement km²	Débit jaugé (I/s)	Superficie drainée à la station hydrométrique de référence d'après la banque HYDRO	Banque HYDRO (I/s)	Débit calculé * (I/s)	Stations hydrométriques et/ou méthode utilisées pour le calcul de débit
HERAULT								
HERAULT A CAZILHAC	H5	10/10/2016	804		807	2310	2301	Hérault à Ganges
HERAULT A LAROQUE	H6		870				2339	Hérault à Ganges et Laroque
HERAULT A AGONES	H7	10/10/2016	915		912	2370	2378	Hérault à Laroque
HERAULT A ST- BAUZILLE-DE-PUTOIS	H8	10/10/2016	952	3177				
HERAULT A CAUSSE-DE- LA-SELLE 1	H10		1184				3296	débits en H8 et H11
HERAULT A PUECHABON	H11		1230	3320				estimé
HERAULT A ST-JEAN-DE- FOS 3	H12		1288				2631	Hérault à Gignac (aval)
HERAULT A GIGNAC	H14	10/10/2016	1444		1312	2950	3247	Hérault à Gignac (aval)
HERAULT A POUZOLS	H15		1490				3350	Hérault à Gignac (aval)
HERAULT A CANET	H16	11/10/2016	1498				3368	Hérault à Gignac (aval)
HERAULT A ST-PONS- DE-MAUCHIENS	H18	11/10/2016	2089		1865	4860	5444	Hérault à Aspiran
HERAULT A PEZENAS 1	H19	11/10/2016	2180				5681	Hérault à Aspiran
HERAULT A PEZENAS 2	H20		2312				6025	Hérault à Aspiran
HERAULT A PEZENAS 3	H21		2347				6116	Hérault à Aspiran
HERAULT A AGDE 6	H23	11/10/2016	2535		2550	4250	4225	Hérault à Agde
AFFLUENTS								
VIS A ST-MAURICE- NAVACELLES	VIS1	10/10/2016	199		198	1730	1739	Vis à Blandas
VIS A GORNIES	VIS2		451				2015	Vis à Blandas et Saint- Laurent-le-Minier
VIS A ST-LAURENT-LE- MINIER	VIS3	10/10/2016	499		499	2060	2060	Vis à Saint-Laurent-le- Minier
RUISSEAU DE BRISSAC A BRISSAC	FO1	10/10/2016	7	274				
BUEGES A ST-JEAN-DE- BUEGES 2	BU1	10/10/2016	28	63,5				
LERGUE A LODEVE 2	LER2	11/10/2016	256		228	1040	1168	Lergue à Lodève
SALAGOU A LE-BOSC	SLG1	11/10/2016	81	5,8				
BOYNE A CAZOULS- D'HERAULT 2	BO1		77	5				
PEYNE A ROUJAN	P1	11/10/2016	49	7				
TONGUE A SERVIAN	TH1		72			sec		_
		_						

^{*}Calculs réalisés par interpolation et/ou extrapolation à partir des surfaces de bassins versants et de valeurs relevées à une ou plusieurs stations hydrométriques.

Remarques:

Plusieurs mesures de débit n'ont pas pu être réalisées en raison d'une hauteur d'eau ou d'une vitesse trop importante.

A Saint-Bauzille-de-Putois (H8) en mai, le jaugeage n'a pas pu être réalisé dans son intégralité. Le débit a été estimé à partir des mesures effectuées en rive gauche et de la largeur totale du cours d'eau.

A Puechabon (H11) lors des 4 campagnes le débit est estimé à partir de la hauteur d'eau mesurée sur le seuil. La formule appliquée est la suivante :

Q=μ*L*H*√ (2gH)

Accélération de la pesanteur g=9,81 m/s² ; largeur L=30m ; coefficient de débit μ =0,43 (déversoir sans contraction latérale).

Campagne	Hauteur d'eau relevée sur le seuil H (m)	Valeur de débit estimée m3/s
C1	0,4	14,5
C2	0,55	23,3 ¹³
C3	0,1	1,8
C4	0,15	3,3

Les débits de chaque campagne sont présentés dans les graphiques suivants.

¹³ Lors de cette campagne, une partie du débit transitant de part et d'autre du déversoir n'a pas été pris en compte. La valeur est donc légèrement sous-estimée.

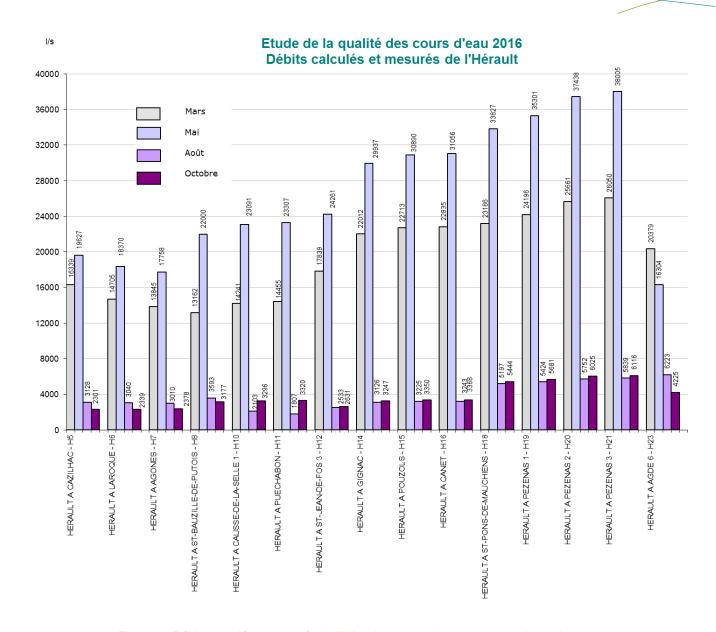


Figure 2 - Débits calculés et mesurés de l'Hérault au cours des campagnes de suivi 2016

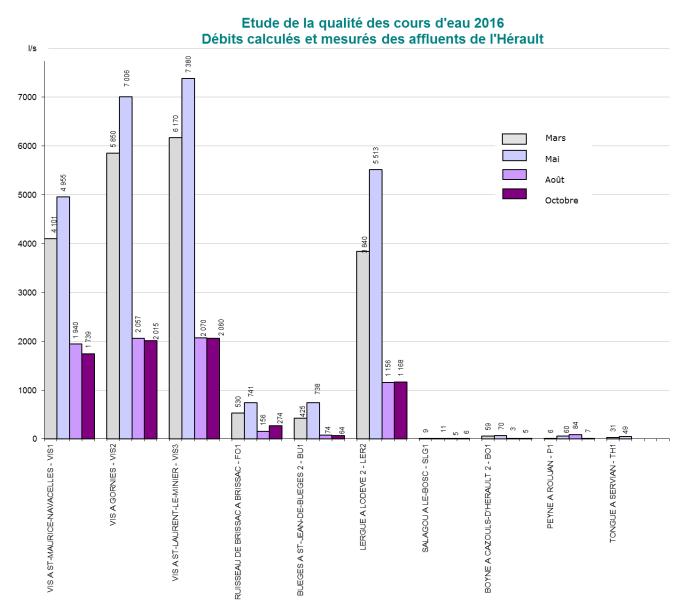


Figure 3 - Débits calculés et mesurés des affluents de l'Hérault au cours des campagnes de suivi 2016

5.2. QUALITÉ PHYSICO-CHIMIQUE ET BACTÉRIOLOGIQUE

Les résultats des analyses physico-chimiques et bactériologiques effectuées en 2016 lors des 4 campagnes de prélèvements sont présentés sous forme de tableaux dans les pages suivantes et sous forme de carte au chapitre 6.

L'évolution des paramètres est également présentée sous forme de graphiques en annexe 0.

Ils sont confrontés aux grilles d'appréciation de la qualité des eaux du SEQ-Eau version 2 et à celle de l'arrêté du 25 janvier 2010 modifié le 27/07/2015 (voir annexes 8.2 et 8.3).

Class	es de qualité se	on le	SEQ-Eau V	2:					
	Très bonne		Bonne		Moyenne		Médiocre		Mauvaise
	euils utilisés pour					tées.			
Les se	euils utilisés pour	r pH s	ont ceux de l'a	altératio	n acidification.				
Class	ne d'átat enlan	l'arrôt	á du 25 iany	ior 2010	modifió la 27/	07/20	15 ·		
Class	es d'état selon	l'arrêt	é du 25 janv	ier 2010	modifié le 27/	07/20	15 :		
Class	es d'état selon Très bon	l'arrêt	é du 25 janv Bon	ier 2010	modifié le 27/ Moyen	07/20	15 : Médiocre		Mauvais
	Très bon		Bon		Moyen		Médiocre	pérat	Mauvais ure naturellement

Tableau 13 - Résultats des analyses physico-chimiques réalisées en 2016, comparaison avec les seuils du SEQ-Eau V2

Station	Code	Camp.	Date	Heure	Débit	Temp.Air	Temp.Eau	На	Conductivité	02	02	MES DBO	O5 CO)D	NH4	NO2	NO3	PO4	Ptotal	Escherichia coli	Streptocogues fécaux	Phéo-pigments	Chloro-a	Chloro-a+ phéopig.
					l/s	°C	°C	unité	uS/cm	ma/l s	% sat.	ma/I maO		C/L r	ma NH4/I	ma NO2/I	ma NO3/I	mg PO4/I	mg P/I	ucf/100 ml	ucf/100 ml	ha\I	ug/l	ua/l
00404000 UEDALII TA OAZILUAO		1	21/03/2016	10.30	.,,5	12,1	10,3	8,8	316	11,2	101	<2 <0.			<0.05	<0,03	1,9	<0,1	<0,05	77	15	<0,5	<0,5	<1
06181990 - HERAULT A CAZILHAC	H5	2	23/05/2016			15	12,5	8,1	289	10,4	100	<2 0,6	100		<0,05	<0,03	1,7	<0,1	<0,05	176	46	<0,5	<0,5	<1
		3		11:00		20	20,1	8,3		8,9	100	3 1,1			<0,05	< 0,03	1,1	< 0,1	< 0,05	30	30	3	3	6
		4	10/10/2016			10	10	8,2		11,2		< 2 1,2			< 0,05	< 0,03	1,7	< 0,1	< 0,05	332	15	2	1	3
06182000-HERAULT A LAROQUE	H6	1	21/03/2016 23/05/2016	11:00 11:30		12,9 18	10,3 12,8	8,6 8,3	318 291	11,6	105 102	<2 0,7 <2 0,7			<0,05 <0,05	<0,03 <0,03	1,7	<0,1 <0,1	<0,05 <0,05	15 61	15 46	<0,5 <0,5	<0,5 <0,5	<1 <1
		3				25	23	8,3		10,0	120	3 1,1			< 0,05	< 0,03	1,7	< 0,1	< 0,05	15	15	nc	nc	<u> </u>
		4	10/10/2016	10:45		10	11,4	8,2	398	11,2	102	< 2 1,3	3 0,7	75	< 0,05	< 0,03	1,8	< 0,1	< 0,05	312	15	1	1	2
06182020-HERAULT A AGONES	H7	1		11:30		15,9	11,2	8,7		11,0		<2 0,9	- /-		<0,05	<0,03	2	<0,1	<0,05	30	<15	1	<0,5	<1,5
		2		12:00 13:45		19 27	13,1 22,5	8,2 8,4	294 388	10,3	100	<2 1 4 1,1	0,6 1 0,6		<0,05 < 0,05	<0,03 < 0.03	1,8 1.3	<0,1 < 0,1	<0,05 < 0,05	161 30	<15 15	<0,5 nc	<0,5	<1
		4		11:10		12	12,1	8,2		10,2		< 2 1,5			< 0,05	< 0,03	2,2	< 0,1	< 0,05	144	<15	2	nc 2	4
06182030-HERAULT A ST-BAUZILLE-DE-PUTOIS	H8	1	21/03/2016	11:45	13162	20	12,2	8,1	302	11,9	112	<2 <0,	5 0,6	88	<0.05	<0,03	2	<0,1	<0.05	< 15	<15	<0,5	<0,5	<1
00102030-HENADELA 31-BAUZIELE-DE-L'UTOIS	110	2		13:00	11307	20	14,5	8,3		10,9	102	<2 1,1	1 0,6	64	<0,05	<0,03	1,7	<0,1	0,07	15	15	<0,5	<0,5	<1
		3	01/08/2016 10/10/2016	13:45 13:50	3593 3177	30 20	21,9 13.3	8,5 8.9	393 365		118 119	3 1,3			< 0.05 < 0.05	< 0,03 < 0.03	1,2 1,7	< 0,1 < 0,1	< 0,05 < 0,05	30 61	30 < 15	2 3	2 4	4 7
		4			3177		- /-	-,-		- /-					-,		<u> </u>							
06300051-HERAULT A CAUSSE-DE-LA-SELLE 1	H10	1 2		14:00 14:00		19 20	12,3 15,5	8,3 7,9	343 325	9,6	94 98	<2 1,4 3 0,7	100		<0,05 <0,05	<0,03 <0,03	1,7 1,5	<0,1 <0,1	<0,05 0,09	< 15 30	<15 <15	<0,5 <0,5	<0,5 1	<1 <1,5
		3		14:20		30	24,9	8,5		8,9	107	3 1,5			< 0,05	< 0,03	< 1	< 0,1	< 0,05	15	15	4	5	,0
		4	10/10/2016	12:00		20	15,7	8,0	403	10,4	104	5 1,3	3 0,9	91	0,12	0,03	1,6	< 0,1	< 0,05	15	<15	2	2	4
06182120-HERAULT A PUECHABON	H11	1				19,4	12,5	8,7		12,3		<2 2,3			<0,05	<0,03	1,5	<0,1	0,12	< 15	<15	<0,5	1	<1,5
		2 3		14:30 15:20		21 30	15,6 24,6	8,1 7,3	333 378	11,0 8,9	112	3 0,8			<0,05 < 0,05	<0,03 < 0,03	1,3	<0,1 < 0,1	<0,05 < 0,05	77 <15	<15 <15	<0,5 nc	1 nc	<1,5
		4	10/10/2016			20	17,4	8,0	404		105	< 2 1,3			< 0,05	< 0,03	1,9	< 0,1	< 0,05	<15	<15	1	1	2
06184510-HERAULT A ST-JEAN-DE-FOS 3	H12	1	21/03/2016	16:00		19,1	13	8,7	348	12,7	121	<2 1	0,7	72	<0,05	<0,03	1,5	<0,1	0,08	61	<15	<0,5	<0,5	<1
00104010 HERAGET A OT SEAR DE 1 GG 5	1112	2		15:15		21	16,4	8,1	336		114	3 0,7	100		<0,05	<0,03	1,3	<0,1	0,06	30	15	1	2	3
		3	01/08/2016 10/10/2016	16:30		33 25	26,6 18,1	8,2 8,1	389 416	9,3	116	3 0,6 5 1,3			< 0,05 < 0,05	< 0,03 < 0.03	< 1	< 0,1 < 0,1	< 0,05 < 0,05	61 <15	<15 <15	nc 1	nc 1	2
		4																				·	.0.5	
06182400-HERAULT A GIGNAC	H14	2		9:00 8:50		9 13	11,2 15,3	8,3	361 342	10,7	98	2 0,9 3 1,2			<0,05 <0,05	<0,03 <0,03	1,6 <1	<0,1 <0,1	<0,05 <0,05	30 30	<15 <15	<0,5 1	<0,5 4	<1 5
		3				20	24,3	8,0	401	7,2	86	3 0,8	3 1,1	2	0,07	< 0,03	< 1	< 0,1	0,05	1264	127	2	2	4
		4	10/10/2016	14:15		22	17,6	8,2	432	9,7	102	7 1,8	3 1,	3	< 0,05	< 0,03	1,8	< 0,1	< 0,05	46	15	9	12	21
06182900-HERAULT A POUZOLS	H15	1		10:30		16,4	13,3	8,5		8,5	104	3 1,7	100		<0,05	<0,03	1,5	<0,1	0,05	76	<15	<0,5	<0,5	<1
		2		9:20 10:00		15,5 25	15,6 24,9	8,2 7,9	343 408	10,4 7,1	105 85	3 1,1 < 2 0,7			<0,05 0,06	<0,03 < 0.03	1,1 1,2	<0,1 < 0,1	<0,05 < 0,05	46 15	<15 <15	<0,5 1	1	<1,5 2
		4		16:00		20	17,7	8,0	431	9,8		3 0,7			<0,05	<0,03	1,8	<0,1	<0,05	15	<15	1	1	2
06183200-HERAULT A CANET	H16	1	22/03/2016	11:00		18,6	13	8,5	411	11,1	106	4 1,1	1 0,7	71	<0,05	<0,03	1,6	<0,1	0,08	< 15	<15	<0,5	<0,5	<1
		2		10:00		18	15,6	8,1	396	9,7	98	3 1,1			<0,05	<0,03	1,3	<0,1	<0,05	419	93	1	2	3
		3 4	02/08/2016 11/10/2016	10:30 9:45		25 12	24,2 15,3	8,1 8.0	468 486	7,2 9,3	85 93	2 1,1	100		< 0,05 < 0,05	< 0,03 < 0.03	< 1 1,8	< 0,1 0,15	< 0,05 0,07	30 46	<15 < 15	1 4	2 5	3 9
		1		14:15		18,1	13,2	8,6		11,1		3 0.9	,		<0.05	<0,03	2	<0,1	0,08	195	195	<0,5	<0,5	<1
06183685-HERAULT A ST-PONS-DE-MAUCHIENS	H18	2		10:30		18	16,5	8,2	388	10,0	103	3 1,2			0,06	<0,03	1,3	<0,1	<0,05	15	<15	<0,5	1	<1,5
		3		11:30		30	26,2	8,2	464	8,2	101	2 1	1,:		< 0,05	< 0,03	< 1	< 0,1	< 0,05	46	93	1	1	2
		4	11/10/2016			12	15,7	8,1	481	9,5	95	5 2	1,		< 0,05	< 0,03	1,8	< 0,1	< 0,05	<15	15	2	2	4
06183700-HERAULT A PEZENAS 1	H19	1 2	22/03/2016 24/05/2016			17,6 23	13,2 16,7	8,5 8,2		11,2 9,5	107 99	3 0,8			<0,05 <0,05	<0,03 <0,03	1,8 1,4	<0,1 <0,1	<0,05 <0,05	< 15 161	<15 <15	1	1 2	2
		3	02/08/2016			30	26	8,2	457	7,9		4 0,9			< 0,05	< 0,03	< 1	< 0,1	< 0,05	77	46	1	1	2
		4	11/10/2016			15	15,8	8,1	483	9,3		5 1,2		1	< 0,05	< 0,03	1,9	< 0,1	0,06	<15	<15	2	2	4
06183820-HERAULT A PEZENAS 2	H20	1	22/03/2016			19,9	12,6	8,6		11,3		2 0,9			<0,05	<0,03	1,8	<0,1	<0,05	15	46	<0,5	<0,5	<1
		2 3	24/05/2016 02/08/2016			23 30	16,5 27,3	8,1 8,2		9,6		4 1,1			<0,05 < 0,05	<0,03 < 0,03	1,5 < 1	<0,1 < 0,1	<0,05 0,07	143 61	15 30	1	4 2	5 3
		4	11/10/2016			15	16,3			9,7		4 1,8			< 0,05	< 0,03		< 0,1	< 0,07	61	<15	2	2	4
06183835-HERAULT A PEZENAS 3	H21	1	22/03/2016	13:30		18	13,6	8,0		11,4		5 0,8			<0,05	<0,03	1,8	<0,1	<0,05	< 15	30	<0,5	1	<1,5
OUTOGOGO FIERNOLI AT EZENAG O	1 12 1	2	24/05/2016	14:00		24	16,7	8,3	400	10,2	106	4 1,3	3 0,8	32	<0,05	<0,03	1,4	<0,1	<0,05	15	<15	<0,5	4	<4,5
		3 4	02/08/2016			30 15	25,5 15,9	8,1 8,0		7,4		4 1,2 5 1.3			< 0.05	< 0.03	1	< 0,1	< 0,05	110 559	15 15	1 2	1 2	2 4
		4	11/10/2016			15				9,1					< 0,05	< 0,03	2,2	< 0,1	0,06			_	_	
06184200-HERAULT A AGDE 6	H23	1 2	22/03/2016 24/05/2016	15:15 14:45	;	19,3 24		8,5 8,1		10,6	107 98	4 1 4 1,4		9	<0,05 0,05	<0,03 <0,03	1,8 1,4	<0,1 <0,1	<0,05 <0,05	< 15 < 15	15 <15	<0,5 <0,5	<0,5 1	<1 <1,5
		3	02/08/2016	14:30		30	- / -	8,3		9,3		11 1,8		2	0,06	< 0,03	< 1	< 0,1	0,05	179	<15	3	5	8
		4	11/10/2016	12:30		18	17,2	8,0	486	8,5	88	8 1,6	5 1,4	4	< 0,05	< 0,03	2,6	< 0,1	< 0,05	30	15	4	4	8

Station	Code	Camp.	. Date	Heure	Débit	Temp.Air	Temp.Eau pl	H Conductivité	O2	O2	MES	DBO5	COD	NH4	NO2	NO3	PO4	Ptotal	Escherichia coli	Streptocoques fécaux	Phéo-pigments	Chloro-a	Chloro-a+ phéopig.
06181950-VIS A ST-MAURICE-NAVACELLES	VIS1	1 2 3 4	21/03/2016 23/05/2016 01/08/2016 10/10/2016	10:30 10:30 10:30 10:45	l/s	°C 13 15 26 8	°C un 10,8 8, 11,9 8, 13,5 8, 11 8	1 378 4 427	mg/l 11,1 10,7 9,5 10.6	% sat, 104 102 97 99	mg/l <2 <2 <2 < 2 < 2	1,5 1,4 0,7	mg C/I 0,75 <0,5 < 0,5 < 0,5	mg NH4/I <0,05 <0,05 <0,05 < 0,05 < 0,05	<pre>mg NO2/ <0,03 <0,03 < 0,03 < 0.03</pre>	3,1 2,7 3,2	<pre>mg PO4/I <0,1 <0,1 <0,1 <0,1 <0,1</pre>	mg P/I <0,05 <0,05 <0,05 <0,05 0,06	ucf/100 ml < 15	ucf/100 ml <15 15 15 <15 <15 <15	μg/l 1 <0,5 <0,5 < 0.5	μg/l <0,5 <0,5 <0,5 <0,5 <0,5	μg/l <1,5 <1 <1
06181960-VIS A GORNIES	VIS2	1 2 3 4	21/03/2016 23/05/2016 01/08/2016 10/10/2016	11:40 11:50 11:40 11:55		17 15 28 12	11,5 7, 12,1 8, 16,2 8, 11,1 8,	8 374 2 392 2 415	11,5 10,9 9,9 10,3	107 102 105	<2 <2 <2 < 2 < 2	1,2 1,1 1,1 1,1	0,89 0,6 < 0,5 < 0,5	<0,05 <0,05 <0,05 < 0,05 < 0,05	<0,03 <0,03 <0,03 < 0,03 < 0,03	2,8 2,4 2,5 3,5	<0,1 <0,1 <0,1 < 0,1 < 0,1	<0,05 <0,05 < 0,05 < 0,05	< 15 30 15 30	<15 30 46 15	<0,5 <0,5 <0,5 <0,5	<0,5 <0,5 <0,5 <0,5 <0,5	<1 <1 <1 <1
06181980-VIS A ST-LAURENT-LE-MINIER	VIS3	1 2 3 4	21/03/2016 23/05/2016 01/08/2016 10/10/2016	10:00 10:30 10:30 9:45		10 15 19 9			11,2 10,5 9,0 10,6	100 100 98 97	<2 <2 < 2 < 2	0,7 <0,5 1,2 1,4	0,57 0,55 0,5 0,82	0,05 <0,05 < 0,05 < 0,05	<0,03 <0,03 < 0,03 < 0,03	2,6 2,2 2 3,1	<0,1 <0,1 < 0,1 < 0,1	<0,05 <0,05 < 0,05 < 0,05	661 30 127 1305	30 15 15 30	<0,5 <0,5 nc < 0,5	<0,5 <0,5 nc < 0,5	<1 <1 <1
06184640-RUISSEAU DE BRISSAC A BRISSAC	FO1	1 2 3 4	21/03/2016 23/05/2016 01/08/2016 10/10/2016	14:45 15:00	530 741 156 274	20 20 28 21	14,5 8, 14,1 8, 16 8, 13,5 8,	1 461 1 441	11,7 10,4 9,5 10,2	117 102 100 98	<2 <2 < 2 < 2	1 1,4 0,6 0,8	0,51 0,55 < 0,5 < 0,5	<0,05 <0,05 < 0,05 < 0,05	<0,03 <0,03 < 0,03 < 0,03	<1 <1 1,3 2,2	<0,1 <0,1 < 0,1 < 0,1	<0,05 <0,05 < 0,05 < 0,05	30 15 253 126	<15 161 161 <15	1 <0,5 <0,5 < 0,5	<0,5 <0,5 <0,5 < 0,5	<1,5 <1 <1 <1
06184620-BUEGES A ST-JEAN-DE-BUEGES 2	BU1	1 2 3 4	21/03/2016 23/05/2016 01/08/2016 10/10/2016	15:45 16:00	425 738 74 64	20 20 31 20	12,9 7, 14,4 8, 20,2 8, 11,9 8,	6 431 3 398	12,8 11,6 10,1 11,3	115 115	<2 <2 < 2 < 2	0,6 1,3 0,7 0,8	0,69 1,1 0,68 1,1	<0,05 <0,05 < 0,05 < 0,05	<0,03 <0,03 < 0,03 < 0,03	<1 <1 <1 3,2	<0,1 <0,1 < 0,1 < 0,1	<0,05 <0,05 < 0,05 < 0,05	15199 30 61 30	534 <15 <15 <15	1 <0,5 1 < 0,5	<0,5 <0,5 1 < 0,5	<1,5 <1 2 <1
06300053-LERGUE A LODEVE 2	LER2	1 2 3 4	22/03/2016 24/05/2016 02/08/2016 11/10/2016	9:30 9:15		15 20 24 10	11,3 7, 12,4 8, 19,3 8, 12,6 8,	2 622 0 691	11,7 11,1 9,3 9,8	108 105 101 93	<2 <2 2 < 2	0,9 1,5 1,1 1,2	0,72 0,83 0,99 0,76	<0,05 0,05 < 0,05 < 0,05	<0,03 <0,03 < 0,03 < 0,03	2,6 2,3 1,1 1,7	<0,1 <0,1 < 0,1 < 0,1	0,07 <0,05 0,08 0,06	930 18563 5352 108	109 3552 144 <15	<0,5 <0,5 3 3	<0,5 <0,5 2 3	<1 <1 5 6
06182600-SALAGOU A LE-BOSC	SLG1	1 2 3 4	22/03/2016 24/05/2016 02/08/2016 11/10/2016	10:00 10:00	9 11 5 6	18 16 25 10	11 7, 14 7, 20 7, 11,6 8,	7 565 7 657	9,1 7,6 4,5 7,5	83 74 50 69	<2 2 19 < 2	1,2 1,8 5,1 1,2	3,3 3,7 4,2 3,4	<0,05 0,11 0,07 < 0,05	<0,03 0,04 < 0,03 < 0,03	<1 <1 <1 <1	<0,1 0,15 0,24 < 0,1	0,17 0,08 0,12 0,05	15 77 61 742	15 30 46 61	1 1 1 1	1 <0,5 1 1	2 <1,5 2 2
06183900-BOYNE A CAZOULS-D'HERAULT 2	BO1	1 2 3 4	22/03/2016 24/05/2016 02/08/2016 11/10/2016	11:00 10:50	59 70 3 5	17 19 28 12	12,4 7, 16 8, 21,6 8, 13,9 8,	1 742 0 769	11,0 10,1 7,5 7,4	102 85	2 2 5 < 2	0,9 2,3 1,1 0,7	0,7 1,4 < 0,5 < 0,5	<0,05 <0,05 < 0,05 < 0,05	<0,03 <0,03 < 0,03 < 0,03	5,6 4,9 5,5 8,1	<0,1 <0,1 < 0,1 < 0,1	<0,05 <0,05 < 0,05 < 0,05	15 77 110 2675	<15 176 177 272	1 1 1 < 0,5	1 1 <0,5 < 0,5	2 2 <1,5 <1
06183750-PEYNE A ROUJAN	P1	1 2 3 4	24/05/2016 02/08/2016	12:00 13:30	6 60 84 7	18 20 29 11	12,7 7, 15,7 7, 21,2 8, 13,2 8,	9 667 0 545	11,9 8,7 8,1 8,2	114 88 93 78	7 6 4	0,8 1,3 0,7 1,3	1 3,5 3,9 0,98	<0,05 0,06 < 0,05 0,16	<0,03 <0,03 < 0,03 < 0,03	<1 <1 <1 <1	<0,1 <0,1 < 0,1 < 0,1	<0,05 <0,05 < 0,05 0,09	15 15 127 61	<15 177 30 15	1 1 1 < 0,5	4 2 1 < 0,5	5 3 2 <1
06183840-TONGUE A SERVIAN	TH1	1 2 3 4	22/03/2016 24/05/2016 02/08/2016 11/10/2016	14:30 14:15	31 49 a sec a sec	20 22	13,9 7, 16,8 8,		10,9 9,6	107 99	6 3	3,5 2,3	2,4 2,5	0,92 0,4	0,46 0,55	8,6 6,9	1,61 1,24	0,53 0,37	1349 1599	61 30	3 1	7 <0,5	10 <1,5

Tableau 14 : résultats des analyses physico-chimiques réalisées en 2016, comparaison avec les seuils de la DCE

Station	Code	Camp.	Date	Heure	Débit	Temp.Air	Temp.Eau	рН	Conductivité	O2	O2	MES	DBO5	COD	NH4	NO2	NO3	PO4	Ptotal	Escherichia coli	Streptocoques fécaux	Phéo-pigments	Chloro-a	HER
			04/00/0040	40.00	l/s	°C	°C	unité	μS/cm	mg/l	% sat,	mg/l	mgO2/l	mg C/I	mg NH4/I	mg NO2/I	mg NO3/I	mg PO4/I	mg P/I	ucf/100 ml	ucf/100 ml	μg/l	μg/l	
06181990 - HERAULT A CAZILHAC	H5	1 2	21/03/2016 23/05/2016	10:30 11:00		12,1 15	10,3 12,5	8,8 8,1	316 289	11,2 10,4	101 100	<2 <2	<0,5 0,6	0,57 0,61	<0,05 <0,03	<0,03 <0,03	1,9 1,7	<0,1 <0,1	<0,05 <0,05	77 176	15 46	<0,5 <0,5	<0,5 <0,5	8
		3	01/08/2016			20	20,1	8,3		8,9	100	3	1,1	0,7	<0,05	< 0,03	1,1	< 0,1	< 0,05	30	30	3	3	
		<u>4</u> 1	10/10/2016 21/03/2016			10 12,9	10 10,3	8,2 8,6	394 318		102 105	< 2 <2	1,2 0.7	0,71	< 0,05 <0,05	< 0,03	1,7	< 0,1	< 0,05 <0,05	332 15	15 15	2 <0,5	1 <0,5	6
06182000-HERAULT A LAROQUE	H6	2	23/05/2016			18	12,8	8,3	291	10,6	102	<2	0,7	0,64	<0,05	<0,03	1,7	<0,1	<0,05	61	46	<0,5	<0,5	
		3 4	01/08/2016 10/10/2016			25 10	23 11,4	8,3 8,2	383 398	10,2	120 102	3 < 2	1,1 1,3	0,69 0,75	< 0,05 < 0,05	< 0,03 < 0,03	1 1,8	< 0,1 < 0,1	< 0,05 < 0,05	15 312	15 15	nc 1	nc 1	
06182020-HERAULT A AGONES	H7	1	21/03/2016			15,9	11,2	8,7	320		102	<2	0,9	0,79	<0,05	<0,03	2	<0,1	<0,05	30	<15	1	<0,5	6
00102020-HENAGELA AGGNES	117	2	23/05/2016			19	13,1	8,2	294	10,3	100	<2	1	0,62	<0,05	<0,03	1,8	<0,1	<0,05	161	<15	<0,5	<0,5	
		3 4	01/08/2016 10/10/2016			27 12	22,5 12,1	8,4 8,2	388 402	10,2 10,7	119 100	4 < 2	1,1 1,5	0,69 0,92	< 0,05 < 0,05	< 0,03 < 0,03	1,3 2,2	< 0,1 < 0,1	< 0,05 < 0,05	30 144	15 <15	nc 2	nc 2	
06182030-HERAULT A ST-BAUZILLE-DE-PUTOIS	H8	1	21/03/2016			20	12,2	8,1			112	<2	<0,5	0,68	<0,05	<0,03	2	<0,1	<0,05	< 15	<15	<0,5	<0,5	6
		2 3	23/05/2016 01/08/2016			20 30	14,5 21,9	8,3 8,5	303 393	10,9	102 118	<2 3	1,1 1,3	0,64	<0,05 < 0,05	< 0.03	1,7	<0,1 < 0,1	0,07 < 0,05	15 30	15 30	<0,5 2	<0,5 2	
		4	10/10/2016			20	13,3	8,9	365		119	3	1,4	0,72	< 0,05	< 0,03	1,7	< 0,1	< 0,05	61	< 15	3	4	
06300051-HERAULT A CAUSSE-DE-LA-SELLE 1	H10	1	21/03/2016	14:00		19	12,3	8,3	343	10,0	94	<2	1,4	0,63	<0,05	<0,03	1,7	<0,1	<0,05	< 15	<15	<0,5	<0,5 1	6
		3	23/05/2016 01/08/2016			20 30	15,5 24,9	7,9 8,5	325 379	9,6 8,9	98 107	3 3	0,7 1,5	0,62 0,74	<0,05 < 0,05	<0,03 < 0,03	1,5 < 1	<0,1 < 0,1	0,09 < 0,05	30 15	<15 15	<0,5 4	5	
		4	10/10/2016	12:00		20	15,7	8,0	403	10,4	104	5	1,3	0,91	0,12	0,03	1,6	< 0,1	< 0,05	15	<15	2	2	<u> </u>
06182120-HERAULT A PUECHABON	H11	1	21/03/2016 23/05/2016	15:00 14:30		19,4 21	12,5 15,6	8,7 8,1	348 333	12,3 11,0	116 112	<2 3	2,3 0,8	1,3 0,68	<0,05 <0,05	<0,03 <0,03	1,5 1,3	<0,1 <0,1	0,12 <0,05	< 15 77	<15 <15	<0,5 <0,5	1	6
		3	01/08/2016			30	24,6	7,3	378	8,9	107	2	1,4	0,9	< 0,05	< 0,03	< 1	< 0,1	< 0,05	<15	<15	nc	nc	
		4	10/10/2016			20	17,4	8,0		10,1	105	< 2	1,3	1,2	< 0,05	< 0,03	1,9	< 0,1	< 0,05	<15	<15	1	1	
06184510-HERAULT A ST-JEAN-DE-FOS 3	H12	2	21/03/2016 23/05/2016	16:00 15:15		19,1 21	13 16,4	8,7 8,1	348 336	12,7 11,0	121 114	<2 3	0,7	0,72 0,65	<0,05 <0,05	<0,03 <0,03	1,5 1,3	<0,1 <0,1	0,08 0,06	61 30	<15 15	<0,5 1	<0,5 2	6
		3	01/08/2016	16:30		33	26,6	8,2	389	9,3	116	3	0,6	0,67	< 0,05	< 0,03	< 1	< 0,1	< 0,05	61	<15	nc	nc	
00400400415744117446101440	1144	1	10/10/2016 22/03/2016	13:30 9:00		25 9	18,1 11,2	8,1 8,3	416 361	10,5	98	5 2	1,3 0,9	0,71	< 0,05 <0,05	< 0,03	1,6	< 0,1	< 0,05 <0,05	<15 30	<15 <15	<0.5	<0,5	6
06182400-HERAULT A GIGNAC	H14	2	24/05/2016	8:50		13	15,3	8,0	342	9,5	95	3	1,2	0,77	<0,05	<0,03	<1	<0,1	<0,05	30	<15	1	4	
		3 4	02/08/2016 10/10/2016	9:15 14:15		20 22	24,3 17,6	8,0 8,2	401 432	7,2 9,7	86 102	3 7	0,8 1.8	1,2 1,3	0,07 < 0,05	< 0,03	< 1 1,8	< 0,1 < 0,1	0,05 < 0,05	1264 46	127 15	2 9	2 12	
06182900-HERAULT A POUZOLS	H15	1	22/03/2016			16,4	13,3	8,5	361	8,5	104	3	1,7	1,2	<0,05	<0,03	1,5	<0,1	0,05	76	<15	<0,5	<0,5	6
00102900-HENAGET A 1 OGZGEG	1113	2	24/05/2016			15,5	15,6	8,2	343	10,4	105	3	1,1	0,78	<0,05	<0,03	1,1	<0,1	<0,05	46 45	<15	<0,5	1	
		3 4	02/08/2016 10/10/2016			25 20	24,9 17,7	7,9 8,0	408 431	7,1 9,8	85 102	< 2 3	0,7 0,7	0,79 0,71	0,06 <0,05	< 0,03	1,2 1,8	< 0,1 <0,1	< 0,05 <0,05	15 15	<15 15	1	6	
06183200-HERAULT A CANET	H16	1	22/03/2016			18,6	13	8,5	411		106	4	1,1	0,71	<0,05	<0,03	1,6	<0,1	0,08	< 15	<15	<0,5	<0,5	6
		2 3	24/05/2016 02/08/2016	10:00 10:30		18 25	15,6 24,2	8,1 8,1	396 468	9,7 7,2	98 85	3 2	1,1 1,1	0,83	<0,05 < 0,05	<0,03	1,3	<0,1 < 0,1	<0,05 < 0,05	419 30	93 <15	1	2 2	
		4	11/10/2016			12	15,3	8,0		9,3	93	4	1,9	1,4	< 0,05	< 0,03	1,8	0,15	0,07	46	< 15	4	5	<u> </u>
06183685-HERAULT A ST-PONS-DE-MAUCHIENS	H18	1	22/03/2016			18,1	13,2	8,6	417	11,1		3	0,9	0,77	<0,05	<0,03	2	<0,1	0,08	195	195	<0,5	<0,5	6
		3	24/05/2016 02/08/2016			18 30	16,5 26,2	8,2 8,2	388 464	10,0 8,2	103 101	3 2	1,2 1	0,85 1,2	0,06 < 0,05	<0,03 < 0,03	1,3	<0,1 < 0,1	<0,05 < 0,05	15 46	<15 93	<0,5 1	1	
		4	11/10/2016	10:20		12	15,7	8,1	481	9,5	95	5	2	1,5	< 0,05	< 0,03	1,8	< 0,1	< 0,05	<15	15	2	2	+-
06183700-HERAULT A PEZENAS 1	H19	1 2	22/03/2016 24/05/2016	12:30 11:45		17,6 23	13,2 16,7	8,5 8,2	421 395	11,2 9,5	107 99	3 4	0,8 1,2	0,83 0,87	<0,05 <0,05	<0,03	1,8 1,4	<0,1 <0,1	<0,05 <0,05	< 15 161	<15 <15	1	1 2	6
		3	02/08/2016	12:20		30	26	8,2	457	7,9	97	4	0,9	1	< 0,05	< 0,03	< 1	< 0,1	< 0,05	77	46	1	1	
		4	11/10/2016			15	15,8	8,1 8,6		9,3	94	5	1,2	1,1	< 0,05	< 0,03	1,9	< 0,1	0,06	<15 15	<15 46	2 <0,5	2 <0,5	6
06183820-HERAULT A PEZENAS 2	H20	2	22/03/2016 24/05/2016			19,9 23	12,6 16,5	8,1	403	9,6	107 100	2 4	0,9 1,1	0,74 0,84	<0,05 <0,05	<0,03 <0,03	1,8 1,5	<0,1 <0,1	<0,05 <0,05	143	15	1	<0,5 4	"
		3	02/08/2016			30 15	27,3 16.3	8,2 8.0		9,1	113 98	3 4	1 1.8	0,93 1,2	< 0,05 < 0,05	< 0.03	< 1	< 0,1	0,07	61 61	30	1 2	2	
00492925 HEDALU TA DEZEMAC 2	LIOA	1	11/10/2016 22/03/2016			15 18	16,3 13,6	8,0	485		110	5	0,8	0,76	< 0,05	< 0,03	2,1 1,8	< 0,1 <0,1	< 0,05 <0,05	< 15	<15 30	<0,5	1	6
06183835-HERAULT A PEZENAS 3	H21	2	24/05/2016	14:00		24	16,7	8,3	400	10,2	106	4	1,3	0,82	<0,05	<0,03	1,4	<0,1	<0,05	15	<15	<0,5	4	
		3 4	02/08/2016 11/10/2016			30 15	25,5 15,9	8,1 8,0	468 491	7,4 9,1	90 91	4 5	1,2 1,3	1,9 1,2	< 0,05 < 0,05	< 0,03 < 0,03	2,2	< 0,1 < 0,1	< 0,05 0,06	110 559	15 15	1 2	1 2	
06184200-HERAULT A AGDE 6	H23	1	22/03/2016			19,3	13,4	8,5	430		107	4	1	0,9	<0,05	<0,03	1,8	<0,1	<0,05	< 15	15	<0,5	<0,5	6
33.3.233237.77.352.3	. 120	2	24/05/2016 02/08/2016			24 30	18,3 27,5	8,1 8,3	400 463	9,2 9,3	98 116	4 11	1,4 1,8	1 1,2	0,05 0,06	<0,03 < 0,03	1,4 < 1	<0,1 < 0,1	<0,05 0,05	< 15 179	<15 <15	<0,5 3	1 5	
		4	11/10/2016			18	27,5 17,2	8,0	463 486	9,3 8,5	88	8	1,6	1,4	< 0,06	< 0,03	2,6	< 0,1	< 0,05	30	15	4	4	

Station	Code	Camp	. Date	Heure	Débit	Temp.Air	Temp.Eau	рН	Conductivité	O2	O2	MES	DBO5	COD	NH4	NO2	NO3	PO4	Ptotal	Escherichia coli	Streptocoques fécaux	Phéo-pigments	Chloro-a	HER
					l/s	°C	°C	unité	μS/cm	mg/l	% sat,	mg/l	mgO2/I	mg C/I	mg NH4/	mg NO2/l	mg NO3/I	mg PO4/I	mg P/I	ucf/100 ml	ucf/100 ml	μg/l	μg/l	
06181950-VIS A ST-MAURICE-NAVACELLES	VIS1	1	21/03/2016	10:30		13	10,8	8,0	360	11,1	104	<2	1,5	0,75	<0,05	<0,03	3,1	<0,1	<0,05	< 15	<15	1	<0,5	8
00101990-VIS A ST-MAURICE-NAVACELLES	VIST	2	23/05/2016	10:30		15	11,9	8,1	378	10,7	102	<2	1,4	<0,5	<0,05	<0,03	2,7	<0,1	<0,05	30	15	<0,5	<0,5	
		3	01/08/2016	10:30		26	13,5	8,4	427	9,5	97	< 2	0,7	< 0,5	< 0,05	< 0,03	3,2	< 0,1	< 0,05	94	15	<0,5	<0,5	
		4	10/10/2016	10:45		8	11	8,3	396	10,6	99	< 2	1,1	< 0,5	< 0,05	< 0,03	< 1	< 0,1	0,06	46	<15	< 0,5	< 0,5	₩
06181960-VIS A GORNIES	VIS2	1	21/03/2016			17	11,5	7,8	374		107	<2	1,2	0,89	<0,05	<0,03	2,8	<0,1	<0,05	< 15	<15	<0,5	<0,5	8
		2	23/05/2016			15	12,1	8,2	392	10,9	102	<2	1,1	0,6	<0,05	<0,03	2,4	<0,1	<0,05	30	30	<0,5	<0,5	
		3	01/08/2016 10/10/2016			28 12	16,2 11,1	8,2 8,3	415 384	9,9 10,3	105 95	< 2 < 2	1,1	< 0,5 < 0,5	< 0,05 < 0,05	< 0,03	2,5 3,5	< 0,1 < 0,1	< 0,05 < 0,05	15 30	46 15	<0,5	<0,5 < 0.5	
		4								-			0.7	-				-				0.5	- , -	8
06181980-VIS A ST-LAURENT-LE-MINIER	VIS3	1	21/03/2016 23/05/2016	10:00 10:30		9,6 14,5	10,2 12,1	8,6 8,2	404 389	11,2 10,5	100 100	<2 <2	0,7 <0,5	0,57	0,05 <0,05	<0,03 <0.03	2,6 2,2	<0,1 <0,1	<0,05 <0,05	661 30	30 15	<0,5 <0,5	<0,5 <0,5	8
		3	01/08/2016	10:30		19	18,6	7,8	480	9,0	98	< 2	1,2	0,55	< 0.05	< 0.03	2,2	< 0,1	< 0.05	127	15	nc	nc	
		4	10/10/2016			8,5	10,9	8,2	416	10,6	97	< 2	1,4	0,82	< 0.05	< 0,03	3,1	< 0,1	< 0,05	1305	30	< 0.5	< 0.5	
OCADACAO DI IICOCALI DE DDICCAC A DDICCAC	FO1	1	21/03/2016	14:40	530	20	14,5	8,0	422	11.7	117	<2	1	0,51	<0.05	<0.03	<1	<0,1	<0.05	30	<15	1	<0,5	6
06184640-RUISSEAU DE BRISSAC A BRISSAC	FOT	2	23/05/2016	14:45		20	14,1	8,1	461	10,4	102	<2	1,4	0,55	<0,05	<0,03	<1	<0,1	<0,05	15	161	<0,5	<0,5	
		3	01/08/2016	15:00	156	28	16	8,1	441	9,5	100	< 2	0,6	< 0,5	< 0,05	< 0,03	1,3	< 0,1	< 0,05	253	161	<0,5	<0,5	
		4	10/10/2016	15:00	274	21	13,5	8,7	398	10,2	98	< 2	0,8	< 0,5	< 0,05	< 0,03	2,2	< 0,1	< 0,05	126	<15	< 0,5	< 0,5	
06184620-BUEGES A ST-JEAN-DE-BUEGES 2	BU1	1	21/03/2016	15:45		20	12,9	7,8	402	12,8	123	<2	0,6	0,69	<0,05	<0,03	<1	<0,1	<0,05	15199	534	1	<0,5	8
		2	23/05/2016			20	14,4	8,6	431	11,6	115	<2	1,3	1,1	<0,05	<0,03	<1	<0,1	<0,05	30	<15	<0,5	<0,5	
		3	01/08/2016		74	31	20,2	8,3	398	10,1	115	< 2	0,7	0,68	< 0,05	< 0,03	< 1	< 0,1	< 0,05	61	<15	1	1	
		4	10/10/2016		64	20	11,9	8,6	371		106	< 2	0,8	1,1	< 0,05	< 0,03	3,2	< 0,1	< 0,05	30	<15	< 0,5	< 0,5	+-
06300053-LERGUE A LODEVE 2	LER2	1	22/03/2016	9:45		15	11,3	7,7	613	, , , , , , , , , , , , , , , , , , ,	108	<2	0,9	0,72	<0,05	<0,03	2,6	<0,1	0,07	930	109 3552	<0,5	<0,5	8
		2	24/05/2016 02/08/2016	9:30 9:15		20 24	12,4 19,3	8,2 8,0	622 691	11,1 9,3	105 101	<2 2	1,5 1,1	0,83	0,05	<0,03	2,3 1,1	<0,1 < 0,1	<0,05 0,08	18563 5352	144	<0,5 3	<0,5 2	
		4	11/10/2016			9,5	12,6	8,4	703	9,8	93	< 2	1,1	0,99	< 0.05	< 0.03	1.7	< 0,1	0,08	108	<15	3	3	
		1	22/03/2016	10:45	9	18	11	7,6	548	9,1	83	<2	1,2	3,3	<0.05	<0.03	<1	<0,1	0,17	15	15	1	1	8
06182600-SALAGOU A LE-BOSC	SLG1	2	24/05/2016		11,0	16	14	7,7	565	7,6	74	2	1,8	3,7	0,11	0,04	<1	0,15	0,08	77	30	1	<0,5	"
		3	02/08/2016	10:00	5	25	20	7,7	657	4,5	50	19	5,1	4,2	0,07	< 0,03	< 1	0,24	0,12	61	46	1	1	
		4	11/10/2016	10:00	6	9,5	11,6	8,0	617	7,5	69	< 2	1,2	3,4	< 0,05	< 0,03	< 1	< 0,1	0,05	742	61	1	1	
06183900-BOYNE A CAZOULS-D'HERAULT 2	BO1	1	22/03/2016	11:10	59,0	17	12,4	7,9	711	11,0	105	2	0,9	0,7	<0,05	<0,03	5,6	<0,1	<0,05	15	<15	1	1	6
00100000 201112 /1 0/120020 2112111021 2	20.	2	24/05/2016		70	19	16	8,1	742	10,1	102	2	2,3	1,4	<0,05	<0,03	4,9	<0,1	<0,05	77	176	1	1	
		3	02/08/2016		3	28	21,6	8,0	769	7,5	85	5	1,1	< 0,5	< 0,05	< 0,03	5,5	< 0,1	< 0,05	110	177	1	<0,5	
		4	11/10/2016		5	11,6	13,9	8,5	742	7,4	71	< 2	0,7	< 0,5		< 0,03	8,1	< 0,1	< 0,05	2675	272	< 0,5	< 0,5	+
06183750-PEYNE A ROUJAN	P1	1	22/03/2016		6	18	12,7	7,6	898		114	2	0,8	1	<0,05	<0,03	<1	<0,1	<0,05	15	<15	1	4	6
		2	24/05/2016 02/08/2016		60 84	20 29	15,7	8.0	667 545	8,7 8.1	88 93	7 6	1,3 0.7	3,5	0,06	<0,03	<1	<0,1 < 0,1	<0,05 < 0.05	15 127	177 30	1	2	
		ა 4	11/10/2016	11:45	7	29 11	21,2 13,2	8,0	783	8.2	78	4	1,3	0,98	0,16	< 0,03	< 1	< 0,1	0,05	61	15	< 0.5	< 0,5	
		1	22/03/2016	14:15		20	13,9	7.7	915	10.9	107	6	3,5	2,4	0,10	0,46	8,6	1,61	0,53	1349	61	3	7	6
06183840-TONGUE A SERVIAN	TH1	2	24/05/2016		49	22	16,8	8.0	890	9.6	99	3	2.3	2,4	0,92	0,40	6.9	1,01	0,33	1599	30	1	1	"
		3	02/08/2016		1 1		. 5,5	0,0	555	0,0		ŭ	_,_	,5	Ο, .	0,00	- 0,0	.,	0,0.					
		4	11/10/2016																					

5.2.1. Qualité de l'Hérault

Température

La température de l'eau suit une évolution saisonnière classique. Elle augmente progressivement entre mars et août puis un net refroidissement est relevé au début de l'automne. La campagne d'octobre s'est en effet déroulée lors des premières journées de baisse des températures (voir paragraphe 5.1.1).

On note globalement un réchauffement de l'amont vers l'aval. L'amplitude entre les valeurs minimales et maximales relevées varie selon les campagnes : + 3,1°C en mars, + 5.8°C en mai, + 7,4°C en juillet et 7,2°C en octobre.

Les valeurs les plus élevées de température sont relevées en août à l'aval des gorges, dans les secteurs où les écoulements sont lents et l'éclairement important (cours d'eau très large). La température de l'eau dépasse alors le seuil de la classe « moyenne » du SEQ-Eau version 2 à Saint-Jean-de-Fos (H12), Saint-Pons-de-Mauchiens (H18), ainsi qu'à Pézenas (H19) et le seuil de la classe « mauvaise » est franchi à Pézenas (H20) et Agde (H23).

Au cours de la campagne estivale, le réchauffement du fleuve reste toutefois limité par les apports des affluents dont la température est fraîche (< 22°C voir paragraphe 5.2.2). Il n'y a pas de dépassement du « bon état » au niveau des stations concernées par la grille de qualité de la DCE.

Par rapport aux derniers suivis réalisés, les températures relevées en 2016 sont globalement :

- légèrement plus élevées que celles observées en 2011,
- plus favorables (valeurs maximales moins élevées) que celles relevées en 2015 lors du dernier suivi.

pH

Le pH de l'Hérault est basique et oscille entre 7,3 et 8,9 upH.

La valeur la plus élevée (8,9 upH) est observée à Saint-Bauzille-de-Putois (H8) en octobre. Elle se distingue nettement des autres valeurs relevées dans le fleuve qui ne dépassent pas 8,2 upH. L'origine de cette élévation ponctuelle du pH reste indéterminée (activité photosynthétique intense ou erreur de mesure ?).

En dehors de ce maximum isolé, on remarque que le pH diminue légèrement de l'amont vers l'aval puisque les valeurs sont globalement plus élevées entre les stations H5 et H10 qui sont situées en amont du secteur de gorges, que dans les autres secteurs.

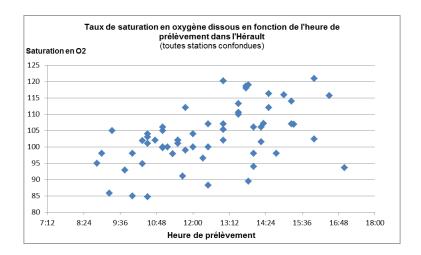
Par ailleurs, on note que les valeurs les plus élevées sont observées lors de la campagne de mars sur l'ensemble des stations exceptées H8 et H10.

Les valeurs de pH relevées lors du dernier suivi en 2015 sont assez proches de celles observées cette année. Par contre, en 2011, les valeurs de pH relevées dans l'Hérault en été et en automne entre Causse-de-la-Selle (H10) et Saint-Pons-de-Mauchiens (H18) étaient globalement supérieures à celles observées sur ce tronçon en 2015 et 2016. Pour les autres stations, les valeurs étaient globalement similaires.

Conductivité

La conductivité augmente progressivement entre l'amont (valeur comprise entre 289 et 394 μ S/cm à Cazilhac – H5) et l'aval (400 à 486 μ S/cm à Agde – H23), traduisant l'enrichissement du milieu en composés dissous.

On remarque que la conductivité est plus élevée lors des campagnes réalisées à l'étiage, notamment celle d'octobre. Les faibles débits favorisent la concentration des éléments dissous.


Les valeurs relevées en 2016 sont très proches de celles obtenues l'année précédente et on n'observe pas d'évolution particulière de la conductivité depuis le suivi réalisé en 2011.

Oxygène dissous

Les eaux de l'Hérault sont bien oxygénées au cours des 4 campagnes réalisées en 2016. La plupart des valeurs correspondent au « très bon » état au regard de l'arrêté du 27/07/2015. Au mois d'août une légère diminution de l'oxygénation est observée dans la plaine, à l'aval de Gignac (H14). Les mesures les plus défavorables demeurent toutefois compatibles avec un « bon » état écologique.

Des sursaturations en oxygène dissous sont observables, mais qui ne dépassent pas 120 %. Elles semblent sous l'influence de plusieurs facteurs.

Le premier d'entre eux est la photosynthèse des végétaux aquatiques. Son activité est mise en évidence par une nette corrélation entre l'heure de prélèvement et la teneur en oxygène que montre le graphique cidessous. C'est le cas notamment aux stations H6, H7, H8 où les échantillonnages d'août effectués l'aprèsmidi donnent des teneurs en O2 plus élevées que celles mesurées en matinée au cours des autres campagnes.

Mais les vitesses d'écoulements lentes qui favorisent le réchauffement des eaux ainsi que les apports nutritifs influent aussi sur la croissance algale et l'activité photosynthétique. C'est le cas dans la partie aval de l'Hérault (H18 à H23).

Les apports des affluents constituent un autre facteur influent. Les débits de la Foux, de la Buèges et du Lamalou qui rejoignent l'Hérault en amont de H10 peuvent ainsi participer à la diminution des teneurs en O_2 à cette station.

En 2015 et en 2011, des sursaturations avaient déjà été observées de Cazilhac (H5) à Saint-Bauzille-de-Putois (H8) dans des proportions nettement plus importantes qu'en 2016. Les maximums relevés lors des suivis précédents dépassent 150 % de saturation en oxygène (157 % le 20/07/2015 à Agonès et 157 % le 29/08/2011 à Laroque).

Matières en suspension

La charge en matières en suspension est faible sur l'ensemble des stations de l'Hérault. Une légère augmentation a lieu de l'amont vers l'aval mais les valeurs restent peu élevées et comprises dans les classes de qualité « bonne » à « très bonne » du SEQ-Eau.

En 2015 et en 2011, les concentrations en matières en suspension suivaient une tendance similaire.

■ Matières organiques : Demande Biochimique en oxygène (DBO₅) et Carbone Organique Dissous (COD)

La charge en matières organiques relevée dans l'Hérault en 2016 est faible. Toutes les valeurs de DBO₅ et COD sont compatibles avec le « très bon » état écologique selon l'arrêté du 27/07/2015.

Comme pour la conductivité, il semble que les faibles débits en période d'étiage (deux dernières campagnes) induisent une légère augmentation de la concentration en matières organiques.

Les matières organiques ne présentent pas d'évolution particulière par rapport aux suivis réalisés en 2011 et 2015.

Matières azotées : ammonium, nitrites, nitrates

En 2016, les analyses réalisées dans l'Hérault ne montrent pas de signe de pollution par les matières azotées.

Les concentrations en ammonium (NH $_4$) et en nitrites (NO $_2$) correspondent presque toutes au « très bon » état écologique (arrêté 27/07/2015). Une seule valeur se distingue : 0,12 mgNH $_4$ /l relevé le 10 octobre à la station H10, demeurant toutefois compatible avec le « bon » état écologique.

Les nitrates (NO₃) sont présents à de faibles concentrations correspondant à une classe de qualité « très bonne » selon le SEQ-Eau en dehors des analyses réalisées en octobre à Agones (H7), Pézenas (H20 et H21) et Agde (H23) qui sont légèrement plus défavorables. Selon l'arrêté du 27/07/2015, moins exigeant, toutes les concentrations en nitrates relevées en 2016 sont compatibles avec un « très bon » état écologique.

La charge en matières azotées a peu évolué depuis les derniers suivis, des observations similaires avaient été faites en 2015 et en 2011.

Matières phosphorées : orthophosphates et phosphore total

La charge en phosphore de l'Hérault est faible et ne traduit pas de pollution particulière.

Les concentrations en orthophosphates (PO₄) sont, le plus souvent, inférieures aux seuils de quantification du laboratoire. Seule une valeur relevée à Canet le 11 octobre dépasse 0,1 mg PO₄/l.

Le phosphore total est, quant à lui, détecté au moins une fois dans la plupart des stations de mesure, excepté à Cazilhac (H5), Laroque (H6), Agones (H7), Gignac (H14), Pouzols (H15) et Agde (H23).

Les concentrations en orthophosphates et en phosphore total correspondent toutes au « bon » ou « très bon » état écologique selon l'arrêté du 27/07/2015.

On ne constate pas d'évolution significative de la charge en phosphore depuis les derniers suivis. En 2015 et en 2011, les résultats obtenus lors des campagnes étaient proches de ceux observés en 2016.

Qualité bactériologique

Les bactéries *Escherichia coli* et Entérocoques font partie de la flore fécale normale des humains (le nombre d'*E. coli* par gramme de matière fécale avoisine 10⁹). Ces bactéries constituent de bons indicateurs de pollution fécale (rejet domestique, dysfonctionnement de stations d'épuration) car elles n'existent pas dans un milieu naturel non pollué et elles ne se multiplient pas dans l'eau. Les concentrations en *Escherichia coli* sont souvent plus fortes que celles des entérocoques. La présence d'*Escherichia coli* dans les eaux traduit une contamination fécale humaine ou animale récente alors que la présence d'entérocoques est plutôt associée à une contamination plus ancienne des eaux.

Au cours de ce suivi, la qualité bactériologique de l'Hérault vis-à-vis des *Escherichia coli* est globalement « bonne » selon le SEQ-Eau. Seules quelques valeurs dégradant la qualité de l'eau en classe « moyenne » sont relevées ponctuellement. Les concentrations en entérocoques sont peu élevées et correspondent toutes, à minima à la classe de qualité « bonne » du SEQ-Eau.

De Cazilhac (H5) à Saint-Bauzille-de-Putois (H8) le suivi réalisé en 2015, avait mis en évidence une contamination bactériologique chronique dans ce secteur avec des concentrations en E. coli dépassant 460 u/100 ml. Ces mauvais résultats provenaient vraisemblablement de dysfonctionnements des systèmes d'assainissement. Cette année, le niveau de contamination de ce secteur est plus faible même si la classe de qualité « moyenne » du SEQ-Eau est atteinte entre H5 et H7 en mai et octobre. Il se peut donc que certains travaux effectués sur les réseaux (notamment 2 collecteurs à Ganges) et une bonne gestion des fillières de désinfection des effluents des stations d'épuration aient permis de conserver une qualité bactériologique satisfaisante en 2016.

Par ailleurs, certains systèmes d'épuration, notamment la station de Ganges, sont équipés de traitements de désinfection qui sont mis en service durant la période de baignade. Ceci peut expliquer que la contamination relevée à Cazilhac (H5) et Laroque (H6) soit plus importante en octobre alors que les conditions hydrologiques étaient assez proches de celles de la campagne estivale (étiage).

Des données complémentaires concernant la qualité de l'Hérault en amont de Cazilhac (H5) sont présentées dans le paragraphe 5.2.6 (suivi départemental du Gard et suivi ARS). Les résultats disponibles indiquent qu'une contamination bactériologique chronique atteint le cours d'eau à partir de Pont-d'Hérault. L'assainissement de cette commune présente des dysfonctionnements qui génèrent une charge bactériologique élevée compromettant l'activité de baignade dans ce secteur.

Entre H8 (Saint-Bauzille-de-Putois) et H12 (Saint-Jean-de-Fos), aucun problème bactériologique n'est à signaler en 2016. C'était aussi le cas en 2015.

A l'aval de Gignac (H14), des contaminations par les *E.Coli* sont ponctuellement observées qui peuvent avoir pour origine la fréquentation du cours d'eau et de ses abords (pêcheurs, camping sauvage, baignade...). La situation était similaire en 2015 mais plus défavorable en 2011.

Les travaux de modernisation des systèmes d'assainissement réalisés ces dernières années semblent avoir eu un effet bénéfique sensible sur la qualité du fleuve. Notamment :

- les travaux d'agrandissement de la station d'épuration de Saint-André-de-Sangonis en 2014 dont les effluents rejoignent l'Hérault en amont de Pouzols,
- les travaux de modernisation du système d'assainissement d'Adissan en 2014 (et dans une moindre mesure à ceux d'Aumelas en 2012) semblent avoir réduit la charge bactériologique à Saint-Pons-de-Mauchiens et Pézenas (H18, H19 et H20).

Conclusion

Cette année encore, la qualité physico-chimique de l'eau de l'Hérault est bonne. Les seules perturbations relevées au cours du suivi 2016 résultent de températures élevées dans les secteurs de plaine (zones lentes) et de pollutions bactériologiques ponctuelles.

Par rapport au précédent suivi réalisé en 2015, la qualité bactériologique s'est nettement améliorée sur l'amont du secteur : de Cazilhac à Saint-Bauzille-de-Putois. Toutefois, des contaminations persistent et laissent supposer que des sources de pollution existent toujours.

5.2.2. Qualité des affluents de l'Hérault

5.2.2.1. La Vis

La Vis est un cours d'eau de première catégorie qui rejoint l'Hérault en amont de Ganges et de la station H5.

■ Température, pH, conductivité et oxygène dissous

Les eaux de la Vis sont fraîches tout au long de l'année. La Vis est principalement alimentée par la source de la Foux, une importante exsurgence karstique située quelques kilomètres en amont de Saint-Maurice-de-Navacelles. La température des eaux souterraines varie peu au cours de l'année et reste généralement proche de 11°C. Entre Saint-Maurice-de-Navacelles (VIS1) et Saint-Laurent-le-Minier (VIS3) on constate un réchauffement de l'eau en mai et en août (+ 5,1°C en août) induit par la chaleur de l'air.

Le pH de la Vis est basique présente des variations pouvant atteindre 0,8 upH qui, au regard des autres paramètres, ne peut avoir qu'une origine géochimique.

La conductivité présente peu d'évolution de l'amont vers l'aval, mais une légère augmentation en période estivale.

L'oxygénation du cours d'eau est « très bonne » tout au long de l'année et aux trois stations suivies.

■ Matières en suspension et matières organiques (DBO₅ et COD)

La quantité de matières en suspension relevée dans la Vis est très faible. Aucun résultat ne dépasse le seuil de quantification de 2 mg/l.

La charge en matières organiques est également peu élevée. Aucune pollution particulière par les matières organiques n'est observée et leur concentration définit un « très bon » état écologique.

Matières azotées et phosphorées

Les concentrations en azote sont globalement faibles.

Les valeurs d'ammonium (NH₄) et de nitrites (NO₂) sont toutes inférieures ou égales aux seuils de quantification du laboratoire.

Les nitrates (NO₃) sont présents dès la station amont mais les valeurs restent peu élevées sur l'ensemble des points suivis. On remarque que la concentration en nitrates diminue légèrement de l'amont vers l'aval excepté en octobre. Lors de cette campagne, un apport de nitrates a lieu entre VIS1 et VIS2 mais les valeurs restent toutefois peu élevées. Tous les résultats correspondent à minima à une « bonne » qualité d'eau selon le SEQ-Eau.

La charge en phosphore est faible. Les concentrations sont presque toujours inférieures aux seuils de quantification du laboratoire (0,1 mg PO $_4$ /l et 0,05 mg P $_{total}$ /l). Seule la campagne de mars se distingue car la concentration en phosphore total est quantifiée (0,06 mg P $_{total}$ /l) à la station amont (VIS1). Cette dernière correspond au « bon » état écologique selon l'arrêté du 27/07/2015 tandis que tous les autres résultats sont compatibles avec un « très bon » état écologique.

Qualité bactériologique

A Saint-Maurice-de-Navacelles (VIS1) et Gorniès (VIS2), les analyses réalisées en 2016 n'indiquent pas de pollution bactériologique. Par contre, à **Saint-Laurent-le-Minier, on note une contamination significative par les germes bactériens en mars, août et octobre.** Les valeurs atteignent la classe de qualité « moyenne » pour les *E. Coli* selon la grille d'appréciation du SEQ-Eau. Les apports de la Crenze, qui reçoit les effluents de la station d'épuration de Saint-Laurent-le-Minier, et qui rejoint la Vis en amont de la station de mesure sont à l'origine de cette pollution.

Suite aux dégâts de la crue de septembre 2014 sur le système d'assainissement de Saint-Laurent-le-Minier, des travaux ont été effectués. La station d'épuration a été remise en service mais cette station d'épuration présente d'importants dysfonctionnements qui persistent depuis 2011 malgré les travaux effectués.

Conclusion

Depuis 2011, on note peu d'évolution de la qualité physico-chimique de la Vis. Les différents paramètres indiquent que l'eau est de très bonne qualité. Seule la pollution bactériologique à l'aval de Saint-Laurent-le-Minier, déjà observée en 2011 et 2015 persiste.

5.2.2.2. La Foux

La Foux, qui porte également le nom de ruisseau de Brissac ou Avèze, rejoint l'Hérault en aval de Saint-Bauzille-de-Putois (station H8).

■ Température, pH, conductivité et oxygène dissous

La température du ruisseau de la Foux est peu élevée (maximum de 16 °C en août) et suit une évolution saisonnière classique.

A l'image de la Vis, le pH est basique et présente des variations importantes au cours de l'année. En effet, le proche de 8 upH de mars à août, il atteint 8,7 upH en octobre.

La conductivité est peu élevée, la concentration en sels dissous est faible et ne traduit pas de pollution particulière du ruisseau.

Lors des quatre campagnes réalisées en 2016, l'oxygénation de l'eau était très bonne.

■ Matières en suspension et matières organiques (DBO₅ et COD)

La charge en matières en suspension (MES) est très faible et inférieure au seuil de quantification du laboratoire (2 mg/l). La charge en matières organiques est également peu élevée. Toutes les valeurs sont compatibles avec un « très bon » état écologique selon la DCE. Aucune pollution par les matières organiques n'est donc à signaler.

Matières azotées et phosphorées

La charge en ammonium (NH $_4$) et en nitrites (NO $_2$) est faible puisqu'aucune valeur ne dépasse le seuil de quantification du laboratoire (0,05 mg NH $_4$ /l et 0,03 mg NO $_2$ /l). Les concentrations en nitrates (NO $_3$) sont également peu élevées. Seule une valeur (2,2 mg NO $_3$ /l le 10 octobre) dépasse le seuil de la « très bonne » qualité selon le SEQ-Eau.

De même, les concentrations en orthophosphates et de phosphore total ne dépassent pas le seuil de quantification du laboratoire $(0,01 \text{ mg PO}_4/\text{ et } 0,05 \text{ mg P}_{total}/I)$.

Les matières azotées et phosphorées définissent un « très bon » état écologique selon l'arrêté du 27/07/2015.

Qualité bactériologique

La charge en micro-organismes est faible en mars et en mai. Une nette augmentation a lieu en août puisque la concentration en *E. Coli* correspond à une qualité « moyenne » selon le SEQ-Eau. En octobre, la pollution s'atténue mais la valeur reste plus élevée qu'en mars et en mai. Les apports du village de Brissac situé en amont du point de prélèvement semblent générer des pollutions bactériologiques momentanées, notamment en période d'étiage.

Conclusion

Les suivis précédents, en 2011 et 2015 présentaient des résultats similaires. L'eau est d'une très bonne qualité physico-chimique mais des pollutions bactériologiques apparaissent en été et en automne.

5.2.2.3. La Buèges

La Buèges est un affluent qui rejoint l'Hérault en aval du pont de Saint-Etienne-d'Issensac et en amont de Causse-de-la-Selle (H10).

■ Température, pH, conductivité et oxygène dissous

La température de l'eau de la Buèges suit une évolution saisonnière classique. La plus forte valeur est relevée en août (20,2 °C) et correspond au « bon » état écologique selon l'arrêté du 27/07/2015.

Le pH est élevé, notamment à partir du mois de mai. Ce cours d'eau est, comme la Vis, alimenté par une source karstique située moins de 3 km en amont de Saint-Jean-de-Buèges. Les eaux souterraines en milieu calcaire présentent généralement un pH basique.

La conductivité ne montre pas de signe d'enrichissement particulier du milieu en éléments minéraux dissous. On remarque que la conductivité baisse en période d'étiage (août et octobre) alors que les faibles débits favorisent généralement son augmentation (phénomène de concentration). Il est possible que la conductivité soit influencée par le débit de la source de la Buèges qui est plus faible en été.

L'eau de la Buèges est bien oxygénée tout au long de l'année. Toutes les valeurs relevées sont compatibles avec le « très bon » état écologique définit dans l'arrêté du 27/07/2015. Une légère sursaturation chronique est toutefois à signaler qui peut être le fait de développements végétaux.

Matières en suspension et matières organiques (DBO₅ et COD)

Les concentrations en matières en suspension sont très faibles et ne dépassent pas le seuil de quantification du laboratoire.

La charge en matières organiques est peu élevée, toutes les valeurs indiquent un « très bon » état écologique.

Matières azotées et phosphorées

Les concentrations en ammoniaque, nitrites et nitrates sont inférieures aux seuils de quantification du laboratoire. Seule une analyse révèle la présence de nitrates en octobre (3,2 mgNO₃/l).

La charge en phosphore est également peu élevée. Les teneurs relevées sont inférieures aux seuils de quantification du laboratoire.

La Buèges ne présente aucun signe de pollution par les matières azotées ou phosphorées. La qualité de l'eau correspond, pour ces paramètres, au « très bon » état écologique selon l'arrêté du 27/07/2015.

Qualité bactériologique

La qualité bactériologique est bonne lors des campagnes de mai, août et octobre. Cependant, une forte contamination est relevée en mars : 15199 *E.Coli/*100 ml et 534 entérocoque/100 ml. Ces valeurs correspondent respectivement aux classes de qualité « médiocre » et « moyenne » selon le SEQ-Eau version 2. La présence de streptocoques fécaux indique que la pollution a duré plusieurs jours. La station d'épuration de Saint-Jean-de-Buèges se situe en amont immédiat de la station de prélèvement. Cette installation présente des dysfonctionnements qui peuvent entraîner des épisodes de pollution bactériologique.

Conclusion

La Buèges présente une bonne qualité physico-chimique mais des épisodes de contamination bactériologique dégradent significativement la qualité de l'eau. Des constatations similaires avaient déjà été faires lors du dernier suivi, en 2015.

5.2.2.4. La Lergue

La Lergue rejoint l'Hérault en amont de Canet (H16). La station suivie dans le cadre de cette étude (LER2) se situe à l'aval de Lodève, soit plus de 20 km en amont de la confluence.

■ Température, pH, conductivité et oxygène dissous

La température de l'eau de la Lergue relevée dans le cadre de ce suivi est fraîche. Elle suit une évolution saisonnière et la valeur relevée en août (19,3°C) est très nettement plus élevée que celle des autres saisons. Toutes les valeurs deumeurent compatibles avec le « très bon » état écologique défini par l'arrêté du 27/07/2015.

Le pH de la Lergue est basique et varie entre les campagnes. La valeur la plus défavorable est enregistrée en octobre (8,4 upH) et correspond au « bon » état écologique.

La conductivité est plutôt élevée, proche de $650~\mu\text{S/cm}$ et augmente progressivement de mars à octobre. Ces valeurs de conductivité peuvent indiquer la présence d'apports d'eaux usées.

L'oxygénation de l'eau est bonne et caractérise un « très bon » état écologique.

■ Matières en suspension et matières organiques (DBO₅ et COD)

La quantité de matières en suspension est faible.

La charge en matières organiques est également peu élevée, aucune pollution organique n'est observée. Toutes les valeurs sont compatibles avec le « très bon » état écologique.

Matières azotées et phosphorées

La Lergue ne présente pas de pollution particulière par les matières azotées. Les concentrations en ammonium (NH₄) et en nitrites (NO₂) sont très faibles et la plupart du temps inférieures aux seuils de quantification du laboratoire.

Les nitrates (NO₃) sont présents en mars et en mai, toutefois les valeurs demeurent peu élevées. En août et en octobre, on remarque une réduction de la quantité de nitrates dans l'eau probablement induite par les conditions d'étiage (moins de lessivage des terres agricoles) et la consommation des nitrates par la végétation. Au regard des concentrations en matières azotées, la Lergue présente un « très bon » état écologique.

Les concentrations en orthophosphates sont toutes inférieures au seuil de quantification du laboratoire. Le phosphore total est, quant à lui, détecté lors de 3 des 4 campagnes (excepté en mai) et correspond aux critères de « bon » état écologique selon l'arrêté du 27/07/2015.

Qualité bactériologique

Comme en 2015, la Lergue présente une pollution bactériologique chronique. En mars et plus particulièrement en mai et en août, des concentrations élevées en *E.Coli* sont observées (18 563 u/100ml en mai 2016). Les entérocoques présents, dans une moindre mesure, lors de ces campagnes indiquent que la pollution persiste depuis plusieurs jours.

Les résultats correspondent aux classes de qualité du SEQ-Eau : « moyenne » en mars, « médiocre » en mai et août puis « moyenne » en octobre. La station LER2 se situe en aval du rejet de la station d'épuration de Lodève (environ 1,5 km) qui génère une pollution bactériologique chronique dans ce secteur. Par ailleurs, une partie de la ville de Lodève possède un réseau unitaire qui peut être à l'origine de pollutions épisodiques, notamment par temps de pluie.

Conclusion

La qualité physico-chimique de la Lergue est globalement bonne et a peu évolué depuis les derniers suivis réalisés en 2011 et 2015. La bactériologie constitue, comme en 2015, le facteur le plus pénalisant. Les résultats de 2016 confirment l'existence de sources de pollutions chroniques en amont du point de prélèvement. Notons que la mesure élevée de pH observée en 2015 (9,3 upH le 24/03/2015) n'a pas été confirmée en 2016.

5.2.2.5. Le Salagou

Le Salagou est un affluent de la Lergue qui rejoint ce cours d'eau près de Saint-Félix-de-Lodez, environ 10 km avant la confluence de la Lergue avec l'Hérault.

■ Température, pH, conductivité et oxygène dissous

La température de l'eau est fraîche, elle ne dépasse pas 20 °C. Elle suit une évolution saisonnière classique.

Le pH est basique et augmente de mars à octobre.

La conductivité est élevée et oscille entre 548 à 657 µS/cm. Les valeurs les plus élevées sont observées en période d'étiage (août et octobre). Cette période correspond aux conditions hydrologiques qui favorisent la concentration des composés dissous dans l'eau.

Des désoxygénations significatives sont relevées en août et en octobre. L'eau atteint même en août la classe de qualité « médiocre » de l'arrêté du 27/07/2015.

Ces mesures in situ sont cohérentes avec celles effectuées en 2015 et s'expliquent en grande partie par l'origine de l'eau (soutirage de la retenue du Salagou) et son faible débit (5 à 11 l/s).

■ Matières en suspension et matières organiques (DBO₅ et COD)

La teneur en matières en suspension du Salagou est faible, le plus souvent inférieure ou égale au seuil de quantification du laboratoire. La valeur obtenue en août se distingue (19 mg/l) mais correspond à la classe de qualité « bonne » selon le SEQ-Eau. La retenue du Salagou située en amont de la station de prélèvement offre un important potentiel de sédimentation, y compris des particules fines.

La charge en matières organiques dans le Salagou est globalement peu élevée. Cependant, comme pour les matières en suspension, la valeur de DBO_5 relevée en août est nettement plus élevée que lors des autres campagnes (5,1 mg O_2 /I, état DCE « bon »).

Les conditions d'étiage du mois d'août semblent avoir induit une augmentation des matières en suspension et des matières organiques. Malgré cela, les valeurs les plus défavorables restent compatibles avec le « bon » état écologique selon l'arrêté du 27/07/2015.

Matières azotées et phosphorées

Les concentrations en matières azotées (NH₄, NO₂ et NO₃) sont presque toutes inférieures aux seuils de quantification du laboratoire. Les analyses montrent la présence d'ammoniaque et de nitrites en mai sans pour autant caractériser une pollution significative.

La charge en phosphore est peu élevée, les plus fortes valeurs restent compatibles avec le « bon » état écologique. Toutefois, la présence de phosphore indique généralement l'existence de rejets urbains.

Qualité bactériologique

De mars à août, les concentrations en germes bactériens sont peu élevées. Une augmentation ponctuelle est observée en octobre (742 *E.Coli*/100ml). Le hameau de Mas-Audran qui comporte quelques habitations et des logements saisonniers (gîtes) pourrait-être à l'origine de cette légère contamination bactériologique.

En 2011, le suivi présentait des concentrations ponctuellement élevées en matières organiques (COD), en nitrates (NO₃) et en phosphore total indiquant une pollution par des rejets domestique. En 2015 les analyses ont montré que, suite à la mise en service d'un système d'assainissement collectif pour le hameau de Mas-Audran, cette pollution avait disparu. Ceci est confirmé par le suivi réalisé cette année, mais, comme en 2015, une contamination bactériologique modérée persiste.

5.2.2.6. La Boyne

La Boyne rejoint l'Hérault au droit de Cazouls-d'Hérault en amont de Pézenas (station H19).

■ Température, pH, conductivité et oxygène dissous

La température de l'eau de la Boyne suit une évolution saisonnière classique : la plus forte valeur est relevée en août (21,2 °C). Les températures relevées lors des quatre campagnes correspondent à la classe de qualité « très bonne » selon le SEQ-Eau version 2.

Le pH de la Boyne est basique et varie entre les différentes campagnes. La plus forte valeur est observée en octobre, à la fin de la période d'étiage.

La conductivité est élevée traduisant une forte teneur de l'eau en composés dissous qui indique la présence d'apports domestiques.

L'oxygénation est très bonne en hiver et au printemps puis diminue un peu en été et en automne en fin de matinée. Les très faibles écoulements et l'activité photosynthétique sont probablement à l'origine de ce phénomène.

■ Matières en suspension et matières organiques (DBO₅ et COD)

La concentration en matières en suspension est peu élevée. Seule la valeur observée en août, lorsque le débit était très faible, dépasse le seuil de qualité « très bonne » du SEQ-Eau version 2.

La charge en matières organiques est faible. Toutes les valeurs correspondent au « très bon » état selon l'arrêté du 25/01/2010.

Matières azotées et phosphorées

Les concentrations en azote sont globalement peu élevées. Les teneurs en ammonium (NH₄) et en nitrites (NO₂) sont toutes inférieures aux seuils de quantification du laboratoire. Les nitrates sont quant à eux présents lors de chaque campagne. Les valeurs demeurent peu élevées (maximum de 8,1 mg NO₃/I en octobre 2016) mais indiquent tout de même la présence d'apports tout au long de l'année, liés à l'activité agricole importante qui a pris place dans le bassin versant de la Boyne et à la présence de rejets urbains.

Toutes les valeurs de concentration en phosphore sont inférieures aux seuils de quantification du laboratoire. Malgré des débits d'étiage plus faibles que ceux observés en été et en automne 2015, les concentrations en phosphore sont moins élevées qu'au cours du suivi précédent. Il semble donc que les rejets urbains, principale source de phosphore, aient moins d'impact en 2016.

Qualité bactériologique

La Boyne présente une bactériologie « bonne » selon le SEQ-Eau jusqu'en mai. Elle se dégrade ensuite à l'étiage puisque la qualité est « moyenne » en août et « médiocre » en octobre. Lors de cette dernière campagne, la concentration en *E.Coli* est élevée (2 675 germes/100 ml) et indique une nette pollution par les eaux domestiques. La présence de streptocoques fécaux (272 germes/100 ml) montre que la contamination a duré plusieurs jours. Des constatations similaires avaient été faites lors du précédent suivi, en 2015. Il semble donc que des pollutions bactériologiques atteignent régulièrement la Boyne à Cazouls-d'Hérault.

La Boyne reçoit les effluents de la station d'épuration d'Adissan en amont (4 km environ) du point de prélèvement Bo1. Cette station d'épuration est récente (2014) et son fonctionnement est correct. Elle peut néanmoins être un vecteur de pollution bactériologique, tout comme les habitations et propriétés agricoles situées à proximité du cours d'eau en amont de Bo1.

Cette station Bo1 n'était pas suivie par le Conseil Départemental en 2007 et 2011. Cependant, elle a fait l'objet d'analyses réalisées dans le cadre du réseau de contrôle opérationnel (RCO) jusqu'en 2014 (sous le numéro 06183900). L'état chimique n'est pas qualifié sur le site de l'Agence de l'Eau, cependant la fiche « état des eaux » indique que des désoxygénations pénalisantes ont lieu régulièrement dans la Boyne.

5.2.2.7. La Peyne

La Peyne est un affluent de l'Hérault qui rejoint le fleuve au droit de la ville de Pézenas, en amont du point de mesure H20. Le cours d'eau bénéficie d'un soutien d'étiage estival par le barrage des Olivettes représentant en général entre 50 et 150 l/s (supérieur au débit réservé de 24l/s)¹⁴.

■ Température, pH, conductivité et oxygène dissous

La température de l'eau de la Peyne suit une évolution saisonnière et augmente en période estivale. Elle reste cependant plutôt fraîche en été (21,2 °C), vraisemblablement grâce aux apports d'eau du barrage des Olivettes qui assure le soutien d'étiage du cours d'eau et à l'ombre portée par l'importante ripisylve.

Le pH augmente progressivement entre mars (7,6 upH) et octobre (8,2 upH).

La conductivité de la Peyne est plutôt élevée. La quantité importante de composés minéraux dissous témoigne généralement de la présence d'effluents urbains. Les apports provenant du barrage des Olivettes semblent avoir un effet de dilution entraînant la baisse de la conductivité puisque les plus faibles valeurs sont relevées en mai et en août.

L'oxygénation du cours d'eau est globalement satisfaisante ; les valeurs sont compatibles avec le « bon » état écologique selon l'arrêté du 27/07/2015.

■ Matières en suspension et matières organiques (DBO₅ et COD)

Les concentrations en matières en suspension relevées au cours de ce suivi sont peu élevées (moins de 7 mg/l).

La charge en matières organiques est faible, toutes les valeurs (DBO $_5$ et DCO) indiquent un « très bon » état écologique.

Matières azotées et phosphorées

La charge en matières azotées (NH_4 , NO_2 et NO_3) est peu élevée. La plupart des valeurs sont inférieures aux seuils de quantification du laboratoire. Seule la concentration en ammoniaque relevée en octobre (0,16 mg NH_4/I) dépasse le seuil définissant le « très bon » état écologique de l'arrêté du 27/07/2015.

¹⁴ Données issues du SAGE Hérault 2005

Les concentrations en phosphore sont également presque toutes inférieures aux seuils de quantification du laboratoire. Une seule valeur de phosphore total supérieure au seuil de quantification est détectée en octobre (0,09 mg P_{tot}/I – « bon état »).

Au regard de ces analyses, la charge en nutriments de l'eau de la Peyne est faible.

Qualité bactériologique

Lors des quatre campagnes réalisées en 2016, les analyses n'ont pas montré de pollution bactériologique significative dans la Peyne. En effet, les concentrations sont peu élevées et la classe de qualité « bonne » du SEQ-Eau n'est franchie que pour les E. coli en août 2016 (126 E. coli / 100 ml, le seuil de la classe étant à 100 E.coli / 100 ml).

Une contamination bactériologique plus importante avait été signalée en 2015. Lors de ce suivi, nous avions observé qu'un rejet direct d'eaux usées en provenance de Notre-Dame-de-Mougères se déversait en aval immédiat de la station de mesure et dégradait la qualité de l'eau : eau grise, flocs bactériens... Ce rejet semble avoir disparu.

On observe en 2016 une légère amélioration de la qualité de l'eau par rapport aux suivis réalisés en 2015 et en 2011. Les analyses bactériologiques n'ont pas montré de signe particulier de pollution et semblent indiquer la disparition de certaines sources de contamination par rapport à l'année 2015.

5.2.2.8. La Thongue

La Thongue est un affluent qui rejoint l'Hérault au droit de Saint-Thibéry, en aval de la station H21 et en amont de la station RCO Hérault à Bessan. La Thongue était à sec en août et octobre ; seules deux campagnes d'analyses ont donc pu être réalisées : mars et mai 2016.

Température, pH, conductivité et oxygène dissous

La température de l'eau de la Thongue relevée en mars et en mai est satisfaisante.

Le pH est basique mais demeure peu élevé.

La conductivité est forte et traduit une charge importante en composés dissous. Celle-ci est vraisemblablement liée à la présence d'apports importants d'effluents urbains.

L'oxygénation de l'eau est bonne en hiver et au printemps.

Matières en suspension et matières organiques (DBO₅ et COD)

La quantité de matières en suspension relevée dans la Thongue est peu élevée. La plus forte valeur (6 mg/l en mars 2016) reste comprise dans la classe de qualité « bonne » du SEQ-Eau.

De même, la charge en matières organiques est modérée. Le maximum de DBO $_5$ relevé (3,5 mg O_2 /I) demeure compatible avec le « bon » état écologique définit par l'arrêté du 27/07/2015.

Matières azotées et phosphorées

La Thongue présente une charge significative en matières azotées. En effet, les concentrations en ammoniaque et en nitrites (NH₄ et NO₂) relevées en mars indiquent un état écologique « moyen » selon l'arrêté du 27/07/2015. En mai, la concentration en ammoniaque diminue légèrement tandis que la quantité de nitrites augmente et définit alors un état écologique « médiocre » pour ce paramètre.

Les analyses mettent également en évidence la présence de nitrates dans la Thongue. Les nitrates sont toutefois moins pénalisants pour le milieu aquatique que l'ammoniaque et les nitrites. Ces deux éléments sont généralement d'origine humaine et indiquent la présence d'apports domestiques.

Les nitrates (NO₃) peuvent résulter de l'oxydation de l'azote ammoniacal (processus de nitrification), mais leur présence en hiver et au printemps peut aussi être liée au ruissellement des eaux de pluies sur des terres agricoles amendées.

La charge en phosphore (PO₄ et Ptotal) est élevée en mars et en mai. Les concentrations atteignent des valeurs pénalisantes qui correspondent à un état écologique « médiocre ». Les polyphosphates signent ici des apports d'origine humaine (apports domestiques, effluents de stations d'épuration…).

La Thongue reçoit les effluents de plusieurs stations d'épuration dont Gabian et Abeilhan. La station de Gabian est ancienne et ne traite pas spécifiquement le phosphore. Par ailleurs, des problèmes dans la filière de traitement de l'azote de la station d'Abeilhan sont signalés par le SATESE. Notons que des travaux sont en cours ou en projet sur ces deux installations. Les propriétés agricoles situées en bordure du cours d'eau constituent également des sources potentielles de pollution.

Qualité bactériologique

Une pollution par les *E. Coli* est observée en mars et en mai. La bactériologie indique, comme la charge en nutriments, la présence de rejets de stations d'épuration ou de rejets domestiques non traités

Depuis 2011, d'importantes perturbations sont mises en évidence dans la Thongue. Des valeurs élevées en carbone organique dissous, en azote et en phosphore sont régulièrement observées. La faiblesse des débits de la Thongue, mise en évidence par la longue période d'assec observée en 2016, favorise la concentration des polluants.

5.2.3. Manifestation de l'eutrophisation des cours d'eau

L'eutrophisation est le processus par lequel les nutriments (l'azote et le phosphore) s'accumulent dans le milieu. Elle se manifeste par des épisodes de prolifération végétale (phytoplancton, macrophytes aquatiques) qui conduisent notamment à un appauvrissement du milieu en oxygène en fin de nuit et à une perte de la biodiversité.

Biomasse phytoplanctonique

Lors de chaque campagne de mesure, la teneur en chlorophylle et en phéopigments permettant d'évaluer la quantité de phytoplancton présent dans l'eau a été analysée pour chaque station.

En 2016, les résultats de ce suivi n'ont montré aucun développement phytoplanctonique important dans l'Hérault et ses affluents.

Toutefois, le prélèvement d'octobre à Gignac (H14) se distingue des autres puisque la concentration en chlorophylle et phéopigments correspond à la classe de qualité « bonne » du SEQ-Eau version 2 (21 µg/l) tandis que toutes les autres valeurs sont comprises dans la classe de qualité « très bonne ».

Les analyses révèlent que les teneurs en phytoplancton suivent globalement une évolution saisonnière et sont plus élevées en été et en automne. Cette tendance est plus ou moins marquée selon les stations.

En 2015, les concentrations en phytoplancton relevées en été et en automne étaient globalement plus faibles et aucune tendance saisonnière n'apparaissait. Rappelons qu'en 2015 :

- la campagne estivale s'est déroulée fin juillet, dans des conditions d'étiage moins sévères qu'en août 2016,
- l'hydrologie de la campagne automnale était plus élevée qu'en 2016.

Végétation aquatique et cyanobactéries

Lors de chaque campagne, la végétation aquatique a été observée et renseignée dans les fiches descriptives des stations en annexe 8.5.1.

Les proliférations significatives de macrophytes (plus de 25 % de recouvrement de la station) et de périphyton (moyen à abondant) observées en 2016 sont synthétisées dans le tableau suivant.

Tableau 15 - Proliférations végétales et périphyton observés en 2016.

			Abo	ndance	du périp	ohyton
				par ca	ampagne	9
Station	Code	Proliférations végétales observées	C1	C2	C3	C4
Hérault à Cazilhac	H5					
Hérault à Laroque	H6					
Hérault à Agones	H7					
Hérault à St-Bauzille-De-Putois	H8					
Hérault à Causse-De-La-Selle 1	H10					
Hérault à Puechabon	H11					
Hérault à St-Jean-De-Fos 3	H12					
Hérault à Gignac	H14					
Hérault à Pouzols	H15					
Hérault à Canet	H16					
Hérault à St-Pons-De-Mauchiens	H18					
Hérault à Pézenas 1	H19					
Hérault à Pézenas 2	H20					
Hérault à Pézenas 3	H21					
Hérault à Agde 6	H23	Fond non visible				
Vis à St-Maurice-Navacelles	VIS1					
Vis à Gorniès	VIS2					
Vis à St-Laurent-Le-Minier	VIS3					
Buèges à St-Jean-De-Buèges 2	BU1	Algues (>25% en mars et en mai)				
Ruisseau de Brissac à Brissac	FO1					
Lergue à Lodève 2	LER2	Algues (> 50% en août et <25% en octobre)				
Peyne à Roujan	P1	Algues (>50% en mars)				
Salagou à Le-Bosc	SLG1					
Tongue à Servian	TH1	Algues (> 50% en mars et >75% en mai)				
Boyne à Cazouls-d'Hérault 2	B01					

Code couleur présence de périphyton

non significative
moyenne
Abondant

Lors des différentes campagnes réalisées en 2016, aucun développement important de macrophytes aquatiques n'a été observé dans l'Hérault. A l'inverse, le périphyton est présent, voir abondant sur l'ensemble des stations. On note une évolution dans le temps et dans l'espace puisque le périphyton est globalement plus abondant en étiage et augmente de l'amont vers l'aval.

Périphyton observé dans l'Hérault (H10) en octobre 2016

Algues observées dans la Thongue (Th1) en mars 2016

L'année précédente, des proliférations algales avaient été signalées en juillet 2015 à Cazilhac (H5) et Agones (H7). Elles n'ont pas été observées cette année puisqu'à ces deux stations, le lit de l'Hérault était recouvert par moins de 5 % de végétation lors de chaque campagne.

La Vis, la Foux, le Salagou et la Boyne ne présentent pas de prolifération de macrophytes et une présence rare à moyenne de périphyton.

A l'inverse, des développements algaux importants sont observés dans la Buèges, la Lergue, la Peyne et la Thongue. Dans ces cours d'eau, la présence du périphyton est moyenne à abondante. Ils sont donc manifestement sujets aux phénomènes d'eutrophisation. Des observations similaires avaient été faites en 2015.

Des cyanobactéries ont été observées ponctuellement sur l'Hérault et certains de ses affluents. Il s'agit de cyanobactéries benthiques (plaquages noirs). Notons que tous les ordres de cyanobactéries reconnus actuellement renferment des genres toxicogènes. Cependant, la toxicité des cyanobactéries observées n'a pas été évaluée dans le cadre de ce suivi. Des méthodes spécifiques de dosage des toxines sont nécessaires pour déterminer le risque lié à la présence de ces espèces.

Tableau 16 – Cyanobactéries observées en 2016.

Station	Code	Observations de cyanobactéries	Date
06300051 Hérault à Causse-De-La-Selle 1	H10	Moyenne	août
06183200 Hérault à Canet	H16	Moyenne	août
06183840-Thongue a Servian	TH1	Abondant	mars
06183900-Boyne a Cazouls-d'Hérault 2	BO1	Moyenne	mars et octobre

Incidence sur l'oxygène et le pH

L'activité photosynthétique des végétaux entraîne des variations de pH et de concentration en oxygène dissous. Sous l'effet de la lumière du jour, les végétaux chlorophylliens produisent de l'oxygène et provoquent une augmentation du pH. La nuit, la phase sombre de la photosynthèse (respiration) consomme plus d'oxygène qu'elle n'en produit, entraînant une désoxygénation de l'eau.

Des mesures de pH et d'oxygénation de l'eau ont été réalisées in-situ lors de chaque campagne de mesures. Ce couple de paramètres permet d'évaluer les effets de proliférations végétales selon les critères du SEQ-Eau version 2.

La classe de qualité retenue correspond à celle définie par le paramètre le moins déclassant des deux. Les mesures pour lesquelles les concentrations en oxygène dissous sont supérieures à 110 % de saturation (sursaturation) sont présentées dans le tableau suivant.

Tableau 17 - Physico-chimie caractérisant les proliférations végétales en 2016.

Station	Code	Date	Heure	Temp. Eau °C	pH unité	O2 mg/l	O2 %sat	Chloro-a+ phéopig.µg/l
06182000-HERAULT A LAROQUE	Н6	01/08/2016	13:00	23	8,3	10,2	120	3
06182020-HERAULT A AGONES	H7	01/08/2016	13:45	22,5	8,4	10,2	119	4
06182030-HERAULT A ST-BAUZILLE-DE-PUTOIS	H8	21/03/2016	11:45	12,2	8,1	11,9	112	<2
06182030-HERAULT A ST-BAUZILLE-DE-PUTOIS	H8	01/08/2016	13:45	21,9	8,5	10,1	118	3
06182030-HERAULT A ST-BAUZILLE-DE-PUTOIS	H8	10/10/2016	13:50	13,3	8,9	12,3	119	3
06182120-HERAULT A PUECHABON	H11	21/03/2016	15:00	12,5	8,7	12,3	116	<2
06182120-HERAULT A PUECHABON	H11	23/05/2016	14:30	15,6	8,1	11,0	112	3
06183820-HERAULT A PEZENAS 2	H20	02/08/2016	13:30	27,3	8,2	9,1	113	3
06184200-HERAULT A AGDE 6	H23	02/08/2016	14:30	27,5	8,3	9,3	116	11
06184510-HERAULT A ST-JEAN-DE-FOS 3	H12	21/03/2016	16:00	13	8,7	12,7	121	<2
06184510-HERAULT A ST-JEAN-DE-FOS 3	H12	23/05/2016	15:15	16,4	8,1	11,0	114	3
06184510-HERAULT A ST-JEAN-DE-FOS 3	H12	01/08/2016	16:30	26,6	8,2	9,3	116	3
06184510-HERAULT A ST-JEAN-DE-FOS 3	H12	10/10/2016	13:30	18,1	8,1	10,5	111	5
06184620-BUEGES A ST-JEAN-DE-BUEGES 2	BU1	21/03/2016	15:45	12,9	7,8	12,8	123	<2
06184620-BUEGES A ST-JEAN-DE-BUEGES 2	BU1	23/05/2016	15:45	14,4	8,6	11,6	115	<2
06184620-BUEGES A ST-JEAN-DE-BUEGES 2	BU1	01/08/2016	16:00	20,2	8,3	10,1	115	<2
06184640-RUISSEAU DE BRISSAC A BRISSAC	FO1	21/03/2016	14:40	14,5	8,0	11,7	117	<2
06183750-PEYNE A ROUJAN	P1	22/03/2016	12:00	12,7	7,6	11,9	114	2

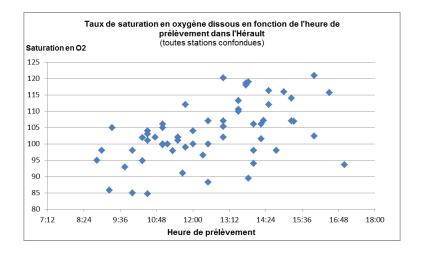
Code couleur : SEQ eau v2, altération « effets des proliférations végétales »

Les mesures de pH et d'oxygène dissous définissent une qualité « bonne » à toutes les stations selon les critères de l'altération « proliférations végétales » du SEQ-Eau version 2.

Néanmoins on notera que dans :

- l'Hérault à Saint-Bauzille-de-Putois (H8) en octobre,
- l'Hérault à Puechabon (H11) en mars,
- l'Hérault à Saint-Jean-de-Fos en mars,
- la Buèges à Saint-Jean-de-Buèges en mai,

le paramètre pH est élevé.


Dans l'Hérault, aucune prolifération de macrophytes aquatiques n'a été observée lors de ces campagnes. La sursaturation et la valeur élevée de pH observées semblent résulter de l'activité photosynthétique du périphyton (présence moyenne à abondante) qui a été observée par les opérateurs au moment des mesures.

La Buèges présente des développements d'algues importants en mai et un périphyton abondant. L'activité photosynthétique de ces végétaux est vraisemblablement à l'origine de la perturbation de la qualité de l'eau relevée.

En 2015, les mesures réalisées fin juillet montraient des sursaturations nettement plus élevées qu'en 2016, notamment aux stations situées en amont des gorges (de Cazilhac à Saint-Bauzille-de-Putois). En août 2011, des valeurs estivales encore plus pénalisantes avaient été observées dans l'Hérault entre Laroque et Saint-Bauzille-de-Putois, aux stations H6, H7 et H8.

Les autres mesures réalisées en 2015 et en 2011 sont globalement semblables aux résultats de 2016.

Il est toutefois difficile de conclure sur l'évolution de la qualité du cours d'eau car la date des campagnes et les conditions hydrologiques influencent les résultats (début août 2016, fin juillet 2015 et fin août en 2011). De plus, le protocole de mesure n'est pas spécifiquement adapté à la caractérisation de l'eutrophisation et l'heure de la mesure est très importante puisque l'activité photosynthétique est directement liée au cycle nycthéméral comme en témoigne le graphique suivant.

5.2.4. Teneurs en pesticides dans l'eau

Les analyses de pesticides ont concerné les stations suivantes :

- l'Hérault à Pouzols (H15),
- l'Hérault à Saint-Pons-de-Mauchiens (H18),
- la Boyne à Cazouls-d'Hérault (Bo1),
- la Thongue à Servian (Th1),
- la Lergue en aval de Lodève (Ler2),
- la Peyne à Roujan (P1).

Notons qu'en 2015 le programme était légèrement différent puisqu'une analyse de pesticides a été réalisée dans l'Hérault à Causse-de-la-Selle (H10). Au regard de l'absence de pesticides à cette station lors des 4 campagnes réalisées en 2015 et des faibles risques de contamination (peu de sources potentielles), l'effort d'analyse en H10 a été reporté en 2016 sur la Peyne à Roujan (P1).

Par ailleurs, le programme d'analyses de 2016 ne prévoyait que deux campagnes de prélèvements (mars et mai 2016) pour la Boyne (Bo1) et la Lergue (Ler2). La Thongue étant à sec en août et en octobre, l'analyse de pesticides n'a pas été réalisée lors de ces 2 campagnes.

Les résultats (molécules détectées) sont présentés dans les tableaux suivants.

Tableau 18 - Analyses des pesticides sur eau brute en 2016 – couleurs du SEQ-Eau version 2

ANALYSES DES PESTICIDES SUR EAU BRUTE EN μ g/L - Couleurs : SEQ-EAU V2 Seulent figurent ici les valeurs supérieures au seuil de quantification du laboratoire

Cours d'eau		Hé	rault			Héi	ault			Pe	yne			Tho	ngue		Во	yne	Ler	gue
Station	0618	:2900-HERA	ULT A POU	ZOLS	061836	685-HERAUL MAUC	.T AST-PO HIENS	NS-DE-	06	183750-PEY	NE A ROU.	JAN	061	83840-TON	GUE A SER	VIAN	CAZO	-BOYNE A DULS- AULT 2		-LERGUE .ODEVE
code	H15	H15	H15	H15	H18	H18	H18	H18	P1	P1	P1	P1	Th1	Th1	Th1	Th1	Bo1	Bo1	Ler2	Ler2
campagne	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	1	2
date	22/3/16	24/5/16	2/8/16	10/10/16	22/3/16	24/5/16	2/8/16	11/10/16	22/3/16	24/5/16	2/8/16	11/10/16	/16 22/3/16 24/5/16 2/8/16 11/1				22/3/16	24/5/16	22/3/16	24/5/16
heure	10:30	10:30	10:00	16:00	14:15	9:20	11:30	10:20	12:00	12:00	13:30	11:45					11:10	11:00	09:45:00	9:30
24D μg/L						0,006				0,005										0,005
AMPA μg/L			0,109	0,059			0,112	0,145	0,185	1,12			1,7 0,05							
Antquinone μg/L				31																
Atrazine µg/L											0,017			0,011						
Benalaxyl µg/L						0,052				0,021										
Boscalid μg/L										0,019				0,006						
Clethodim µg/L										0,005										
De DIA μg/L																	0,18	0,145		
Dés-terbum µg/L										0,005								0,007		0,006
DIA μg/L																	0,045	0,044		
Difénocona μg/L										0,006				0,017						
Diméthomor μg/L										0,07										
Diuron μg/L										0,006										
Fipronil µg/L										0,007			0,008							
Flazasulfu µg/L									0,021											
Glyphosate μg/L									0,134	0,648			0,367							
HydroxyTBA µg/L										0,03		0,022	0,032				0,02			
Imidaclopr µg/L										0,006										
Iprovalica μg/L														0,011						
Métalaxyl μg/L										0,066				0,007				0,007		
Myclobutan μg/L										0,006										
Oxyflfene µg/L										0,012										
Penconazol µg/L										0,017			0.043							
Piper.buto µg/L		-		+					0.007	0.044			0,013							
Propyzamid µg/L									0,007	0,041	0.000	0.044	0,013	0.000			0.00	0.004		
Simazine µg/L				+						0,021	0,006	0,014	0,038	0,006			0,03	0,031		
Simazine-h µg/L										0,01	0,015			0,011						
Spiroxamin µg/L		0.04				0.006				0,027				0.046						
Tébuco. µg/L		0,01		+		0,006				0,125				0,016			0.024	0.022		
terbutdes µg/L				-						0,012							0,024	0,023		
Terbuthyl. µg/L				_		0,006				0,007 0,051				0,005				0,006		
Tetraconaz µg/L				+		0,000				0,051				ບ,ບບວ						
Thiaclopri µg/L				-		-		-				+	-							
Triadiméno μg/L										0,006										

Tableau 19 - Analyses des pesticides sur eau brute en 2016 – couleurs définies selon les valeurs disponibles dans l'arrêté du 25/01/2010

ANALYSES DES PESTICIDES SUR EAU BRUTE EN µg/L - Couleurs : valeurs de NQE disponibles dans l'arrêté du 25/07/2015 modifiant l'arrêté du 25/01/2010. Seulent figurent ici les valeurs supérieures au seuil de quantification du laboratoire

Cours d'eau		Hér	ault			Héi	rault			Pe	yne			Tho	ngue		Во	yne	Ler	gue	
Station	0618	:2900-HERA	ULT A POU	ZOLS	061836	885-HERAUL MAUC	_T A ST-PO HIENS	NS-DE-	06	183750-PEY	NE A ROUJ	AN	061	83840-TON	GUE A SER'	VIAN		BOYNE A DULS- AULT 2		-LERGUE ODEVE	
code	H15	H15	H15	H15	H18	H18	H18	H18	P1	P1	P1	P1	Th1	Th1	Th1	Th1	Bo1	Bo1	Ler2	Ler2	
campagne	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	1	2	NQE en
date	22/3/16	24/5/16	2/8/16	10/10/16	22/3/16	24/5/16	2/8/16	11/10/16	22/3/16	24/5/16	2/8/16	11/10/16	22/3/16	24/5/16	2/8/16	11/10/16	22/3/16	24/5/16	22/3/16	24/5/16	moyenne annuelle - Eau douces de surface (µg/l)
heure	10:30	10:30	10:00	16:00	14:15	9:20	11:30	10:20	12:00	12:00	13:30	11:45	14:15	14:30	a sec	a sec	11:10	11:00	09:45:00	9:30	
24D μg/L						0,006				0,005										0,005	2,2
AMPA μg/L			0,109	0,059			0,112	0,145	0,185	1,12			1,7	0,05							452
Antquinone μg/L				31																	
Atrazine µg/L											0,017			0,011							
Benalaxyl µg/L						0,052				0,021											
Boscalid μg/L										0,019				0,006							11,6*
Clethodim µg/L										0,005											
DeDIA μg/L																	0,18	0,145			
Dés-terbum µg/L										0,005								0,007		0,006	
DIA μg/L																	0,045	0,044			
Difénocona μg/L										0,006				0,017							
Diméthomor µg/L										0,07											
Diuron μg/L										0,006											
Fipronil µg/L										0,007			0,008								
Flazasulfu µg/L									0,021												
Glyphosate μg/L									0,134	0,648			0,367								28
HydroxyTBA µg/L										0,03		0,022	0,032				0,02				
Imidaclopr µg/L										0,006											0,2*
Iprovalica μg/L														0,011							
Métalaxyl μg/L										0,066				0,007				0,007			
Myclobutan μg/L										0,006											
Oxyflfene µg/L										0,012											
Penconazol µg/L										0,017											
Piper.buto µg/L													0,013								
Propyzamid µg/L									0,007	0,041			0,013								
Simazine µg/L										0,021	0,006	0,014	0,038	0,006			0,03	0,031			
Simazine-h µg/L										0,01	0,015			0,011							
Spiroxamin µg/L										0,027											
Tébuco. μg/L		0,01				0,006				0,125				0,016							1*
terbutdes µg/L										0,012							0,024	0,023			
Terbuthyl. µg/L										0,007							-,-	0,006			
Tetraconaz µg/L						0,006				0,051				0,005				,,			
Thiaclopri µg/L										0,008											
Triadiméno μg/L										0.006											

^{*}Valeurs de NQE qui ne s'appliquent pas au bassin Rhône-Méditerranée

Les concentrations ont été comparées à la NQE-MA, c'est-à-dire à la norme de qualité environnementale exprimée en valeur moyenne annuelle.

Etat chimique vis-à-vis de la valeur du paramètre :

Parmi plus de 500 molécules recherchées, 34 ont été détectées.

Tableau 20 - Caractéristiques des molécules détectées lors du suivi 2016

Molécule	statut	Туре	Famille
24D μg/L	A	herbicide	Acide Phénoxy
AMPA μg/L	Métabolite du Glyphosate	herbicide	Acide Amino Phosphoriques
Antquinone μg/L	A	répulsif oiseaux	Hap
Atrazine μg/L	NA (2003)	herbicide	Triazine
Benalaxyl µg/L	Α	fongicide	Phénylamides.
Boscalid μg/L	Α	fongicide	Carboxamides
Clethodim µg/L	Α	herbicide	Cyclohexanes Diones.
DeDIA μg/L	Métabolite de l'Atrazine	herbicide	Triazine
Dés-terbum μg/L	Métabolite du terbuméton	herbicide	Triazine
DIA μg/L	Métabolite de l'Atrazine	herbicide	Triazine
Difénocona μg/L	А	fongicide	Triazole
Diméthomor μg/L	Α	fongicide	CAA
Diuron μg/L	NA (2010)	herbicide	Urée Substituée
Fipronil µg/L	Α	insecticide	Phénylpyrazoles
Flazasulfu μg/L	Α	herbicide	Sulfonylurées
Glyphosate μg/L	А	herbicide	Acide Amino Phosphoriques
HydroxyTBA μg/L	Métabolite du terbuthylazine	herbicide	Triazines
lmidaclopr μg/L	A ¹⁵	insecticide	Néonicotinoïdes
lprovalica μg/L	Α	fongicide	Carbamates
Métalaxyl μg/L	NA (2003)	fongicide	Acylalanines
Myclobutan μg/L	А	fongicide	Triazole
Oxyflfene µg/L	А	herbicide	Diphényl-Ether
Penconazol µg/L	А	fongicide	Triazole
Piper.buto μg/L	А	insecticide	
Propyzamid μg/L	А	herbicide	Amide
Simazine μg/L	NA (2003)	herbicide	Triazine
Simazine-h μg/L	Métabolite du simazine	herbicide	Triazine
Spiroxamin µg/L	A	fongicide	Amide
Tébuco. μg/L	А	fongicide	Triazole
terbutdes µg/L	Métabolite du terbuthylazine	herbicide	Triazines
Terbuthyl. μg/L	NA (2004)	herbicide	Triazines
Tetraconaz μg/L	А	fongicide	Triazole
Thiaclopri μg/L	Α	insecticide	Néonicotinoïdes
Triadiméno μg/L	Α	fongicide	Triazole

A : substance autorisée / NA : substance non autorisée avec date d'interdiction.

Ces analyses montrent que **l'Hérault ne présente pas de pollution particulière par les pesticides** à Pouzols (15) et à Saint-Pons-de-Mauchiens (H18). Sur l'ensemble des campagnes réalisées en 2016, seulement 3 molécules différentes ont été détectées à Pouzols et 5 à Saint-Pons-de-Mauchiens. Les concentrations sont peu élevées. Ce sont principalement des herbicides et des fongicides qui résultent de l'activité agricole essentiellement viticole concentrée dans la moitié aval du bassin versant de l'Hérault.

La Peyne, la Boyne et la Thongue drainent des bassins versants où l'agriculture est développée.

La Peyne présente une très forte contamination par les pesticides, notamment en mai. Le printemps est une période où de nombreux traitements phytosanitaires sont appliqués sur les cultures. Au total, 27 molécules différentes ont été détectées en mai 2016 et 30 au total sur l'ensemble des campagnes. Ce sont principalement des herbicides et des fongicides fréquemment utilisés en viticulture. Lors de la campagne de mai, les concentrations en glyphosate et en simazine sont élevées et correspondent à la classe de qualité « moyenne » du SEQ-Eau version 2. Parmi les molécules détectées en 2016, on note la présence d'atrazine, de diuron, de métalaxyl, de simazine et de terbuthylazine dont l'usage est interdit en France depuis plus de 10 ans.

¹⁵ Interdiction temporaire en 2013 dans l'attente d'une législation (atteintes aux abeilles)

Les analyses ont été réalisées dans la Boyne en mars et mai, au moment où les traitements phytosanitaires sont les plus importants. Elles montrent que la pollution par les pesticides dans la Boyne atteint des valeurs « moyennes » selon le SEQ-Eau, notamment pour la Simazine. 8 molécules différentes ont été détectées, parmi ces molécules figurent la simazine et la terbuthylazine (et ses métabolites) dont l'usage est actuellement interdit.

Un grand nombre de molécules ont été détectées dans la Thongue en mars et en mai 2016. La simazine est présente à une concentration relativement élevée correspondant à une qualité d'eau « moyenne » selon le SEQ-Eau version2. La simazine, l'atrazine et le métalaxyl sont des substances dont l'usage est actuellement interdit en France.

Les échantillons d'eau prélevés dans la Lergue (Le2) en mars et en mai 2016 ne présentent pas de signe de pollution par les pesticides. Seules 2 molécules (herbicides) ont été détectées à des concentrations faibles.

En 2015, les analyses réalisées dans l'Hérault, la Thongue, la Boyne et la Lergue présentaient des résultats similaires. Comme en 2016, le suivi ne montrait pas de contamination de l'Hérault et de la Lergue par les pesticides mais, à l'inverse, une présence significative dans la Thongue et la Boyne (pas d'analyses dans la Peyne lors des suivis précédents).

En 2015, la concentration en aminotriazole relevée dans la Thongue en mars était particulièrement élevée et dépassait la NQE MA (norme de qualité environnementale exprimée en moyenne annuelle) qui fixe le seuil de mauvais état dans l'arrêté du 27/07/2015 (DCE). Cette molécule n'a pas été détectée en 2016. De même, certaines substances interdites qui étaient présentes dans l'eau de la Thongue en 2011 n'ont pas été détectées en 2015 et en 2016 (formaldéhyde, HCH Beta, hydroxyterbuthylazine, DCPMU, diuron). Les actions de sensibilisation des agriculteurs et les contrôles semblent avoir eu un effet positif en limitant l'usage de ces molécules interdites.

5.2.5. Teneur en micropolluants sur bryophytes

Des dosages de métaux lourds (arsenic, cadmium, chrome, cuivre, mercure, nickel, plomb et zinc) ont été réalisés dans les bryophytes de :

- l'Hérault à Laroque (H6), Puechabon (H11) et Saint-Pons-de-Mauchiens (H18),
- la Lergue à l'aval de Lodève (Ler2),
- la Vis à Saint-Laurent-le-Minier (Vis3),
- le Salagou au Bosc (Slg1).

Les bryophytes, qui se développent sur des supports fixes sont capables d'absorber et de bio-accumuler les micropolluants minéraux présents dans l'eau. La fixation de ces éléments par des phénomènes d'échanges cationiques présente des différences importantes selon les éléments. En effet, les cations plus chargés, tels que Pb²⁺ ou Zn²⁺, sont plus facilement « absorbés » que les éléments non chargés comme l'arsenic. L'absorption rapide par les bryophytes et les phénomènes de relargage lents permettent d'estimer la fraction polluante moyenne présente dans l'eau.

Tableau 21 - Résultats des analyses de métaux sur bryophytes en 2016

ANALYSES DES METAUX SUR LES BRYOPHYTES en mg/kg Prélèvements et mesures in situ: AQUASCOP; analyses: CARSO

	Н6	H11	H18	LER2	VIS3	SLG1
Dates des campagnes	01/08/16	01/08/16	02/08/16	02/08/16	01/08/16	02/08/16
Arsenic (mg/kg MS)	7,53	9,91	6,47	2,05	2,15	26,48
Cadmium (mg/kg MS)	1,5	0,41	1,05	<lq 0,05<="" td=""><td>3</td><td>0,10</td></lq>	3	0,10
Chrome (mg/kg MS)	3,34	1,91	2,05	1,23	2,49	1,16
Cuivre (mg/kg MS)	10,7	4,9	22,3	13,5	4,88	8,63
Mercure (mg/kg MS)	0,09	<lq 0,05<="" td=""><td>0,06</td><td><lq 0,05<="" td=""><td>0,06</td><td>0,09</td></lq></td></lq>	0,06	<lq 0,05<="" td=""><td>0,06</td><td>0,09</td></lq>	0,06	0,09
Nickel (mg/kg MS)	7,2	4,4	9,1	3,7	4,35	4,22
Plomb (mg/kg MS)	261	36	47	13	205	2,13
Zinc (mg/kg MS)	427,6	158,6	201,7	39,7	793,5	21,3
très bonne						

Classes de couleur : bonne
classes de qualité par altération selon
le SEQ-Eau version 2 médicore
mauvaise

Les bryophytes de l'Hérault présentent une contamination importante par l'arsenic, le plomb et le zinc.

A Laroque (H6), la concentration en plomb atteint le seuil de qualité « médiocre » du SEQ-Eau version 2 et la teneur en zinc correspond à la classe de qualité « moyenne ».

La teneur en arsenic augmente nettement entre Laroque et Puechabon (+ 2,38 mg/kg MS), passant de la classe de qualité « bonne » à la classe « moyenne » définie par le SEQ-Eau version 2. Ensuite, la concentration diminue vers l'aval à Saint-Pons-de-Mauchiens.

Les autres métaux analysés suivent la tendance inverse puisque les concentrations diminuent entre H6 et H11 puis augmentent entre Puechabon et Saint-Pons-de-Mauchiens (H18).

Le fond géochimique naturel de l'Hérault dans sa partie amont (massif cristallin) favorise les teneurs élevées en métaux. Toutefois, la pollution de l'Hérault par les éléments tels que le plomb et le zinc résulte vraisemblablement des apports de la Vis, contaminée par l'ancien site minier des Malines. Les variations de concentrations vers l'aval peuvent être liées aux conditions environnementales favorisant ou non la fixation des métaux par les bryophytes.

Dans la Vis à Saint-Laurent-le-Minier), la contamination par le cadmium, le plomb et le zinc est importante. La concentration en plomb dans les bryophytes correspond à la classe de qualité « médiocre » du SEQ-Eau, les teneurs en zinc et en cadmium atteignent la classe de qualité « moyenne ». Le dosage des autres métaux lourds correspond à une qualité d'eau satisfaisante.

L'activité minière installée depuis l'antiquité sur la commune de Saint-Laurent-le-Minier (mine des Malines) s'est totalement arrêtée il y a plus de 20 ans. Néanmoins, de nombreuses études ont mis en évidence une pollution importante des sols par les métaux lourds, notamment le plomb, l'arsenic, l'antimoine, le cadmium et le zinc. Le lessivage de ces terres polluées est à l'origine de la contamination de la Vis et participe à celle de l'Hérault (les concentrations en cadmium et en zinc sont supérieures à celles observées dans l'Hérault à Laroque – H6).

Les analyses réalisées dans la Lergue (Ler2) ne montrent pas de valeur élevée en métaux. La contamination des bryophytes par les métaux lourds est donc faible malgré le fond géochimique du bassin lodévois particulièrement riche en arsenic (ruffe rouge).

Les bryophytes prélevées dans le Salagou au Bosc (SIg1) contiennent de l'arsenic en concentration significative puisque la valeur correspond à la classe de qualité « moyenne » du SEQ-Eau version 2. Les autres métaux analysés ne montrent pas de signe de pollution particulière. La nature géologique du bassin versant drainé par le Salagou (ruffes rouges¹⁶) est vraisemblablement à l'origine de cette contamination naturelle par l'arsenic.

Lors des précédents suivis, la pollution de la Vis (et de l'Hérault) par les métaux lourds était déjà établie, comme en témoigne le tableau suivant :

Tableau 22 : résultats des analyses de métaux sur bryophytes dans la Vis depuis 2007.

	VIS3	VIS3	VIS3	VIS3
Dates des campagnes	01/08/2007	08/08/2011	20/07/15	01/08/16
Arsenic (mg/kg MS)	10,6	5	10,17	2,15
Cadmium (mg/kg MS)	7,9	4,6	5	3
Chrome (mg/kg MS)	6	4	4,75	2,49
Cuivre (mg/kg MS)	14	7	11,33	4,88
Mercure (mg/kg MS)	<0,15	0,06	0,14	0,06
Nickel (mg/kg MS)	7	7	6,63	4,35
Plomb (mg/kg MS)	634	330	421	205
Zinc (mg/kg MS)	1848	1300	1223,6	793,5

Néanmoins, pour les paramètres incriminés, une tendance à la réduction des teneurs s'observe depuis 2007 qu'il conviendra de confirmer en prolongeant le suivi.

¹⁶ roches formées de sédiments argileux fins (pélites) et d'oxydes de fer datant du Permien (ère primaire)

5.2.6. Données complémentaires

Des données ont permis de compléter les analyses initiées en 2016 par le Conseil Départemental 34. Elles émanent des suivis réalisés par :

- l'Agence de l'Eau Rhône-Méditerranée et Corse dans le cadre des réseaux de surveillance DCE,
- le Conseil Départemental du Gard,
- l'ARS dans le cadre du contrôle de la qualité des eaux de baignade.

5.2.6.1. Origine des données complémentaires

Les stations de suivi du réseau DCE

L'Agence de l'Eau Rhône-Méditerranée et Corse suit l'évolution de la qualité de l'Hérault et de certains de ses affluents depuis plusieurs années dans le cadre de la démarche DCE à travers les réseaux de Référence, Contrôle Opérationnel et Contrôle de Surveillance.

Les stations ayant fait l'objet d'analyses en 2016 dans le cadre de ces réseaux sont présentées dans le tableau suivant. Les résultats ont été intégrés aux synthèses cartographiques présentés au paragraphe 6.1.

Les résultats des analyses de pesticides (non cartographiés) sont présentés dans l'annexe 8.5.3.

Code station	Station (libellé Agence)	Code du suivi départemental	Localisation	Suivi
06181910	HERAULT A VALLERAUGUE	HER1	Amont Valleraugue	RCS
06181210	GLEPPE A AVEZE		Amont confluence avec Arre	RCS
06181906	ARRE A SAINT-ANDRE-DE- MARJENCOULES			RCS
06181945	VIS A BLANDAS	Vis0	Amont Navacelles	RCO REF
06195330	CRENZE A ST-LAURENT-LE-MINIER			RCO
06182050	HERAULT A BRISSAC 1	H9	Hérault entrée des gorges St Etienne d'Issensac	RCS- RCO
06182062	BUEGES A PEGAIROLLES-DE- BUEGES	Bu0	Buèges à Pégairolles de Buèges	RCS
06182045	LAMALOU A LE-ROUET	Lam0	Lamalou à sa source	REF
06183000	LERGUE A BRIGNAC	Ler3	Amont confluence avec Hérault	RCS-RCO
06183500	HERAULT A ASPIRAN	H17	Hérault aval Canet	RCS
06183850	THONGUE A ST-THIBERY	Th2	Thongue fermeture du BV	RCS- RCO
06184000	HERAULT A FLORENSAC	H22	Hérault aval Florensac	RCS- RCO

Tableau 23 - Stations suivies dans le cadre des réseaux DCE en 2016

Notons qu'il n'y a pas de donnée disponible en 2016 pour les stations 06182300 (HERAULT A ST-JEAN-DE-FOS 2).

Les stations 06183800 (PEYNE A PEZENAS) et 06182460 (LERGUE A LODEVE 3) ne sont plus des éléments du contrôle opérationnel depuis 2015. Aucune donnée n'est disponible pour ces stations.

Le suivi du Conseil Départemental du Gard

Le Conseil Départemental du Gard effectue un suivi de la qualité des cours d'eau similaire à celui que nous présentons dans ce rapport. Certaines de ses stations appartiennent au bassin versant de l'Hérault. Les résultats ont été intégrés aux synthèses cartographiques présentés au paragraphe 6.1.

Les résultats des analyses de pesticides (non cartographiés) sont présentés dans l'annexe 8.5.3.

Tableau 24 - Stations suivies par le département du Gard en 2016 (partie Gardoise du bassin de l'Hérault)

			**	,
Code station	Station (libellé Agence)	Code du suivi départemental	Localisation	Suivi
06181925	HERAULT A VALLERAUGUE 1	HER 2	Aval Valleraugue	CD30
06181930	HERAULT A ST ANDRE-DE- MAJENCOULES	HER 3	Amont confluence avec Arre	CD30
06181901	ARRE A ARRIGAS	ARRE 1	Amont Arre	CD30
06181902	ARRE A ARRE	ARRE 2	Aval Arre	CD30
06181850	GLEPE A POMMIERS	GLE1	Amont Avèze	CD30
06181904	ARRE A AVEZE	ARRE 3	Aval Avèze, amont du Vigan	CD30
06181550	ARRE A LE-VIGAN 3	ARRE 5	Arre dans la traversée du Vigan	CD30
06181500	ARRE A LE-VIGAN 2	ARRE 4	Arre en aval du Vigan	CD30
06300048	HERAULT A SUMENE	HER4	Aval de la confluence avec l'Arre (Pont d'Hérault)	CD30
06181800	RIEUTORD A SUMENE	RIE1	Amont des pertes	CD30

Le contrôle des eaux de baignade

Durant l'été 2016, l'ARS a réalisé un suivi de la qualité des eaux de baignade du bassin versant de l'Hérault. Les données relevées durant l'été nous ont été transmises par l'ARS pour 25 points suivis :

- 20 dans l'Hérault,
- 4 dans la Vis,
- 1 dans la Buèges.

La synthèse du suivi de la qualité des sites de baignade réalisé en 2015 et 2016 est présentée dans le Tableau 25.

Les résultats des analyses bactériologiques réalisées par l'ARS dans le département de l'Hérault figurent en annexe 8.5.8.

Tableau 25 - Synthèse du suivi des sites de baignade par l'ARS en 2015 et 2016

Commune	Baignade	Classement 2015	Classement 2016
Valleraugue	Hérault le Mouretou	Suffisante	Suffisante
Cazilhac	Hérault Les Forces	Bonne	Bonne
Laroque	Hérault les gorges	Insuffisante	Insuffisante
Laroque	Hérault le village	Suffisante	Bonne
Laroque	Hérault Tivoli	Suffisante	Bonne
Saint-Bauzille-de-Putois	Hérault le vieux moulin	Bonne	Bonne
Saint-Bauzille-de-Putois	Hérault plan d'eau du village	Bonne	Excellente
Brissac	Hérault Anglas	Bonne	Bonne
Brissac	Hérault St Etienne-d'Issensac	Excellente	Bonne
Saint-Guilhem-le-Désert	Hérault amont St Guilhem	Excellente	Excellente
Saint-Guilhem-le-Désert	Hérault moulin de Brunan	Excellente	Excellente
Saint-Jean-de-Fos	Hérault le Labadou	Excellente	Excellente
Aniane	Hérault au pont du Diable	Bonne	Bonne
Aniane	Hérault Saint-Pierre	Excellente	Excellente
Gignac	Hérault plage de la Meuse	Excellente	Excellente
Canet	Hérault-baignade du pont	Bonne	Excellente
Gorniès	Vis aire aménagée	Excellente	Excellente
Saint-Maurice-de-Navacelles	Vis Navacelles la cascade	Bonne	Excellente
Saint-Laurent-le-Minier	Vis Cascade	Suffisante	Bonne
Cazilhac	Vis les Cascades	Bonne	Bonne
Saint-Jean-de-Buèges	La Buèges le stade	Excellente	Excellente
Vaihlan	Plan d'eau des Olivettes (Peyne)	Excellente	Excellente
Avèze	Arre à Fabrègue	Bonne	Bonne
Avèze	Arre le pont vieux	Insuffisante	Suffisante

En 2016, **l'Hérault** présentait une qualité globalement compatible avec l'activité de baignade, notamment d'un point de vue bactériologique. Toutefois des perturbations sont à signaler

- à Valleraugue, la baignade du Mouretou présente une contamination bactériologie régulièrement élevée, vraisemblablement liée à la présence d'habitations isolées et au camping situé à proximité du site de baignade.
- entre Ganges et Saint-Bauzille-de-Putois la qualité bactériologique est moyenne. Des valeurs élevées en germes bactériens ont été relevés mettant en évidence des pollutions ponctuelles au droit des zones urbanisées (en période de pluie notamment). En août, il a été relevé des concentrations élevées en *E. Coli* à Laroque (notamment 647 UFC/100ml le 1/08/2016 et 234 UFC/100ml le 16/08/2016).
- à Brissac (Saint-Etienne-d'Issensac), le seuil ANSES en streptocoques fécaux (728/100ml) a été dépassé lors du prélèvement du 16 août 2016, entraînant une interdiction de baignade temporaire. La source de la contamination n'a pas pu être déterminée. Les installations d'assainissement autonome en amont de la baignade sont suspectées par les services de l'ARS.
- A Saint-André-de-Sangonis, le suivi complémentaire de l'ARS (hors sites de baignades), effectué au seuil du mas d'Avellan, montre une contamination régulière par *E.Coli* (179 UFC/100ml le 19/07/2017, 683 UFC/100ml le 02/08/2017 et 748 UFC/100ml le 17/08/2017).

La qualité de **la Vis** est globalement bonne, excepté à Saint-Laurent-le-Minier (amont Vis3) et Cazilhac (l'ARS a relevé 1752 E. Coli/100ml 18/07/2016).

La Buèges n'est contrôlée qu'en un point à Saint-Jean-de-Buèges (en amont de la station Bu1) et présente en 2016 une qualité excellente pour la baignade.

La qualité de l'Arre est insuffisante au droit d'Avèze et plus favorable en amont du Vigan (La Fabrègue).

L'ARS signale plusieurs sites où la baignade est interdite en 2015 et en 2016 :

- ponctuellement dans l'Hérault à Bélarga (en raison de travaux),
- de façon permanente dans l'Hérault du hameau du Prat sur la commune de Sumène jusqu'à la limite communale aval de la commune de la commune de Saint-Julien-la-Nef, et l'Arre sur l'ensemble de la commune du Vigan.

La synthèse des résultats du suivi des points de baignade montre que la situation 2016 était légèrement plus favorable que celle de 2015, à Laroque et Saint-Laurent-le-Minier notamment.

5.2.6.2. Informations sur l'Hérault apportées par ces données complémentaires

Ces données complémentaires apportent des précisions sur la qualité de l'Hérault.

A l'amont de **Valleraugue**, la qualité physico-chimique de l'Hérault est excellente mais des pollutions bactériologiques sont régulièrement observées en été. Vers l'aval, elle demeure très bonne mais des pollutions par des micro-organismes sont également observées :

- ponctuellement (en été et en automne notamment) à l'aval de Valleraugue et Saint-André-de-Marjencoules,
- de façon chronique à l'aval de Pont-d'Hérault.

La température de l'eau est restée fraîche en 2016 (maximum de 21,6°C relevés à Pont-d'Hérault le 30/08/2016). Les valeurs mesurées sont nettement moins élevée que celles observée en été 2015 à Valleraugue et Pont-d'Hérault (> 30°C en juin 2015).

A **Pont-d'Hérault** (Sumène), la pollution par les pesticides est plutôt faible. Le glyphosate (herbicide) et son produit de dégradation, l'AMPA, sont détectés à de faibles concentrations. On note également la présence de phosphate de tributyle (anti-mousse).

A Brissac, les analyses ont mis en évidence la présence de plusieurs pesticides en été et en automne.

Comme en 2015, les analyses révèlent la présence de métaux. Des métaux sont également présents mais les concentrations demeurent peu élevées. Les autres paramètres analysés indiquent une très bonne qualité de l'eau.

La qualité physico-chimique de **l'Hérault à Aspiran** est très bonne au regard des paramètres analysés (sans bactériologie et micropolluant).

A Florensac, la qualité de l'eau est globalement bonne (pas de résultats bactériologique ni de micropolluant). On note toutefois une dégradation ponctuelle de la qualité de l'eau liée à une augmentation de la concentration en matières phosphorées en octobre 2016.

5.2.6.3. Informations sur les affluents de l'Hérault apportées par ces données complémentaires

L'Arre est un affluent de l'Hérault qui rejoint le fleuve à Pont-d'Hérault.

C'est un cours d'eau globalement de bonne qualité. Cependant, les analyses révèlent des pollutions régulières par les micro-organismes à l'aval d'Avèze, d'Arre (maximum de 2505 *E. Coli/*100ml le 29/08/16 à la station Arre2) et plus particulièrement du Vigan (2930 *E. Coli/*100ml le 13/06/16). Ces apports peuvent participer à la bactériologie élevée observée dans l'Hérault à Pont-d'Hérault.

Les analyses ont révélé la présence de pesticides et notamment de l'AMPA (sous-produit de dégradation du glyphosate) de mars à septembre au Vigan. A Saint-André-de-Marjencoules, les substances fréquemment détectées sont l'AMPA, le glyphosate ainsi que le naphtalène. Les concentrations en pesticides dans l'Arre demeurent toutefois peu élevées.

Les métaux sont présents dans l'Arre, notamment du plomb qui atteint des valeurs pénalisantes. On note qu'une augmentation significative est observée entre Arre et Le Vigan pour l'arsenic, le chrome, le nickel, le plomb et le zinc.

La Gleppe, qui rejoint l'Arre à Avèze, présente une minéralisation plutôt élevée mais pas de signe de pollution domestique chronique. Seule une valeur mesurée en juin 2016 indique une contamination bactériologique.

Cependant, des métaux, notamment l'arsenic, le cadmium, le plomb et le zinc, sont présents dans le cours d'eau.

De plus, les analyses de pesticides indiquent une contamination, notamment par le naphtalène, un hydrocarbure aromatique polycyclique (HAP) utilisé comme insecticide et dans de nombreux procédés industriels (agents plastifiants, peintures, résines...).

Le Rieutord présente une très bonne qualité d'eau à Sumène. Il possède la particularité de disparaître à l'aval de Sumène dans la perte du Bourrut. L'écoulement hyporhéique se poursuit jusqu'à Ganges où il rejoint l'Hérault. Il est donc difficile d'estimer l'influence de ces apports sur la qualité du Fleuve.

Les analyses réalisées dans la Vis à Blandas indiquent une excellente qualité d'eau et aucun signe de pollution.

Dans la Crenze, à Saint-Laurent-le-Minier, les analyses de pesticides révèlent la présence de nombreuses molécules mais à des concentrations faibles.

Les analyses de métaux de la Crenze indiquent une forte pollution par le cadmium et le plomb, vraisemblablement liée au passé minier du secteur. Ces apports participent certainement à la pollution importante relevée à la station VIS3.

En dehors de ces polluants, l'eau de la Crenze est globalement de bonne qualité. Seule la conductivité élevée témoigne des dysfonctionnements du système d'assainissement collectif du village.

La Buèges à Pégairolles-en-Buèges ne présente pas de pollution particulière.

Le Lamalou au Rouet présente une très bonne qualité d'eau, mais on remarque toutefois que des désoxygénations significatives ont lieu en période estivale.

La **Lergue** à Brignac présente une bonne qualité d'eau excepté en septembre 2016 où la charge en nutriments est élevée.

La Thongue à Saint-Thibéry présente une contamination importante par les pesticides puisqu'un grand nombre de molécules est détecté au printemps et en automne notamment. Ces résultats indiquent que la pollution par les pesticides mise en évidence à Servian persiste dans le cours d'eau jusqu'à sa confluence avec l'Hérault.

La conductivité mesurée dans le cours d'eau est très élevée (maximum de 1 605 µS/cm relevés à Saint-Thibéry le 20/07/2016). On note des pollutions par les matières organiques et le phosphore qui semblent liées à des apports d'eaux usées. L'oxygénation de l'eau semble instable (suroxygénations et désoxygénations) et témoigne de l'eutrophisation du cours d'eau dans ce secteur.

L'évolution de la qualité chimique de l'eau (depuis 2007) caractérisée dans le cadre de ces réseaux de surveillance est synthétisée dans le tableau suivant (Tableau 26). Il regroupe les stations du bassin versant situées dans l'Hérault ainsi que quelques points de mesure situés dans le Gard (en dehors de notre secteur d'étude). Ces informations sont issues des fiches d'état des eaux disponibles sur le site de l'Agence de l'Eau RM et C: http://sierm.eaurmc.fr.

Le mauvais état chimique a été déterminé dans l'Hérault à Brissac (2008 et 2009) et à Aspiran (2008 à 2010) en raison de la présence d'un micropolluant : le tributylétain-cation.

Dans la Thongue à Saint-Thibéry, le mauvais état (de 2007 à 2012) est également lié à la présence de micropolluants: le diuron (pesticide) de 2007 à 2009, puis le benzo(ghi)perilène+Indenol(123-cd)pyrène de 2010 à 2012.

La qualité de ces stations s'est améliorée puisqu'elles sont toutes en « bon état chimique » depuis 2013.

A l'inverse, la Lergue à Brignac est déclassée en 2015 en raison de la présence d'un pesticide le benzo(ghi)perylène.

Tableau 26 - Caractérisation de l'état chimique entre 2007 et 2014 de l'Hérault et ses affluents.

code station	Station (code et libellé)	Code du suivi départemental	Localisation	2007	2008	2009	2010	2011	2012	2013	2014	2015
06181910	HERAULT A VALLERAUGUE	RCS-CO (Gard)	Lieu-dit Randavel									
06182050	HERAULT A BRISSAC 1	H9 (RCS-CO)	Hérault St Etienne d'Issensac									
06182300	HERAULT A ST- JEAN-DE-FOS 2	H13 (CO)	Barrage de la Meuse									
06183500	HERAULT A ASPIRAN	H17 (RCS)	Hérault aval Canet									
06184000	HERAULT A FLORENSAC	H22 (RCS-CO)	Hérault aval Florensac									
06182045	LAMALOU A LE- ROUET	Lam0 (REF)	Lamalou à sa source:									
06184630	LAMALOU A BRISSAC	Lam1 (CO)	Lamalou aval									
06182062	BUEGES A PEGAIROLLES- DE-BUEGES	Bu0 (RCS)	Buèges à Pégairolles de Buèges									
06183000	LERGUE A BRIGNAC	Ler3 (RCS-CO)	Lergue confluence Hérault à Brignac:									
06183800	PEYNE A PEZENAS	P2 (CO)	Peyne fermeture du BV									
06183850	THONGUE A ST-THIBERY	Th2 (RCS-CO)	Thongue fermeture du BV									
06181945	VIS A BLANDAS	RCS (Gard)										
06181906	ARRE A SAINT- ANDRE-DE- MAJENCOULES	RCS (Gard)	Pont du Mas Courent									

Code couleur

Cour	Coulcui
	Etat chimique indéterminé
	Bon état chimique
	Mauvais état chimique

5.3. QUALITÉ BIOLOGIQUE IBGN (INVERTÉBRÉS BENTHIQUES)

Les fiches présentant le plan d'échantillonnage et la cartographie de chaque station sont présentées en annexe 8.6.

Les résultats synthétiques des déterminations sont présentés dans le tableau ci-dessous et sur la carte au chapitre 6 :

Tableau 27 - Résultats synthétiques des IBG-DCE dans l'Hérault et ses affluents en 2016

Cours d'eau	Station	Code	Code Agence	HER	Date de prélèvement	Valeur "IBGN"	Libellé GFI	Rang GFI	Variété taxonomique	Classe d'état
	Cazilhac	H5	de l'Eau 06181990	GM6/8	"IBGN" 19/07/2016	19	Philopotamidae	8	« IBGN »	Très bon
	Laroque	Н6	06182000	GM6/8	19/07/2016	17	Brachycentridae	8	35	Très bon
	Agonès	H7	06182020	GM6/8	21/07/2016	19	Brachycentridae	8	42	Très bon
	St- Bauzille- de-Putois	H8	06182030	GM6/8	19/07/2016	17	Brachycentridae Philopotamidae	8	33	Très bon
HERAULT	Causse-de- la-Selle 1	H10	06300051	GM6/8	21/07/2016	19	Philopotamidae	8	41	Très bon
	Puechabon	H11	06182120	GM6/8	18/08/2016	17	Philopotamidae	8	36	Très bon
	Gignac	H14	06182400	GM6/8	15/07/2016	18	Leptophlebiidae	8	7	Très bon
	Canet	H16	06183200	GM6/8	18/08/2016	13	Hydroptilidae	5	31	Bon
	St-Pons- de- Mauchiens	H18	06183685	GM6/8	13/07/2016	17	Leptophlebiidae	7	40	Très bon
	Pézenas 2	H20	06183820	GM6/8	12/07/2016	15	Leptophlebiidae	7	30	Très bon
	Agde 6	H23	06184200	GM6/8	12/07/2016	14	Leuctridae	7	28	Bon
VIS	St- Maurice- Navacelles	VIS1	06181950	GM19/8	18/07/2016	20	Perlidae	9	43	Très bon
VIS	Gorniès	VIS2	06181960	GM19/8	18/07/2016	17	Perlidae	9	31	Très bon
	St-Laurent- le-Minier	VIS3	06181980	GM19/8	18/07/2016	18	Brachycentridae	8	37	Très bon
RUISSEAU de BRISSAC	Brissac	FO1	06184640	TP6	13/07/2016	17	Brachycentridae	8	33	Très bon
BUEGES	St-Jean- de-Buèges 2	BU1	06184620	TP6	13/07/2016	17	Leuctridae	7	37	Très bon
LERGUE	Lodève 2	LER2	06300053	MP6	20/07/2016	17	Leuctridae	7	40	Très bon
SALAGOU	Le Bosc	SLG1	06182600	MP6	20/07/2016	17	Glossossomatidae Goeridae	7	39	Très bon
BOYNE	Cazouls- d'Hérault 2	BO1	06183900	PTP8	24/06/2016	19	Philopotamidae	8	43	Très bon
PEYNE	Roujan	P1	06183750	MP6	20/07/2016	16	Leuctridae	7	36	Très bon
THONGUE	Servian	TH1	06183840	MP6	24/06/2016	10	Baetidae	2	30	Moyen

5.3.1. L'Hérault

Le graphique ci-après (Figure 4) présente l'évolution des différentes métriques des IBG-DCE réalisés dans l'Hérault. Notons que les stations H14, H18, H20 et H23 ont été échantillonnées en utilisant le protocole expérimental d'échantillonnage des « macro-invertébrés » en cours d'eau profond. Les autres stations de l'Hérault ont été échantillonnées en appliquant la norme expérimentale XP T 90-333 de prélèvement des macro-invertébrés aquatiques en rivières peu profondes.

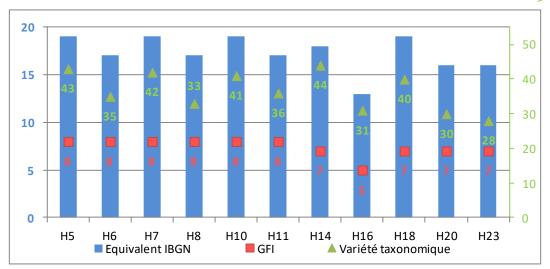


Figure 4 - Résultats synthétiques des IBG DCE de l'Hérault en 20162

Selon l'indice IBG, l'état biologique de l'Hérault est qualifié « très bon » hormis aux stations « Hérault à Canet » (H16) et « Hérault à Agde » (H23) pour lesquelles l'état est « bon ».

L'Hérault héberge une faune invertébrée diversifiée sur l'ensemble de son linéaire (28 à 44 taxons ont été recensés) traduisant ainsi la forte capacité du fleuve à accueillir une faune variée.

Hormis la station de l'Hérault à Canet (H16) qui est représenté par un taxon indicateur moyennement polluosensible : le trichoptère *Hydroptilidae* (Groupe Faunistique Indicateur¹⁷ 5 sur une échelle de polluosensibilité croissante allant de 1 à 9), tous les autres peuplements de l'Hérault sont représentés par des taxons indicateurs polluosensibles à très polluosensibles (GFI 7 et 8). Les trichoptères polluosensibles *Philopotamidae* et *Brachycentridae* (GFI 8) sont présents jusqu'à la station H11 (Hérault à Puechabon) à partir de laquelle des taxons du groupe 7 prennent le relais (éphéméroptère *Leptophlebiidae* et plécoptère *Leuctridae*). La présence de ces organismes indique une bonne qualité de l'eau.

Notons que les stations H5 (Cazilhac), H6 (Laroque) et H8 (Saint-Bauzille-de-Putois) hébergent quelques individus appartenant à la famille des *Perlidae* (plécoptère). Ce taxon, inféodé aux eaux fraîches, courantes et bien oxygénées est très sensible aux pollutions. Même si sa trop faible abondance ne permet pas de le prendre en compte comme taxon indicateur, sa présence témoigne néanmoins de la très bonne qualité de l'eau dans ce secteur.

Une analyse plus fine des peuplements permet de mettre en évidence des caractéristiques pouvant passer inaperçues au travers des résultats synthétiques.

 Les 4 premières stations amont de l'Hérault (H5, H6, H7 et H8) présentent des peuplements plutôt diversifiés (entre 33 et 43 taxons identifiés). La part des taxons EPT (Ephémèroptères, Plécoptères et Trichoptères, taxons généralement les plus polluosensibles) est relativement élevé (plus de 40 % des taxons) et traduit la bonne qualité de l'eau et des habitats dans ce secteur.

•

¹⁷ GFI : métrique constitutive de l'IBGN, le Groupe Faunistique Indicateur est révélateur de la sensibilité des invertébrés aquatiques visà-vis de la pollution (essentiellement organique).

- Dans le secteur des gorges H10 et H11 (Hérault à Causse-de-la-Selle et Hérault à Puechabon), les organismes polluosensibles se raréfient quelque peu (disparition des *Perlidae* et des *Brachycentridae*), ce qui pourrait traduire une légère baisse de la qualité de l'eau. Néanmoins, la part des ETP reste élevée (respectivement 38 et 40 % des taxons), le GFI est polluosensible (*Philopotamidae* 8/9) et le peuplement diversifié (41 et 36 taxons). La qualité des habitats aquatiques ainsi que la qualité de l'eau de ce secteur peuvent donc être considérées comme bonnes.
 - A noter la présence de l'écrevisse américaine *Orconectes limosus*, ainsi que celle du mollusque invasif *Corbicula sp.* Leur présence est sans doute à relier au barrage de Moulin Bertrand situé en amont de H10.
- En aval de Gignac (H14), l'Hérault devient large et profond. Malgré un faciès lentique dominant, la richesse faunistique reste élevée (44 taxons récoltés) et met en évidence une belle mosaïque d'habitats, notamment au niveau des berges. Les substrats meubles sont favorables aux taxons fouisseurs tels que les éphéméroptères Polymitarcyidae (Ephoron virgo), Caenidae (Caenis) et Leptophleebiidae (Choroterpes picteti). Ces derniers représentent le GFI de la station (GFI 7/9). Les Philopotamidae (GFI des stations H10 et H11) ont disparu : les faibles vitesses d'écoulement de ce secteur ne sont pas favorables à ce taxon rhéophile.
- L'Hérault au Canet (H16) se démarque des autres stations échantillonnées par un peuplement benthique beaucoup plus banal, composét uniquement d'organismes ubiquistes. Aucun plécoptère n'a été récolté. Les habitats aquatiques semblent pourtant de bonne qualité et sont plutôt diversifiés. La baisse de qualité observée pourrait être expliquée par une sur-fréquentation du site par les baigneurs mais aussi par une possible altération de la qualité des eaux dans ce secteur. Les analyses physicochimiques réalisées entre mars et octobre sont globalement bonnes mais des signes de pollutions ponctuelles ont révélées (contamination *E.coli* en mai, présence d'orthophosphates en octobre).
 - A noter également que la présence d'apports antrophiques est aussi mise en évidence par une prolifération algale modérée (20 % de recouvrement du lit en eau) observée lors du prélèvement (août).
- A Saint-Pons-de-Mauchiens (H18), l'Hérault retrouve une très bonne qualité biologique notamment grâce à une faune variée : 40 taxons ont en effet été identifiés ce qui est particulièrement élevé pour un grand cours d'eau. Dans ce secteur, l'Hérault a une très bonne capacité d'accueil pour la faune macrobenthique. Le fleuve paraît préservé malgré la présence du seuil d'un ancien moulin en amont de la station. Les berges paraissent naturelles : elles sont arborées, parfois en pente douce (petites plages). Si la vitesse d'écoulement est assez homogène, les substrats et les profondeurs sont variés. A cela s'ajoute des annexes hydrauliques (en aval de la station) qui participent au très bon fonctionnement du biotope.
- La qualité biologique de l'Hérault à Pézenas (H20) reste très bonne selon la classe d'état DCE mais diminue quelque peu par rapport à celle de la station amont (H18) notamment à cause d'une faune benthique moins diversifiée (moins 10 taxons).
- Enfin, dans la station aval située à Agde (H23), les conditions habitationnelles se réduisent encore : le lit est essentiellement constitué par des limons et des sables, les berges sont plus instables, abruptes. Le fleuve perd son naturel, l'anthropisation est accentuée par la navigation praticable dans ce secteur. La richesse faunistique s'appauvrit et ce n'est grâce qu'à la capture de 3 individus de *Leuctridae* que la note IBGN équivalent se maintient à 14/20 (elle serait de 12/20 en leur absence). Leur présence, même en faible nombre, met en évidence le bon potentiel du secteur.

Cette année encore, l'analyse fine des peuplements macrobenthiques de l'Hérault ne met pas en évidence de pollution importante. Les apports polluants qui s'échelonnent le long du cours d'eau semblent très bien assimilés par le fleuve grâce et compensés par de bonnes conditions morphodynamiques. Hormis la station H16 (Hérault à Canet) et la station aval H23 (Hérault à Agde) dont les états biologiques sont qualifiés de « bon » (notes « équivalent IBGN » de 13 et 14/20), les états biologiques de toutes les autres stations de l'Hérault sont qualifiés de « très bons » (les notes « équivalent IBGN » s'échelonnant de 15 à 19/20). Les résultats biologiques corroborent les résultats physico-chimiques.

5.3.2. Les affluents de l'Hérault

Le graphique ci-dessous (Figure 5) présente l'évolution des différentes métriques des IBG-DCE réalisés dans les affluents de l'Hérault.

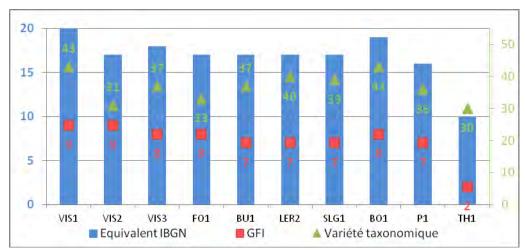


Figure 5 - Résultats synthétiques des IBG DCE des affluents de l'Hérault en 2016

Selon l'indice IBG, l'état biologique des affluents de l'Hérault est qualifié de « très bon » sauf celui de la Thongue qui est qualifié de « moyen ».

Les affluents de l'Hérault hébergent une faune aquatique plutôt variée : entre 30 et 43 taxons ont été identifiés. Les peuplements macrobenthiques des stations de la Vis amont (VIS 1), de la Lergue (LER 2) et de la Boyne (BO1) sont particulièrement bien diversifiés.

Les stations 1 et 2 de la Vis (VIS 1 et VIS 2) abritent un taxon indicateur (GFI) particulièrement polluosensible. Il s'agit de la famille des *Perlidae* (plécoptère) dont le niveau de polluosensibilité est de 9, soit le maximum sur l'échelle de polluosensibilité. Si cette famille n'a pas été retrouvée dans les autres stations échantillonnées, les groupes indicateurs des autres affluents (hormis la Thongue) sont également polluosensibles (GFI de 7 et 8) et témoignent d'une eau de bonne qualité. Seule la Thongue se démarque par une faune polluorésistante, représentée par un taxon indicateur peu polluosensible (GFI 5/9): le trichoptère *Hydroptilidae*. Cet organisme affectionne tout particulièrement les algues filamenteuses présentes dans la station. Sa présence, mais surtout l'absence de familles plus polluosensibles, mettent en évidence une eau de qualité médiocre.

Les paragraphes suivants affinent ce diagnostic global.

La Vis

La Vis abrite une faune globalement bien diversifiée comprenant entre 31 et 43 taxons IBGN. Les habitats aquatiques sont suffisamment bien diversifiés pour pouvoir accueillir une faune variée notamment au niveau de la station amont VIS 1.

La richesse faunistique de la Vis au niveau de Gorniès (VIS 2) est quelque peu en deçà de ce qu'on pourrait espérer (environ 40 taxons). Ce secteur, large et profond, est difficilement échantillonnable ce qui pourrait en partie expliquer ce léger déficit.

Les peuplements des stations VIS1 (Navacelles), VIS2 (Gorniès) et VIS3 (Saint-Laurent-le-Minier) sont constitués par de nombreux taxons polluosensibles mettant en évidence la bonne qualité de l'eau.

Les peuplements des stations amont (VIS1 et VIS2) sont représentés par un taxon indicateur très polluosensible (GFI 9/9): le plécoptère *Perlidae*, inféodé aux rivières dont les eaux sont fraîches et bien oxygénées. A l'aval, à la station VIS3, le taxon indicateur est le trichoptère *Brachycentridae* (GFI 8/9). « La disparition » des *Perlidae* (déjà constatée en 2015) est sans doute à relier aux apports polluants de la Crenze qui reçoit le rejet de la STEP de Saint-Laurent-le-Minier. Les *Brachycentridae* sont malgré tout de très bons indicateurs d'une eau de bonne qualité.

Avec des notes « équivalents IBGN » de 20, 17 et 18/20 les états biologiques sont qualifiés de « très bons » et sont cohérents avec les résultats physico-chimiques.

■ Le Ruisseau de Brissac (Foux)

La diversité faunistique du Ruisseau de Brissac est moyenne (33 taxons IBGN) malgré de très beaux habitats aquatiques.

Le peuplement est représenté par une famille de trichoptères polluosensible : *Brachycentridae* (GFI 8/9). Leur présence met en évidence une eau de très bonne qualité.

Avec une note « équivalent IBGN » de 17/20, l'état biologique du Ruisseau de Brissac est qualifié de « très bon ». Les contaminations bactériologiques ponctuelles émanant de la STEP de Brissac ne sont pas mises en évidence au travers de la faune macrobenthique.

La Buèges

La Buèges abrite une faune riche (37 taxons IBGN) et traduit le bon potentiel d'accueil du cours d'eau pour la faune invertébrée macrobenthique.

Le peuplement est représenté par un taxon indicateur plutôt polluosensible : le plécoptère *Leuctridae* (GFI 7/9). Sa présence met en évidence une eau de bonne qualité.

Avec une note « équivalent IBGN » de 17/20, l'état biologique de la Buèges est qualifié de « très bon ». Les contaminations bactériologiques ponctuelles émanant de la STEP de Saint-Jean-de-Buèges ne sont pas mises en évidence au travers du peuplement macroinvertébré.

La Lergue

La faune benthique de la Lergue est très riche (40 taxons IBGN) témoignant de la belle mosaïque d'habitats qu'offre cette rivière, et ce, malgré l'importante crue de septembre 2015.

Les plécoptères *Leuctridae* constituent le groupe indicateur de la station (GFI 7/9) révélateur de la bonne qualité de l'eau.

Avec une note « équivalent IBGN » de 17/20, l'état biologique de la Lergue est qualifié de « très bon ». La Lergue a toujours bénéficié de très beaux habitats aquatiques qui lui confèrent une richesse faunistique élevée. La pollution chronique provenant de la STEP de Lodève limite peut être l'implantation de taxons plus polluosensibles (GFI 8 et 9).

A noter que le rejet de la STEP de Lodève est mis en évidence par une importante prolifération algale, observée lors du prélèvement. En effet, plus de la moitié du lit en eau est recouvert par les algues vertes, et notamment par l'algue eutrophe *Cladophora sp.* ainsi que par l'algue hypereutrophe *Ulva sp.* Cette dernière ne se rencontre en eau douce que dans les milieux très riches en nutriments.

Le Salagou

Le Salagou abrite une faune riche (39 taxons IBGN) traduisant le très bon potentiel d'accueil de ce cours d'eau pour la faune invertébrée.

Le peuplement est représenté par deux taxons indicateurs plutôt polluosensibles : les trichoptères *Glossossomatidae* et *Goeridae* (GFI 7/9). Leur présence met en évidence une eau de bonne qualité.

Avec une note « équivalent IBGN » de 17/20, l'état biologique du Salagou est qualifié de très bon. Ces résultats sont cohérents avec les résultats physico-chimiques.

La Boyne

Le peuplement de la Boyne est très riche (43 taxons IBGN) mettant en évidence la richesse des habitats qu'offre le cours d'eau.

Le trichoptère *Philopotamidae* (GFI 8/9) constitue le taxon indicateur du peuplement. Sa sensibilité aux pollutions traduit une très bonne qualité de l'eau.

Avec une note « équivalent IBGN » de 19/20, l'état biologique de la Boyne est qualifié de « très bon ». Les analyses physico chimiques réalisées dans la Boyne mettent en évidence des apports polluants d'origine domestiques et agricoles. Ces apports n'ont pas d'impact sur la faune aquatique. Toutefois, le prélèvement biologique n'a pas été réalisé pendant la période la plus critique en terme de débit (août, octobre) : il a été effectué le 24 juin afin d'éviter un éventuel assec en cours d'été.

La Peyne

La Peyne abrite une faune relativement bien diversifiée (36 taxons IBGN) traduisant la bonne hospitalité du cours d'eau vis-à-vis de la faune invertébrée.

Le peuplement est représenté par un taxon indicateur plutôt polluosensible (GFI 7/9) : le plécoptère *Leuctridae*. Sa présence témoigne de la bonne qualité de l'eau.

Avec une note « équivalent IBGN » de 16/20, l'état biologique de la Peyne est qualifié de « très bon ». Ces résultats sont cohérents avec les résultats physico-chimiques.

La Thongue

Avec 30 taxons IBGN identifiés, la richesse faunistique du peuplement de la Thongue est moyenne et traduit le faible pouvoir d'accueil du cours d'eau pour la faune invertébrée.

Le peuplement est représenté par un taxon indicateur moyennement polluosensible (GFI 5/9) : le trichoptère *Hydroptilidae*. Cette organisme se nourrit du contenu cellulaire des végétaux et met en évidence la qualité moyenne de l'eau.

Aucun plécoptère n'a été observé, seulement 2 familles de trichoptères et 2 familles d'éphéméroptères. La faune aquatique est uniquement composée d'organismes ubiquistes, peu sensibles aux pollutions.

Avec une note « équivalent IBGN » de 10/20, l'état biologique de la Thongue est qualifié de « moyen ». Cet état biologique est cohérent avec les résultats analytiques sur eau et notamment les concentrations non négligeables en matières azotées et phosphorées, ainsi que les contaminations bactériologiques.

5.3.3. Données complémentaires

L'Hérault

Le tableau ci-dessous présente les résultats synthétiques des réseaux complémentaires pour le fleuve Hérault. Les dates de prélèvement ne nous ont pas été communiquées par l'Agence de l'Eau RM et C.

Tableau 28 - Résultats synthétiques des IBG DCE de l'Hérault fournis par les autres réseaux de mesures en 2016

Cours d'eau	Station	Code	Code Agence de l'Eau	Réseau	Date	Valeur "IBGN"	Libellé GFI	Rang GFI	Variété taxonomique	Classe d'état
	Valleraugue 2	-	06181910	RCS	2016	18	Perlidae	9	38	Très bon
	Valleraugue	HER 2	06181925	CG 30	20/07/2016	17	Leuctridae	7	39	Très bon
	St André de Majencoules	HER 3	06181930	CG 30	20/07/2016	17	Perlidae	9	32	Très bon
HERAULT	Sumène	HER 4	06300048	CG 30	20/07/2016	15	Leuctridae	9	31	Très bon
	Brissac	H9	06182050	RCS	2016	16	Philopotamidae	8	31	Très bon
	Aspiran	H17	06183500	RCS	2016	NC	-	-	-	-
	Florensac / Bessan	H22	06184000	RCS	2016	NC	-	1	-	-

Cette année encore, les données complémentaires mettent en évidence la très bonne qualité biologique de l'Hérault de sa partie amont jusqu'à Brissac.

Les affluents de l'Hérault

Le tableau ci-dessous présente les résultats synthétiques des réseaux complémentaires pour les affluents de l'Hérault.

Tableau 29 - Résultats synthétiques des IBG DCE des affluents de l'Hérault fournis par les autres réseaux en 2016.

		•								
Cours d'eau	Station	Code	Code Agence de l'Eau	Réseau	Date	Valeur "IBGN"	Libellé GFI	Rang GFI	Variété taxonomique	Classe d'état
RIEUTORD	Sumène	RIE 1	06181800	CG 30	20/07/2016	19	Perlidae	9	39	Très bon
LA GLEPPE	Pommiers	GLE 1	06181850	CG 30	19/07/2016	19	Perlidae	9	39	Très bon
LAGLEFFE	Avèze		06181210	CO		19	Brachycentridae	8	41	Très bon
	Arre	ARRE 1	06181901	CG 30	18/07/2016	19	Perlidae	9	39	Très bon
	Arre	ARRE 2	06181902	CG 30	18/07/2016	18	Brachycentridae	8	38	Très bon
	Avèze	ARRE 3	06181904	CG 30	19/07/2016	17	Perlidae	9	32	Très bon
ARRE	Le Vigan 2	ARRE 4	06181500	CG 30	19/07/2016	15	Leuctridae	7	30	Très bon
	Le Vigan 3	ARRE 5	06181550	CG 30	19/07/2016	16	Leuctridae	7	36	Très bon
	Saint-André-de- Majencoules		06181906	RCS	2016	16	Leuctridae	7	34	Très bon
VIS	Blandas	VIS0	06181945	RCS	2016	NC				
CRENZE	St-Laurent-le- Minier		06195330	со	2016	14	Leuctridae	7	25	Bon
BUEGES	Pégairolles de Buèges	•	06182062	RCS	2016	19	Brachycentridae	8	41	Très bon
LERGUE	Lodève	L1	06182460	CO	2016	sortie du	co			
ELICOUL	Brignac	L3	06183000	RCS	2016	12	Hydroptilidae	5	28	Bon
PEYNE	Pézenas	P2	06183800	RCS	2016	sortie du	CO			
THONGUE	St-Thibéry	T2	06183850	RCS	2016	6	Caenidae	2	14	Mauvais

Les données complémentaires mettent en évidence une importante dégradation de la qualité de la Thongue à Saint Thibéry (état biologique « mauvais»).

L'état biologique de la Crenze est qualifié de seulement « bon », vraisemblablement à cause des dysfonctionnements de la station d'épuration de Saint-Laurent-le-Minier.

Pour les autres stations de mesures, l'état biologique au regard des invertébrés est qualifiée de « très bon ».

5.3.4. Evolution par rapport aux suivis précédents

L'Hérault

Le Tableau 30 présente l'évolution de la qualité biologique des différentes stations de l'Hérault depuis 2002 au regard des inventaires benthiques.

Tableau 30 - Evolution de la qualité biologique de l'Hérault au regard des invertébrés depuis 2002

			-	<u> </u>						
			2002	2007	2011	2012	2013	2014	2015	2016
Statio n	Code	Libellé de la station	IBGN	IBGN	équivale nt IBGN	équivale nt IBGN	équivale nt IBGN	équivale nt IBGN	équivale nt IBGN	équivale nt IBGN
H5	06181990	Cazilhac	16	16	11				19	19
H6	06182000	Laroque	16	16	17				18	17
H7	06182020	Agonès	16	16	11				20	19
Н8	06182030	St-Bauzille-de- Putois	12	17	16				18	17
Н9	06182050	Brissac	18	17	15	15	14	16	16	16
H10	06300051	Causse-de-la-Selle 1	19	19	17				17	19
H11	06182120	Puechabon	12	18	16				19	17
H12	06184510	St-Jean-de-Fos 3	14	12	16					
H13	06182300	St-Jean-de-Fos 2	16	17	15	14	14			
H14	06182400	Gignac	13	15	17				16	18
H15	06182900	Pouzols	14	13	8					
H16	06183200	Canet	14	19	15				17	13
H17	06183500	Aspiran	11	13	15	16	15	18	16	
H18	06183685	St-Pons-de- Mauchiens	13	16	14				16	17
H19	06183700	Pézenas 1	13	16	14					
H20	06183820	Pézenas 2	16	14	18				16	15
H21	06183835	Pézenas 3	15	13	16					
H22	06184000	Florensac / Bessan	11	16	14	14	15	16	16	
H23	06184200	Agde 6	-	-	8				12	14

La qualité biologique de l'Hérault a peu évoluée depuis 2015 : pour la plupart des stations, la qualité biologique est qualifiée de « très bonne ». Seules 2 stations ont vu leur état biologique modifié :

- Hérault à Canet (H16): la qualité biologique est cette année qualifiée de « bonne » alors qu'elle était « très bonne » depuis 2007. La chute de la note IBGN est encore plus significative : elle perd 4 points par rapport à celle de l'an dernier (IBGN de 17/20). Les *Philopotamidae* (GFI 8), organisme polluosensible, n'ont pas été observés cette année. Le GFI du peuplement macrobenthique 2016 est représenté par les trichoptères *Hydroptilidae*, organisme peu sensible aux pollutions (GFI 5). La dégradation de la qualité des eaux dans ce secteur est sans doute à mettre en cause dans la disparition des organismes polluosensibles.
- Hérault à Agde (H23): la qualité biologique de l'Hérault aval semble s'être sensiblement améliorée cette année. Toutefois, cette amélioration est toute relative car le diagnostic 2016 est peu robuste. Le groupe indicateur (GFI) est représenté par les plécoptères *Leuctridae* (GFI 7). Or seulement 3 individus ont été échantillonnés (il en faut 3 minimum pour constituer le GFI).

S'il est imprudant de conclure à une amélioration de la qualité biologique dans ce secteur, la présence de ces 3 plécoptères ainsi que celle d'un individu d'éphéméroptère *Leptophlebiidae* appartenant au même groupe (GFI 7) mettent en évidence le bon potentiel de ce secteur.

Les affluents de l'Hérault

Le Tableau 31 présente l'évolution de la qualité biologique des différentes stations des affluents de l'Hérault depuis 2002.

Tableau 31 - Evolution de la qualité biologique des affluents de l'Hérault depuis 2002

				0000	0005	0044	0040	0040	0044	0045	0010
				2002	2007	2011	2012	2013	2014	2015	2016
Cours d'eau	Station	Code	Libellé de la station	IBGN	IBGN	Equi valent IBGN	Equi valent IBGN	Equi valent IBGN	Equi valent IBGN	Equi valent IBGN	Equi valent IBGN
	VIS0	06181945	Blandas	19	19	-	19	20	20	valeur non disponible	valeur non disponible
VIS	VIS1	06181950	St-Maurice- Navacelles	19	19	18				18	20
	VIS2	06181960	Gorniès	16	17	14				17	17
	VIS3	06181980	St-Laurent-le- Minier	18	16	15				16	18
RUISSEAU de BRISSAC	FO1	06184640	Brissac	-	17	17				18	17
BUEGES	BU0	06182062	Pégairoles-de- Buèges			-	19	19	19	19	19
BUEGES	BU1	06184620	St-Jean-de- Buèges 2	15	18	17				15	17
LERGUE	L1	06182460	Lodève	20	18	16	19	17	16	Station sortie du réseau de contrôle	Station sortie du réseau de contrôle
	LER2	06300053	Lodève 2	20	17	15				20	17
	L3	06183000	Brignac	14	17	17	18	18	17	19	19
SALAGOU	SLG1	06182600	Le Bosc	14	16	16				20	17
BOYNE	BO1	06183900	Cazouls- d'Hérault 2	16	15	-				19	19
	P1	06183750	Roujan	17	15	15				17	16
PEYNE	P2	06183800	Pézenas	15	13	10	18	19	19	15	Station sortie du réseau de contrôle
THONGUE	TH1	06183840	Servian	9	8	Assec				12	10
THONGUE	TH2	06183850	St-Thibéry	6	6	9	-	9	6	13	6

La qualité biologique de la Vis s'est légèrement améliorée dans la station la plus aval VIS3 et retrouve en 2016 la qualité mesurée en 2002. Les autres stations de la Vis présentent une qualité stable.

Les qualités biologiques du ruisseau de Brissac, du Salagou, de la Boyne et de la Lergue évoluent peu.

La Buèges au niveau de la station BU1 a retrouvé sa qualité mesurée en 2011.

La station P1 de la Peyne confirme le « très bon » état retrouvé l'année dernière.

Dans la station TH1 de la Thongue, l'indice diminue quelque peu par rapport à l'année dernière (moins 2 points) mais reste dans le même ordre de grandeur. Comme l'an dernier, le prélèvement biologique a été réalisé assez tôt dans la saison estivale (24 juin), ce qui n'avait pas été le cas en 2002 et 2007 (réalisé plus tard). Il est donc difficile de parler d'amélioration de la qualité tant l'influence de la date du prélèvement est importante sur le résultat de l'IBGN pour ce type de cours d'eau (très faibles débits, voire assec en période estivale).

5.3.5. Conclusion

L'analyse des peuplements invertébrés de l'Hérault révèle un très bon état biologique sur la quasitotalité de son linéaire. Seules les stations Hérault à Canet (H16) et Hérault à Agde (H23) présentent des états biologiques qualifiés de « bons ». La station à Agde semble être plus « pénalisée » par sa qualité physique, et notamment par des habitats aquatiques homogènes, que par la qualité de l'eau (aucune pollution détectée). La situation de l'Hérault à Canet est plus délicate à expliquer. Les habitats aquatiques sont de bonne qualité et les analyses chimiques ne révèlent pas de pollution importante. Quelques signes de pollutions ponctuelles ont toutefois été révélés et peuvent être à l'origine de cette légère dégradation biologique. La fréquentation importante des baigneurs peut également être un facteur impactant.

Les affluents de l'Hérault sont de très bonne qualité biologique. Seule la Thongue présente un état biologique dégradé (« moyen » à Servian puis « mauvais » à Saint-Thibéry).

Les résultats obtenus cette année confortent l'amélioration globale de l'Hérault constatée l'année dernière.

L'état biologique de la Vis aval (VIS3) et de la Buèges à Saint de Buèges (BU1) s'améliore également. Ces 2 stations retrouvent des niveaux de qualités obtenus dans le passé (2002, 2011).

5.4. QUALITÉ BIOLOGIQUE IBD (DIATOMÉES BENTHIQUES)

Le tableau suivant synthétise les résultats des inventaires diatomiques réalisés dans le bassin versant de l'Hérault. Une représentation cartographique est fournie au chapitre 6.

Tableau 32 - Résultats des inventaires diatomiques (IBD) réalisés en 2016 dans l'Hérault et ses affluents.

Tabi	Tableau 32 - Resultats des inventaires diatomiques (IBD) realises en 2016 dans l'Herault et ses affluents.											
Code hydrologique	Cours d'eau	Commune	Code	HER	Date prélèvement	Effectif	NB esp	IPS	IBD	Diversité	Equitabilité	Etat biologique diatomées
06181990	Hérault	Cazilhac	H5	GM6/8	19/07/16	404	27	16,9	18,2	2,63	0,55	0,94
06182000	Hérault	Laroque	H6	GM6/8	19/07/16	406	37	16,4	18,7	4,27	0,82	0,97
06182020	Hérault	Agones	H7	GM6/8	21/07/16	407	28	15,2	18,0	3,27	0,68	0,92
06182030	Hérault	St Bauzille de Putois	H8	GM6/8	19/07/16	415	24	14,9	18,1	2,90	0,63	0,93
06300051	Hérault	Causse de la Selle 1	H10	GM6/8	21/07/16	406	28	15,3	16,0	3,11	0,65	0,78
06182120	Hérault	Puechabon	H11	GM6/8	15/07/16	406	26	16,0	18,1	2,17	0,46	0,93
06184510	Hérault	St Jean-de-Fos 3	H12	GM6/8	08/11/16	406	31	14,8	17,0	3,05	0,62	0,85
06182400	Hérault	Gignac	H14	GM6/8	18/08/16	405	24	16,4	17,0	2,99	0,65	0,85
06182900	Hérault	Pouzols	H15	GM6/8	08/11/16	406	43	13,3	16,2	3,63	0,67	0,8
06183200	Hérault	Canet	H16	GM6/8	18/08/16	408	26	15,9	18,0	2,99	0,64	0,92
06183685	Hérault	Saint Pons de Mauchien	H18	GM6/8	13/07/16	402	28	16,1	17,5	2,99	0,62	0,89
06183700	Hérault	Pézénas 1	H19	GM6/8	08/11/16	411	29	14,7	16,0	3,05	0,63	0,78
06183820	Hérault	Pezenas 2	H20	GM6/8	12/07/16	408	11	15,2	16,0	0,50	0,14	0,78
06183835	Hérault	Pezenas 3	H21	GM6/8	08/11/16	402	37	13,7	14,9	3,80	0,73	0,7
06184200	Hérault	Agde 6 Bessan	H23	GM6/8	12/07/16	407	30	8,9	12,2	3,72	0,76	0,51
06181950	Vis	Navacelles	VIS1	GM19/8	18/07/16	413	17	17,2	20,0	2,37	0,59	1,07
06181960	Vis	Gomiès	VIS2	GM19/8	18/07/16	410	12	15,5	18,1	1,97	0,52	0,93
06181980	Vis	St Laurent le Minier	VIS3	GM19/8	18/07/16	406	18	17,8	19,4	1,40	0,35	1,02
06184640	Foux	Brissac	FO1	TP6	13/07/16	400	21	17,7	20,0	3,10	0,62	1,11
06184620	Buèges	St Jean de Buèges 2	BU1	TP6	13/07/16	402	22	18,4	20,0	2,24	0,57	1,11
06300053	Lergue	Lodève 2	LER2	MP6	20/07/16	406	28	16,0	16,9	3,49	0,67	0,92
06182600	Salagou	Le Bosc	SLG1	MP6	20/07/16	401	24	14,5	15,2	2,38	0,53	0,83
06183900	Boyne	Cazoul d'Hérault 2	BO1	PTP8	24/06/16	406	28	16,4	18,0	4,08	0,77	0,92
06183750	Peyne	Roujan	P1	MP6	20/07/16	404	31	15,0	15,7	2,89	0,61	0,85
06183840	Tongue	Servian	TH1	MP6	24/06/16	404	18	12,4	13,4	4,16	0,79	0,72

5.4.1. L'Hérault

Distribution des familles de diatomées

L'analyse de la distribution des familles de diatomées au sein de chaque peuplement nous donne une première appréciation de la qualité des eaux.

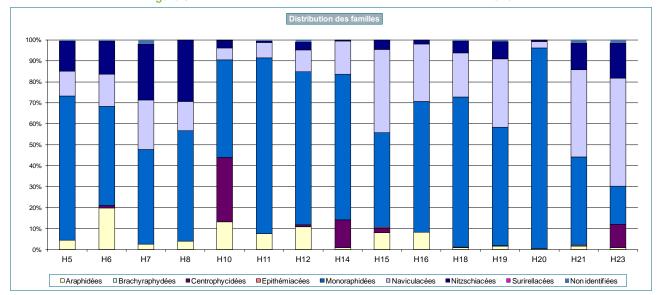


Figure 6 - Distribution des familles de diatomées de l'Hérault en 2016.

Les Monoraphidées

La famille des Monoraphidées est essentiellement composée d'espèces fermement fixées au substrat (*Achnanthidium*) ou épiphytes (*Cocconeis*). Elles sont généralement sensibles aux altérations du milieu et caractérisent donc, de ce fait, des cours d'eau peu perturbés et courants. Cette famille est très présente voire domine les communautés de l'Hérault sauf à Agde (station H23).

Les Naviculacées

Elles regroupent un grand nombre de genres (*Amphora, Cymbella, Diadesmis, Encyonema, Eolimna, Fallacia, Geissleria, Gomphoneis, Gomphonema, Hippodonta, Luticola, Mayamaea, Navicula, Reimeria, Rhoicosphenia, Sellaphora,...)* présentant des caractéristiques écologiques diverses. Cette vaste famille constitue le deuxième groupe le mieux représenté dans l'ensemble des stations de l'Hérault (sauf aux stations H10 et H11) avec en particulier *Cymbella excisa var. excisa,* espèce très bien représentée aux stations H7, H8 et H16.

Les Nitzschiacées

Il s'agit essentiellement d'espèces saprophiles ou N-hétérotrophes (milieux chargés en matières organiques et en nutriments). La proportion de Nitzschiacées est moyenne. Elles sont principalement présentes sur les stations de tête de bassin (H5 à H8) et sur la station H23.

Les Araphidées

Elles regroupent principalement des espèces lacustres (*Diatoma*, *Fragilaria*, *Staurosirella*) de milieu calme. Elles sont bien représentées à la station H6 avec près de 20%.

La forte proportion *d'Achnanthidium sp.*, espèce des eaux courantes, est une constante de la composition des communautés de l'Hérault. Seule la station H10, avec le développement de *Discotella pseudostelligera* et la station H23 avec le développement des Naviculacées, se distinguent par un peuplement typique de milieux plus lentiques.

Taxons les plus représentés

Tableau 33 - Caractéristiques des diatomées les plus représentés dans l'Hérault en 2016.

Espèces les plus fréquentes dans le bassin de l'Hérault*	Ecologie**
Achnanthidium minutissimum	Taxon d'eaux douces à légèrement saumâtres, sensible à la charge organique (bêta-mésosaprobe) mais indifférent à la charge minérale.
Achnanthidium delmontii	Alcaliphile. Préférence pour une conductivité et teneur en calcium élevées
Cymbella excisa var. excisa	Taxon mésotrophe avec des préférences pour une minéralisation moyenne.
Discotella pseudostelligera	Espèce ubiquiste, principalement en zone tempérée, en eaux douces à légèrement saumâtres, mais absente des eaux très courantes, tolérant un très large spectre de niveaux trophiques mais avec une préférence pour les eaux eutrophes.
Nitzschia costei	Alcaliphile, relativement exigeante en oxygène dissous (> 75%), béta-mésosaprobe, eutrophie.

^{*} dans l'ordre de fréquence d'apparition

Richesse et diversité des peuplements

Figure 7 : graphique représentant la richesse et la diversité du peuplement de diatomées de l'Hérault en 2016

^{**} Source : Atlas des diatomées du Languedoc-Roussillon (2013)

La richesse taxonomique des peuplements de diatomées de l'Hérault est assez variable d'une station à l'autre (N varie de 11 à 43 avec une valeur moyenne de 28 taxons). Dans l'ensemble, elle est peu élevée. La dominance de l'espèce *A. delmontii* (abondance supérieure à 94%) à la station de Pézenas explique le mauvais score de la station (H20; N = 11). En effet, ce taxon n'est pas pris en compte dans la norme, toutefois, cette espèce présente un spectre écologique correct et témoigne d'une qualité de l'eau satisfaisante. Il n'y a pas d'évolution marquée de la richesse et de la diversité de l'amont vers l'aval.

La diversité est également très variable (indice de Shannon et Weaver H' compris entre 0,5 et 4,27). Elle est globalement moyenne témoignant ainsi d'une certaine stabilité des conditions environnementales. Là encore, aucune différence n'est observée entre les stations situées en amont et celles situées en aval. La station H20, présente la richesse taxonomique et la diversité les plus faibles.

Résultats des indices diatomiques

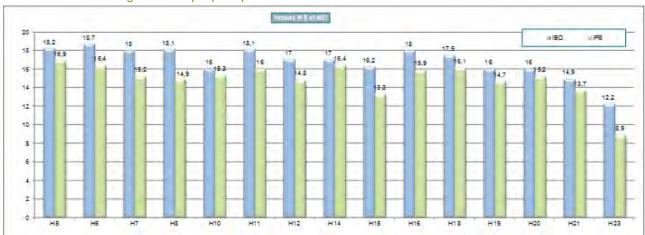
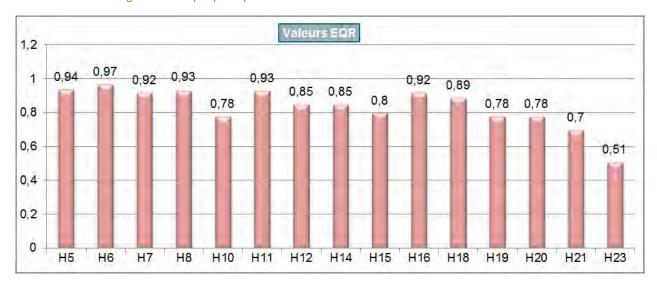



Figure 8 - Graphique représentant les indices IBD et IPS de l'Hérault en 2016.

Un écart important est observé entre les valeurs de l'IBD et de l'IPS dans plusieurs stations : jusqu'à 3,2 points pour la station H8. Ces variations sont dues notamment à la proportion de taxons non pris en compte dans le calcul de l'IBD mais retenus pour le calcul de l'IPS, comme c'est le cas avec *Achnanthidium delmontii*, espèce décrite récemment (qui a tendance à proliférer), représentant jusqu'à 94 % du peuplement à la station H20. De plus, la méthode de calcul de ces deux indices n'étant pas la même, il existe une différence de sensibilité face à certains paramètres qui peut aussi expliquer l'écart entre les notes pour une même station.

L'Etat biologique, déterminé à partir des résultats de l'EQR et prenant en compte l'hydroécorégion (HER) dans laquelle se situe chaque station, est considéré comme bon à très bon, avec peu de variation jusqu'à Pézenas. Les stations les plus en aval : Pézenas 3 (H21) et Agde (H23) obtiennent respectivement un état écologique « moyen » (EQR=0.7) et « médiocre » (EQR=0.51).

Selon l'IBD, la qualité biologique des eaux de l'Hérault est bonne à très bonne sur l'ensemble du linéaire du cours d'eau. Notons simplement une petite baisse de la qualité du milieu en aval avec une note de 12,2/20.

L'IPS, prenant bien en compte toutes les espèces rencontrées dans ces prélèvements, est plus stable et met en évidence une eau de qualité légèrement inférieure par rapports aux résultats EQR et IBD. Celle-ci demeure néanmoins « moyenne à bonne » sur l'ensemble des stations, sauf à la station H23 qui ou elle est « mauvaise ».

Caractéristiques écologiques mises en évidence par l'analyse de Van Dam et al.

Les graphiques présentant les caractéristiques écologiques des espèces (selon la classification de Van Dam et al, 1994) se trouvent en annexe. Le tableau suivant résume les caractéristiques des eaux mises en évidence par l'analyse des préférences écologiques des espèces observées dans les stations de l'Hérault.

Tableau 34 - Caractéristiques écologiques mises en évidence par les peuplements de diatomées des stations de l'Hérault de 2016 (Van Dam et al.).

				de 2010 (vali Balli et	7	
Communes	Stations	Oxygène	N-organique	Saprobie (matières organiques)	Trophie (nutriments)	Comparaison avec les résultats physico- chimiques
Cazilhac	H5	Très bonne oxygénation	Azote organique faiblement présent ou très occasionnel	Charge organique réduite	Tendance eutrophe (riche en nutriments)	Pas de tendance eutrophe mais apports ponctuels d'eaux usées (bactériologie moyenne).
Laroque	H6	Très bonne oxygénation	Azote organique faiblement présent ou très occasionnel	Charge organique réduite	Tendance eutrophe (riche en nutriments)	Pas de tendance eutrophe mais apports ponctuels d'eaux usées (bactériologie moyenne).
Agones	H7	Très bonne oxygénation	Azote organique faiblement présent ou très occasionnel	Charge organique réduite	Tendance eutrophe (riche en nutriments)	Pas de tendance eutrophe mais apports ponctuels d'eaux usées (bactériologie élevée).
St Bauzille de Putois	H8	Très bonne oxygénation	Azote organique faiblement présent ou très occasionnel	Charge organique réduite	Tendance eutrophe (riche en nutriments)	Charge en matières azotées et phosphorées faible.
Causse de la Selle 1	H10	Bonne oxygénation	Azote organique faiblement présent ou très occasionnel	Charge organique réduite	Tendance eutrophe (riche en nutriments)	Charge en matières azotées et phosphorées faible, et oxygénation plus favorable (très bonne).
Puechabon	H11	Très bonne oxygénation	Azote organique présent mais de façon très occasionnelle	Charge organique réduite	Nombre de taxons non pris en compte trop important	En accord avec les résultats physico-chimiques.
Saint Jean- de-Fos 3	H12	Nombre de taxons non pris en compte trop important	Nombre de taxons non pris en compte trop important	Nombre de taxons non pris en compte trop important	Nombre de taxons non pris en compte trop important	-
Gignac	H14	Très bonne oxygénation	Azote organique présent mais de façon très occasionnelle	Charge organique réduite	Tendance eutrophe (riche en nutriments)	Charge en matières azotées et phosphorées faible.
Pouzols	H15	Bonne oxygénation	Azote organique présent mais de façon très occasionnelle	Charge organique réduite	Tendance eutrophe (riche en nutriments)	Charge en matières azotées et phosphorées faible, et oxygénation plus favorable (très bonne).
Canet	H16	Très bonne oxygénation	Azote organique faiblement présent ou très occasionnel	Charge organique réduite	Nombre de taxons non pris en compte trop important	En accord avec les résultats physico- chimiques.
Saint Pons de Mauchiens	H18	Nombre de taxons non pris en compte trop important	Nombre de taxons non pris en compte trop important	Nombre de taxons non pris en compte trop important	Nombre de taxons non pris en compte trop important	-
Pezenas 1	H19	Nombre de taxons non pris en compte trop important	Nombre de taxons non pris en compte trop important	Nombre de taxons non pris en compte trop important	Nombre de taxons non pris en compte trop important	-
Pezenas 2	H20	Nombre de taxons non pris en compte trop important	Nombre de taxons non pris en compte trop important	Nombre de taxons non pris en compte trop important	Nombre de taxons non pris en compte trop important	-
Pezenas 3	H21	Nombre de taxons non pris en compte trop important	Nombre de taxons non pris en compte trop important	Charge organique réduite	Nombre de taxons non pris en compte trop important	En accord avec les résultats physico-chimiques.
Agde 6 Bessan	H23	Oxygénation modérée	Azote organique présent mais de façon très occasionnelle	Charge organique réduite	Tendance eutrophe (riche en nutriments)	Charge en matières azotées et phosphorées faible, et oxygénation plus favorable (très bonne).

5.4.2. Les affluents de l'Hérault

Distribution des familles de diatomées

L'analyse de la distribution des familles de diatomées au sein de chaque peuplement nous donne une première appréciation de la qualité des eaux.

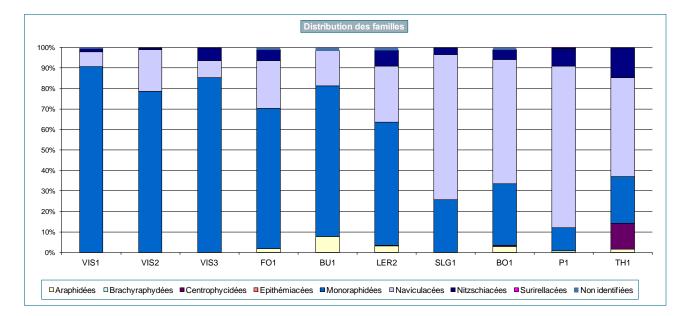


Figure 10 - Distribution des familles de diatomées des affluents l'Hérault en 2016.

Les Monoraphidées

La famille des Monoraphidées est essentiellement composée d'espèces fermement fixées au substrat (*Achnanthidium*) ou épiphytes (*Cocconeis*). Elles sont généralement sensibles aux altérations du milieu et caractérisent donc, de ce fait, des cours d'eau peu perturbés. Comme pour les stations de l'Hérault, cette famille est très présente, voire domine les communautés des affluents, en particulier dans la Vis et les affluents de la partie amont du bassin versant (Foux, Buèges, Lergue).

Les Naviculacées

Elles regroupent un grand nombre de genres (*Amphora, Cymbella, Diadesmis, Encyonema, Eolimna, Fallacia, Geissleria, Gomphoneis, Gomphonema, Hippodonta, Luticola, Mayamaea, Navicula, Reimeria, Rhoicosphenia, Sellaphora,...)* présentant des caractéristiques écologiques diverses. Cette vaste famille constitue le deuxième groupe le mieux représenté dans l'ensemble des stations situées sur les affluents de l'Hérault, en particulier le Boyne (Bo1), le Salagou (SLG1) et la Peyne (P1), avec un développement plus important d'*Amphora pediculus* et *Navicula cryptotenella* par rapport aux autres sites. Des affluents en tête de bassin versant jusqu'en aval, on observe une augmentation de cette famille au détriment des monoraphidées.

Les Araphidées

Elles regroupent principalement des espèces lacustres (*Diatoma, Fragilaria, Staurosirella*), de milieu calme. Cette famille est peu représentée, sauf dans la Buèges (Bu1; 8%) et dans une moindre mesure la Lergue (LER2) et la Boyne (BO1).

Les Nitzschiacées

Il s'agit essentiellement d'espèces saprophiles ou N-hétérotrophes (milieux chargés en matières organiques et en nutriments). La proportion de Nitzschiacées est assez faible, le plus souvent inférieure à 10 %, mais plus importante dans les cours d'eau situés dans la partie basse du bassin versant de l'Hérault, notamment la Thonque.

Comme pour les stations situées le long de l'Hérault, la forte proportion d'Achnanthidium sp. est une constante de la composition des communautés des affluents. Seuls, le Salagou (SLG1) et la Peyne (P1), se distinguent toutefois avec un développement d'Amphora pediculus, espèce cosmopolite fréquentant souvent les milieux moyennement minéralisés, peu chargés en matière organique mais pouvant être riches en nutriments.

■ Taxons les plus représentés dans les affluents de l'Hérault

Tableau 35 - Caractéristiques des diatomées les plus représentés dans les affluents de l'Hérault en 2016.

Espèces les plus fréquentes dans le bassin de l'Hérault*	Ecologie**
Achnanthidium minutissimum	Taxon d'eaux douces à légèrement saumâtres, sensible à la charge organique (bêta-mésosaprobe) mais indifférent à la charge minérale.
Achnanthidium delmontii	Alcaliphile. Préférence pour une conductivité et teneur en calcium élevées
Achnanthidium pyrenaicum	Alcaliphile, minéralisation moyenne. Oligo à béta- mésosaprobe. Milieux calcaires
Amphora pediculus	Espèce cosmopolite fréquentant souvent des milieux moyennement minéralisés, peu chargés en matière organique mais pouvant être riches en nutriments. Supporte facilement l'assèchement, et vit souvent fixée sur d'autres algues, y compris des diatomées.

^{*}dans l'ordre de fréquence d'apparition

^{**} Source : Atlas des diatomées du Languedoc-Roussillon (2013)

Richesse et diversité des peuplements

La richesse taxonomique des peuplements de diatomées des affluents de l'Hérault est assez variable d'une station à l'autre (N varie de 14 à 40 avec une valeur moyenne de 26 taxons). Dans l'ensemble, elle est plutôt réduite, en particulier dans la Vis ou la Buèges suite notamment à la prolifération d'Achnanthidium minutissimum et/ou Achnanthidium delmontii.

La diversité est également très variable (indice de Shannon et Weaver H' compris entre 1,4 et 4,16). Elle est globalement assez réduite. Les caractéristiques des eaux de ces stations permettent à un nombre modéré d'espèces de se développer.

Nombre de taxons et indice de diversité Indice de diversité H Nombre de taxons 45 40 4,08 35 3,49 30 3 2,89 25 2,38 2,37 20 2,24 1,97 15 **1**,4 10 5 VIS1 VIS2 VIS3 FO1 BU1 LER2 SI G1 BO1 TH1

Figure 11 - Graphique représentant la richesse et la diversité du peuplement de diatomées des affluents de l'Hérault en 2016

Résultats des indices diatomiques

Les notes IPS et IBD sont assez proches sauf aux stations de la Vis (Vis1 et Vis2). Du fait de la non prise en compte d'un des taxons dominants, *Achnanthidium delmontii*, pour le calcul de l'IBD, un écart de 2,8 et 2,6 points est observé entre les deux indices de ces 2 stations. De plus, la méthode de calcul de ces deux indices n'étant pas la même, il existe une différence de sensibilité face à certains paramètres qui peut aussi expliquer l'écart entre les notes pour une même station.

L'Etat biologique déterminé à partir des résultats de l'EQR, et prenant en compte l'hydroécorégion (HER) dans laquelle se situe chaque station, est « bon à très bon » sur l'ensemble du bassin versant amont (stations de la Vis, de la Foux, de la Buèges et de la Lergue). Une légère dégradation est observée sur la partie aval avec des états écologique classés de « moyen à bon » (présence d'un cortège plus eutrophe).

Il est à noter que pour la station Vis2, seuls 36% des taxons sont pris en comptes pour le calcul de la note. Des réserves sont donc à faire concernant la valeur de la note ainsi que l'état biologique sur cette station.

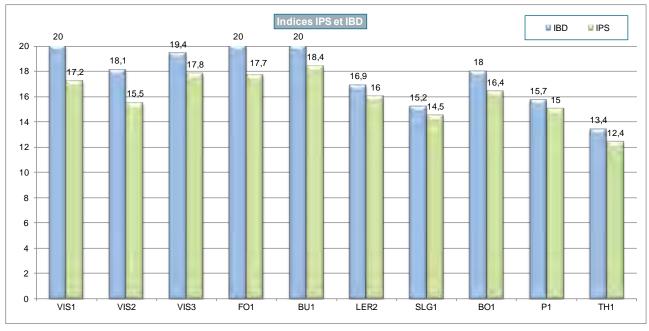
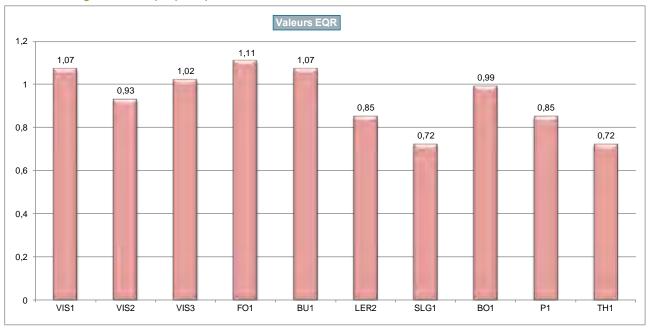



Figure 12 - Graphique représentant les indices IBD et IPS des affluents l'Hérault en 2016.

Figure 13 - Graphique représentant les EQR des diatomées des affluents de l'Hérault en 2016.

Caractéristiques écologiques mises en évidence par l'analyse de Van Dam et al.

Les graphiques présentant les caractéristiques écologiques des espèces (selon la classification de Van Dam et al, 1994) se trouvent en annexe. Le tableau suivant résume les caractéristiques des eaux mises en évidence par l'analyse des préférences écologiques des espèces observées dans les stations des affluents de l'Hérault.

Tableau 36 - Caractéristiques écologiques mises en évidence par les peuplements de diatomées des stations des affluents de l'Hérault (Van Dam et al.)

		an	iuents de i nera	idit (Vali Dalii	ct ai.j	
Cours d'eau	Stations	Oxygène	N-organique	Saprobie (matières organiques)	Trophie (nutriments)	Comparaison avec les résultats physico-chimiques
Vis	VIS1	Très bonne oxygénation mais nombreux taxons non pris en compte	Azote organique présent de façon très occasionnelle	Charge organique réduite	Tendance eutrophe mais nombreux taxons non pris en compte	Le milieu ne semble pas eutrophe, les nitrates et occasionnellement de phosphore sont présents à de faibles concentrations.
Vis	VIS2	Très bonne oxygénation mais nombreux taxons non pris en compte	A priori, azote organique présent de façon très occasionnelle	A priori, charge organique réduite	Nombre de taxons non pris en compte trop important	Pas d'eutrophisation du cours d'eau. Présence de nitrates à de faibles concentrations, pas d'autres formes d'azote, ni de phosphore détectées.
Vis	VIS3	Très bonne oxygénation	Azote organique présent de façon très occasionnelle	Charge organique réduite	Nettement eutrophe	Le peuplement de diatomées semble refléter les apports de St-Laurent-le-Minier (eaux usées) qui ne sont pas mis en évidence par les résultats physico-chimiques.
Foux	FO1	Très bonne oxygénation	Azote organique présent de façon très occasionnelle	Charge organique réduite	Tendance eutrophe à mésotrophe (riche en nutriments)	Charge en nutriments (azote et phosphore) très faible.
Buèges	BU1	Très bonne oxygénation	Azote organique présent de façon très occasionnelle	Charge organique réduite	Tendance eutrophe à mésotrophe (riche en nutriments)	Des apports d'eaux usées (STEP de St-Jeau-de-B) sont mis en évidence par les analyses bactériologiques mais pas la physico-chimie.
Lergue	LER2	Très bonne oxygénation	Azote organique présent de façon très occasionnelle	Charge organique réduite	Tendance eutrophe (riche en nutriments)	En accord avec les résultats physico-chimiques
Salagou	SLG1	Oxygénation bonne à modérée	Azote organique présent de façon très occasionnelle	Charge organique réduite	Nettement eutrophe (riche en nutriments)	En accord avec les résultats physico-chimiques, excepté pour l'oxygénation qui est plus pénalisante au regard des mesures in-situ.
Boyne	BO1	Très bonne oxygénation	Azote organique présent de façon très occasionnelle	Charge organique réduite	Nombre de taxons non pris en compte trop important	En accord avec les résultats physico-chimiques
Peyne	P1	Très bonne oxygénation	Azote organique présent de façon très occasionnelle	Charge organique réduite	Tendance eutrophe (riche en nutriments)	En accord avec les résultats physico-chimiques
Thongue	TH1	Très bonne oxygénation	Azote organique présent de façon très occasionnelle	Charge organique réduite	Nettement eutrophe (riche en nutriments)	En accord avec les résultats physico-chimiques : charge élevée en azote et en phosphore.

5.4.3. Données complémentaires

Tableau 37 - Résultats des inventaires diatomiques (IBD) réalisés en 2016 dans l'Hérault et ses affluents dans le cadre des réseaux de surveillance.

des reseaux de surveinance.							
Cours d'eau	Station	Code	Code Agence de l'Eau	Réseau	IBD 2016	EQR	Remarques
HERAULT	Valleraugue 2	-	6181910	RCS	19,9	1,06	
HERAULT	Brissac	H9	6182050	RCS			non calculable (% UD contributifs < 25%)
HERAULT	Aspiran	H17	6183500	RCS	15,9	0,78	
HERAULT	Florensac / Bessan	H22	6184000	RCS	15,5	0,75	
ARRE	Saint-André-de- Majencoules	-	6181906	RCS	17,3	0,88	
VIS	Blandas	VIS0	6181945	RCS			résultats non parvenus au 22/03/2017 (MO : DREAL Occitanie)
BUEGES	Pégairolles de Buèges	-	6182062	RCS	19,3	1,02	
LERGUE	Brignac	L3	6183000	RCS	15,9	0,87	
PEYNE	Pézenas	P2	6183800	RCS			station du Contrôle opérationnel sortie du réseau au 31/12/2015
THONGUE	St-Thibéry	TH2	6183850	RCS	13,6	0,74	
LA GLEPPE	Avèze	-	6181210	СО	18,3	0,95	
CRENZE	St-Laurent-le- Minier	-	6195330	СО	13,1	0,71	
LERGUE	Lodève	L1	6182460	со			station du Contrôle opérationnel sortie du réseau au 31/12/2014

Code couleur état écologique invertébré et diatomées selon l'arrêté du 25 janvier 2010 modifié en juillet 2015

Les données complémentaires confirment la bonne qualité des peuplements de diatomées de l'Hérault et de ses affluents dans la partie amont du bassin versant. Une dégradation est constatée dans l'Hérault à l'aval de Pézenas (Bessan H22) et la Thongue à Saint-Thibéry. Ces stations sont caractérisées par un état écologique moyen.

Notons que la Crenze, affluent de la Vis à Saint-Laurent-le-Minier en amont de la station VIS3 présente, elle aussi, un peuplement de diatomées moyen qui reflète une qualité de l'eau dégradée.

5.4.4. Evolution par rapport aux précédents suivis

L'Hérault

Le même suivi avait été réalisé lors des étés 2011 et 2015. L'état biologique était alors globalement bon à très bon vers l'amont puis une légère dégradation apparaissant à l'aval de Pézenas. Les données IBD 2011 et 2015 sont comparées à celles de 2016 dans les graphiques suivants.

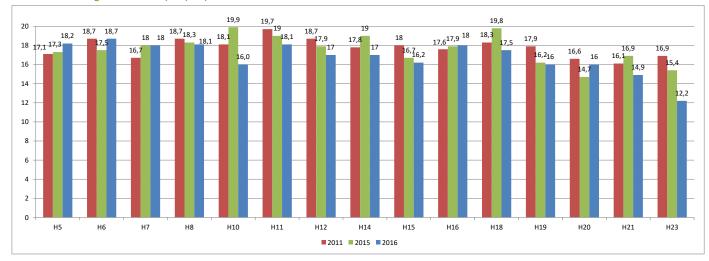
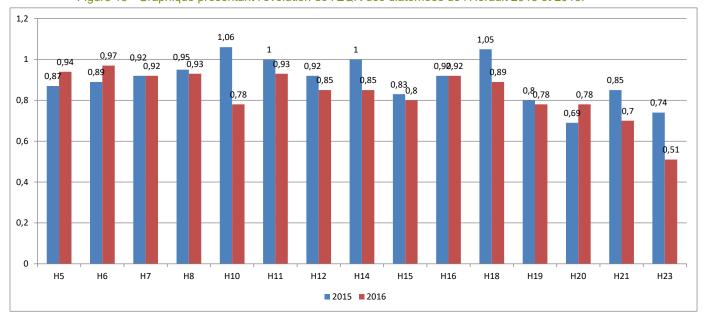



Figure 14 - Graphique présentant l'évolution de l'indice IBD entre 2011 et 2016 dans l'Hérault.

Figure 15 - Graphique présentant l'évolution de l'EQR des diatomées de l'Hérault 2015 et 2016.

Il apparait que l'état biologique observé en 2016 (EQR) au travers de l'étude des peuplements de diatomées est assez proche de celui relevé en 2015.

Toutefois, pour les stations H10 et H23, et dans une moindre mesure H14 et H18, une diminution de la note EQR est observée. Un changement de cortège sur ces stations en est à l'origine (augmentation des taxons eutrophes).

Les affluents de l'Hérault

Le même suivi avait été réalisé au cours des étés 2011 et 2015. L'état biologique était alors apparu comme « très bon » dans la Vis, la Fous et la Buèges et « bon » dans la Lergue. Le Salagou la Peyne et la Thongue avait été considéré comme seulement en état écologique « moyen ». Les données IBD alors obtenues sont comparées à celles relevées en 2016 dans les graphiques suivants.

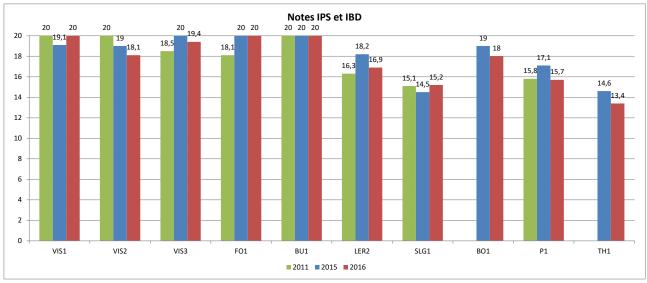
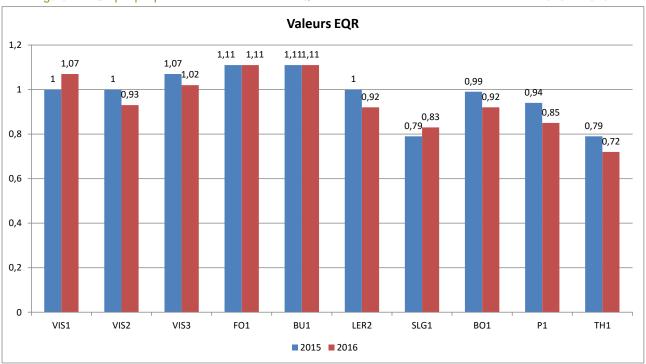



Figure 16 - Graphique présentant l'évolution de l'indice IBD entre 2011 et 2016 dans les affluents de l'Hérault.

Figure 17 - Graphique présentant l'évolution de l'EQR des diatomées des affluents de l'Hérault 2015 et 2016.

En 2016, les résultats obtenus sont équivalents à ceux de 2011 et 2015.

Les cours d'eau situés dans la partie aval du bassin versant sont toutefois de qualité sensiblement inférieure.

5.4.5. Conclusion

En 2016, les peuplements de diatomées de l'Hérault caractérisent un état écologique « très bon » en amont et dans les gorges, excepté à Agones (H7) et Causse-de-la-Selle (H10). La qualité du peuplement est globalement un peu moins favorable vers l'aval mais reste toutefois « bonne » jusqu'à Pézénas.

Une dégradation notable est observée à Pézenas et Agde. L'analyse des peuplements invertébrés conduit à des conclusions assez semblables. Les analyses physico-chimiques ne mettant pas en évidence de dégradation de la qualité de l'eau, la baisse d'indice IBD observée pourrait être liée aux caractéristiques physiques du site (station profonde) et à ses difficultés d'échantillonnage, ou à des pollutions ponctuelles.

Le Salagou la Peyne et la Thongue sont les affluents pour lesquels le peuplement de diatomées est le plus défavorable (état écologique « moyen »). Dans el Salagou et la Thongue, les débits d'étiage sont très faibles (assèchement total de la Thongue en étiage) et des perturbations sont mises en évidence par les analyses physico-chimiques.

Dans le Salagou, des désoxygénations importantes sont relevées, tandis que dans la Thongue, la charge en nutriments est élevée, témoignant d'apports d'eaux usées. Les résultats de l'analyse du peuplement invertébré dans la Thongue mettent également en évidence un état écologique « moyen ».

A l'inverse, dans le Salagou, ils sont nettement plus favorables que ceux des diatomées. La station SLG1 se situe dans une zone ombragée et encaissée où le substrat est essentiellement composé d'un sable grossier issu de la dégradation des ruffes. Ces conditions sont peu favorables au développement des diatomées prises en compte dans l'IBD qui prolifèrent dans les zones éclairées et sur des substrats minéraux : pierres, galets ou blocs.

Les autres affluents présentent un « bon » voire « très bon » état écologique. Les diatomées sont globalement en accord avec les résultats du suivi physico-chimique et du peuplement invertébré.

On ne note pas d'évolution importante des peuplements de diatomées de l'Hérault et de ses affluents depuis 2011 excepté :

- une baisse des indices dans l'Hérault à Causse-de-la-Selle (H10) et Agde (H23) ainsi que dans la Vis à Gorniès (VIS2)
- une dégradation des affluents situés dans la partie aval du bassin versant (Boyne, Peyne et Thongue).

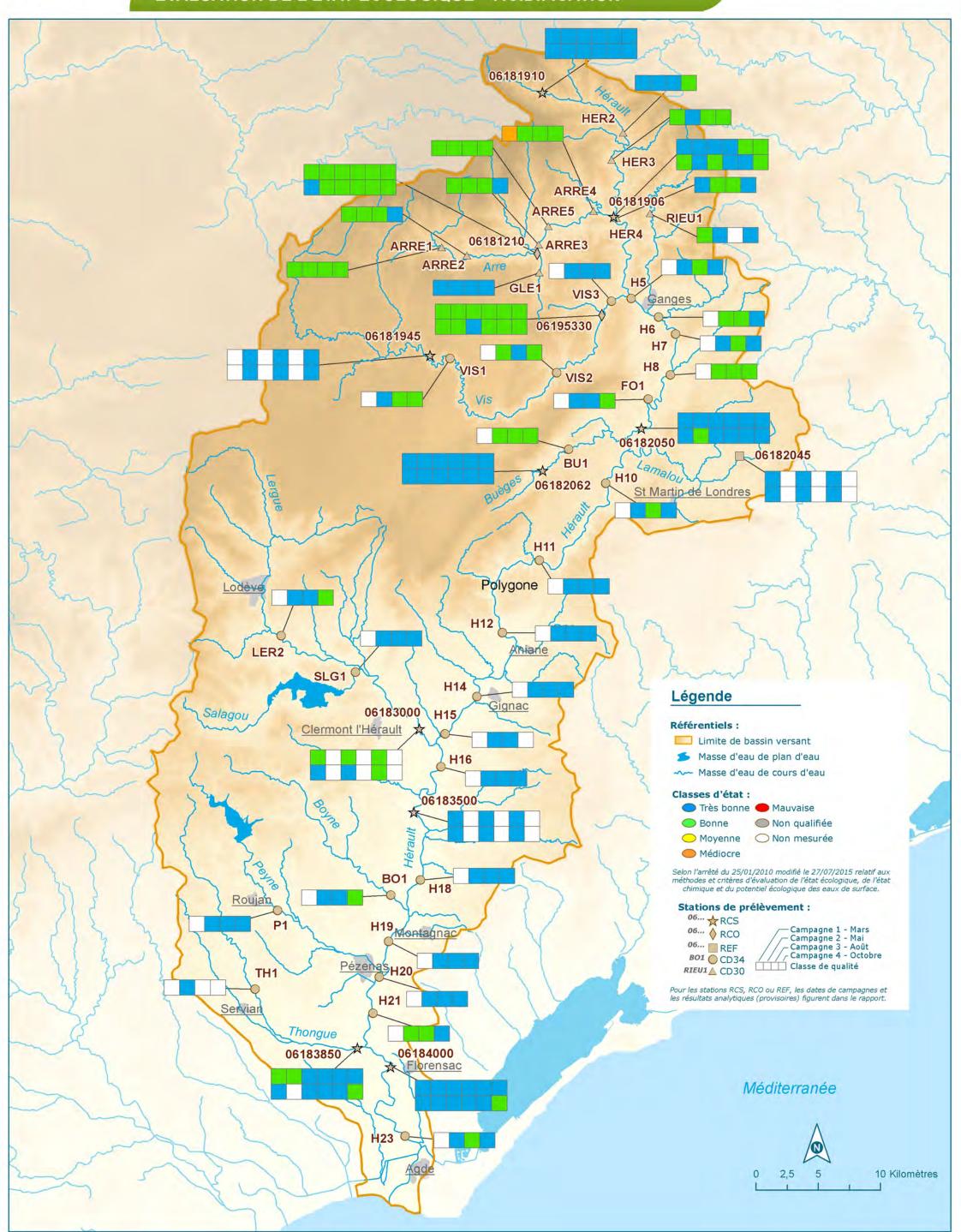
6. CONCLUSION

6.1. CONCLUSION SUR LA QUALITÉ ACTUELLE ET SON ÉVOLUTION

La qualité de l'Hérault et de ses affluents est présentée par les cartes suivantes selon les différentes altérations du SEQ-eau et les éléments de l'état écologique :

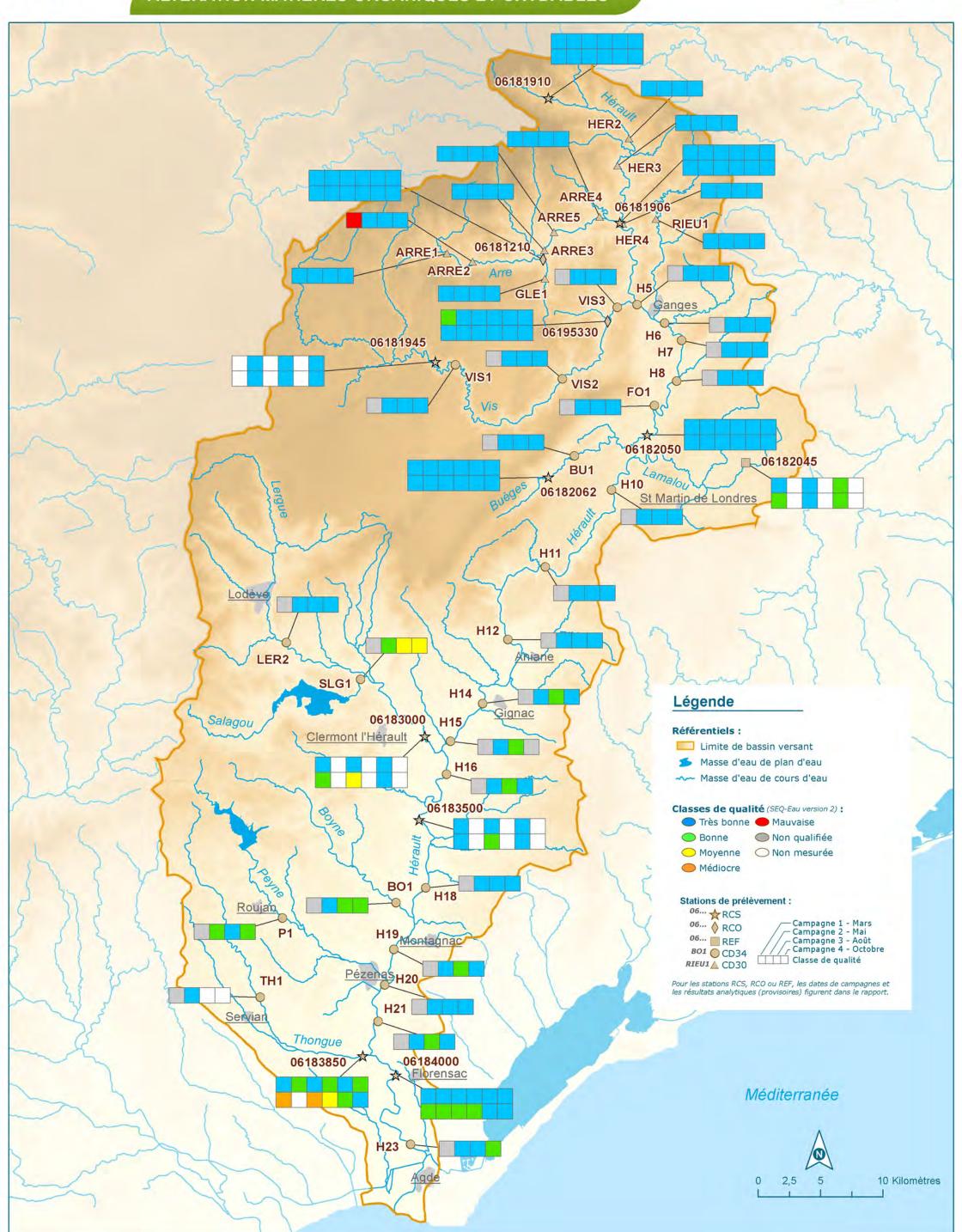
- Acidification
- Matières organiques et oxydables
- Bilan de l'oxygène
- Azote
- Nitrates
- Phosphore
- Nutriments

Deux cartes de synthèse reprennent l'ensemble des altérations du SEQ-Eau avec et sans la bactériologie.

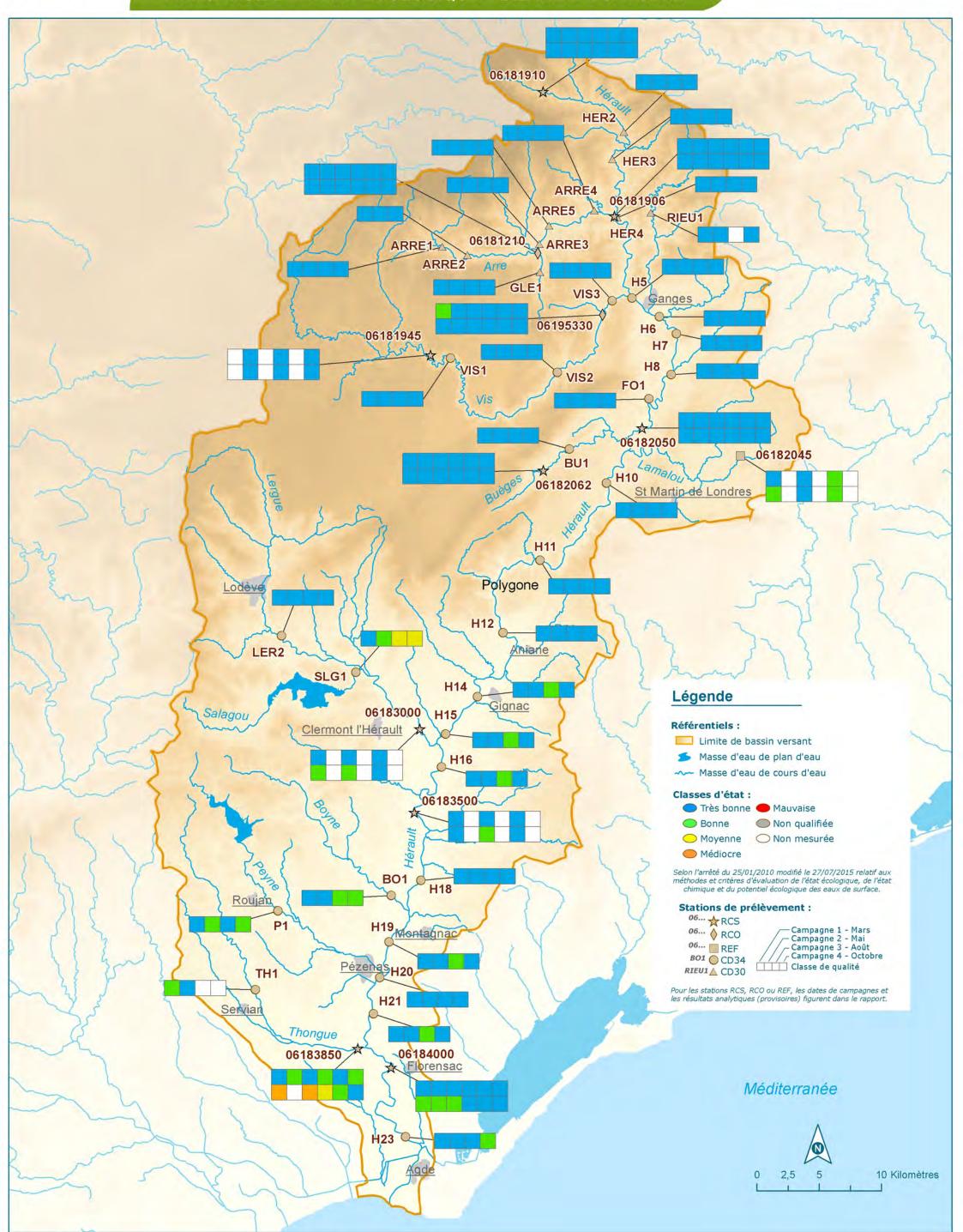

L'évolution de la qualité de l'Hérault et de ses affluents dans le département de l'Hérault entre 2011 et 2015 est ensuite présentée dans le Tableau 38.

Ce tableau propose une synthèse de la qualité physico-chimique et bactériologique au regard du SEQ-Eau version 2 en 2011, 2015 et 2016. Il permet ainsi de visualiser son évolution. Pour les classes d'aptitude jaune, orange et rouge, l'altération en cause est indiquée.

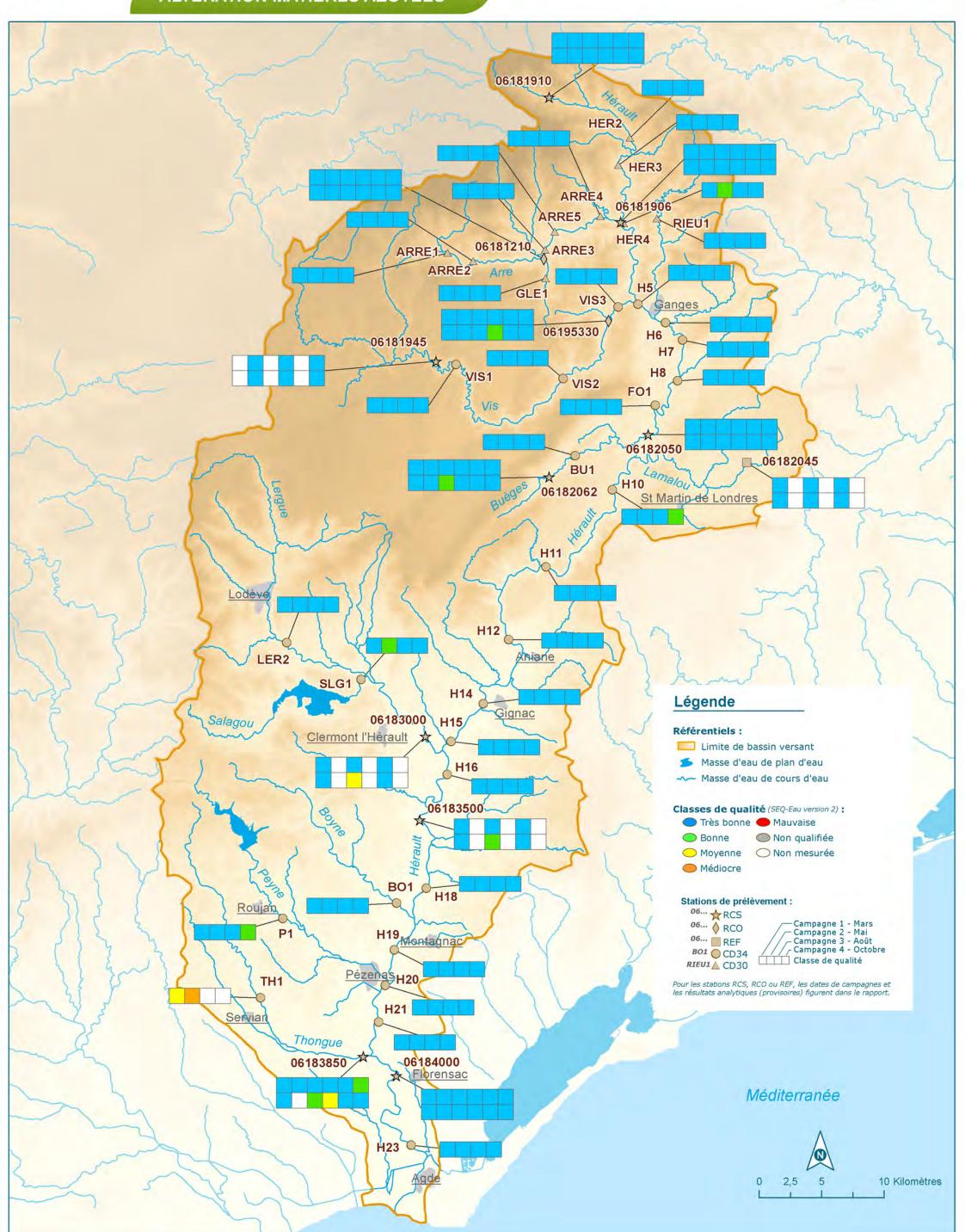
Les résultats des analyses biologiques (invertébrés et diatomées) sont également présentés selon les couleurs de l'état écologique (arrêté du 25 janvier 2010) et comparés.


Perault

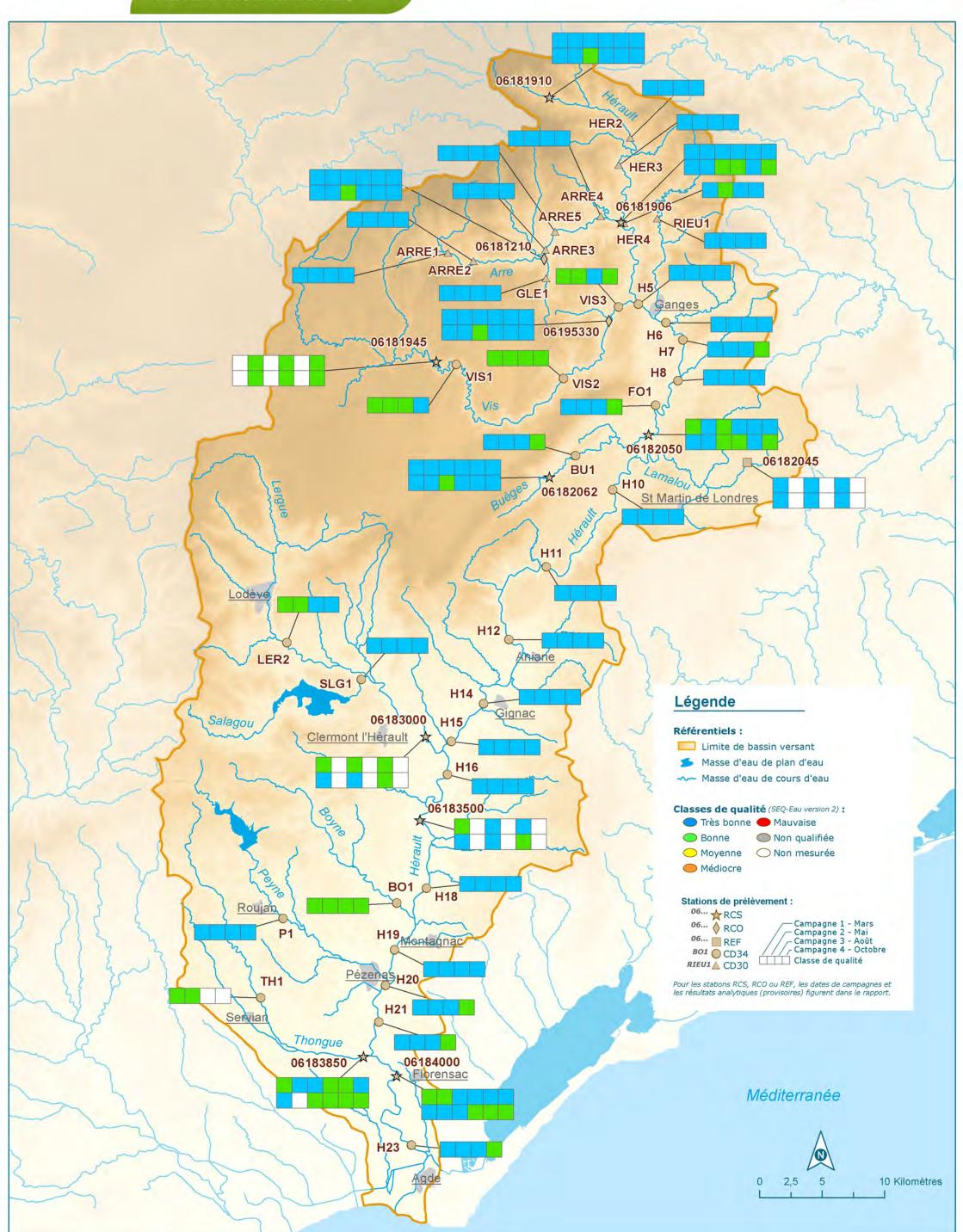
EVALUATION DE L'ETAT ECOLOGIQUE - ACIDIFICATION


Departement

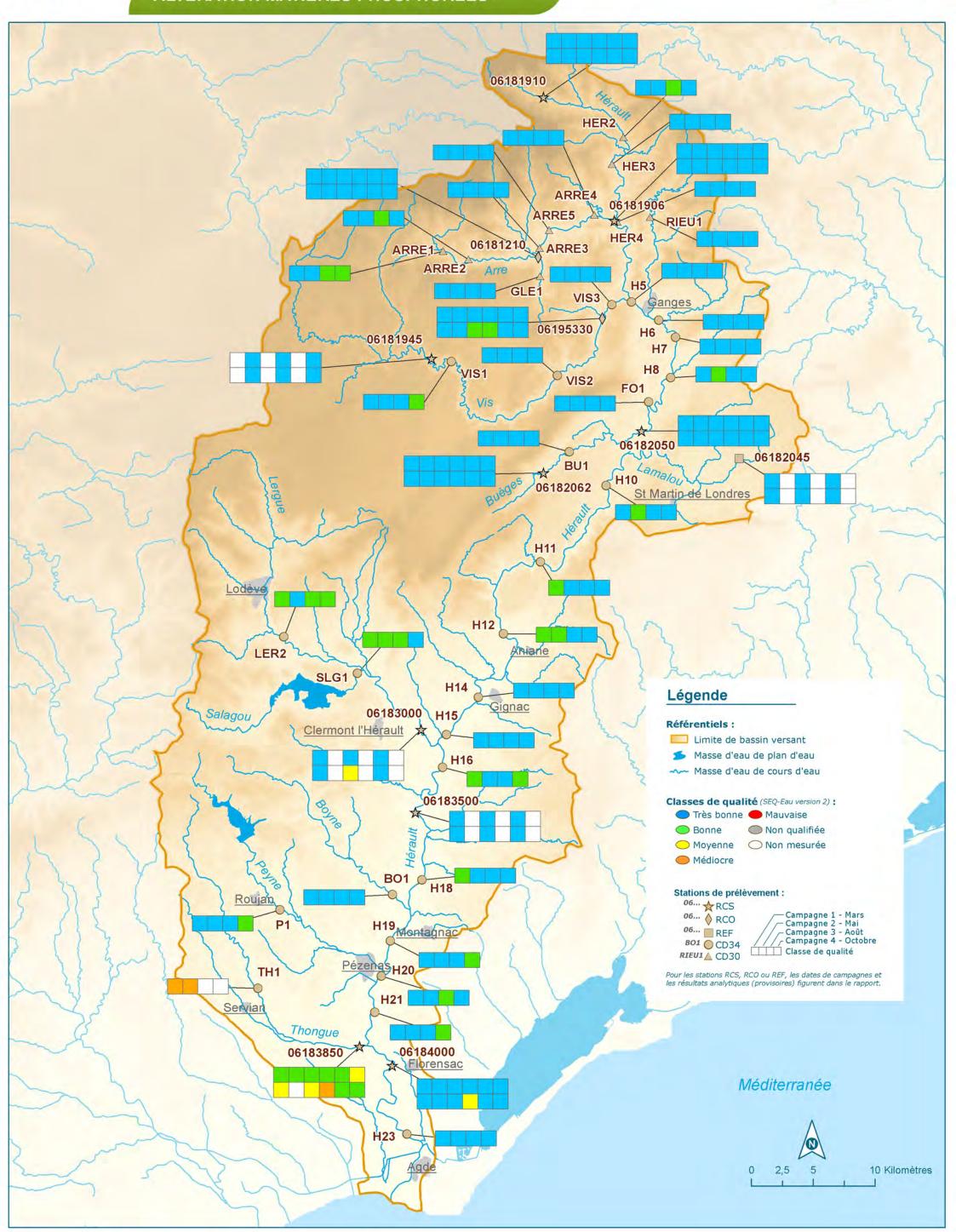
ALTERATION MATIERES ORGANIQUES ET OXYDABLES


Departement

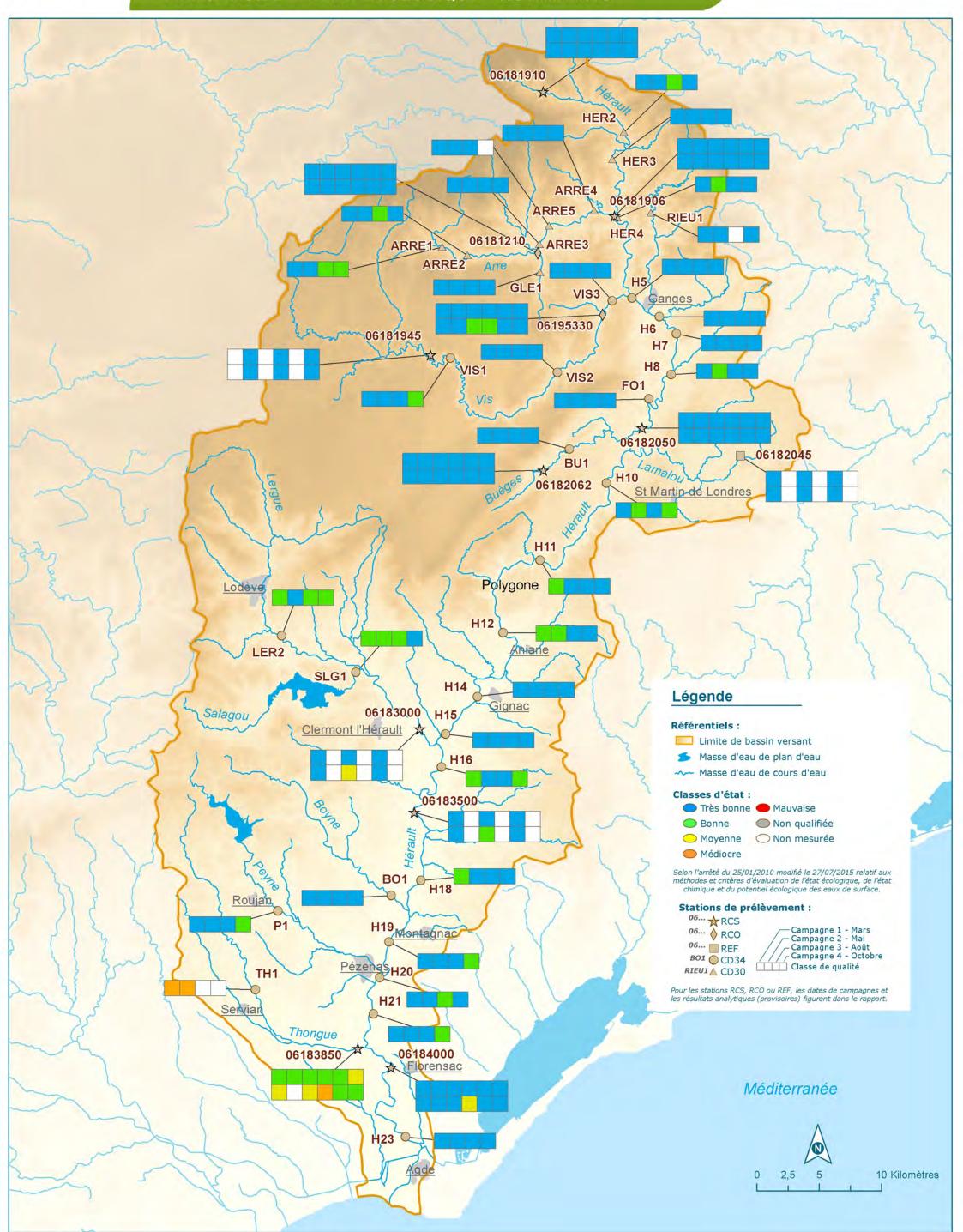
EVALUATION DE L'ETAT ECOLOGIQUE - BILAN DE L'OXYGENE


Departement

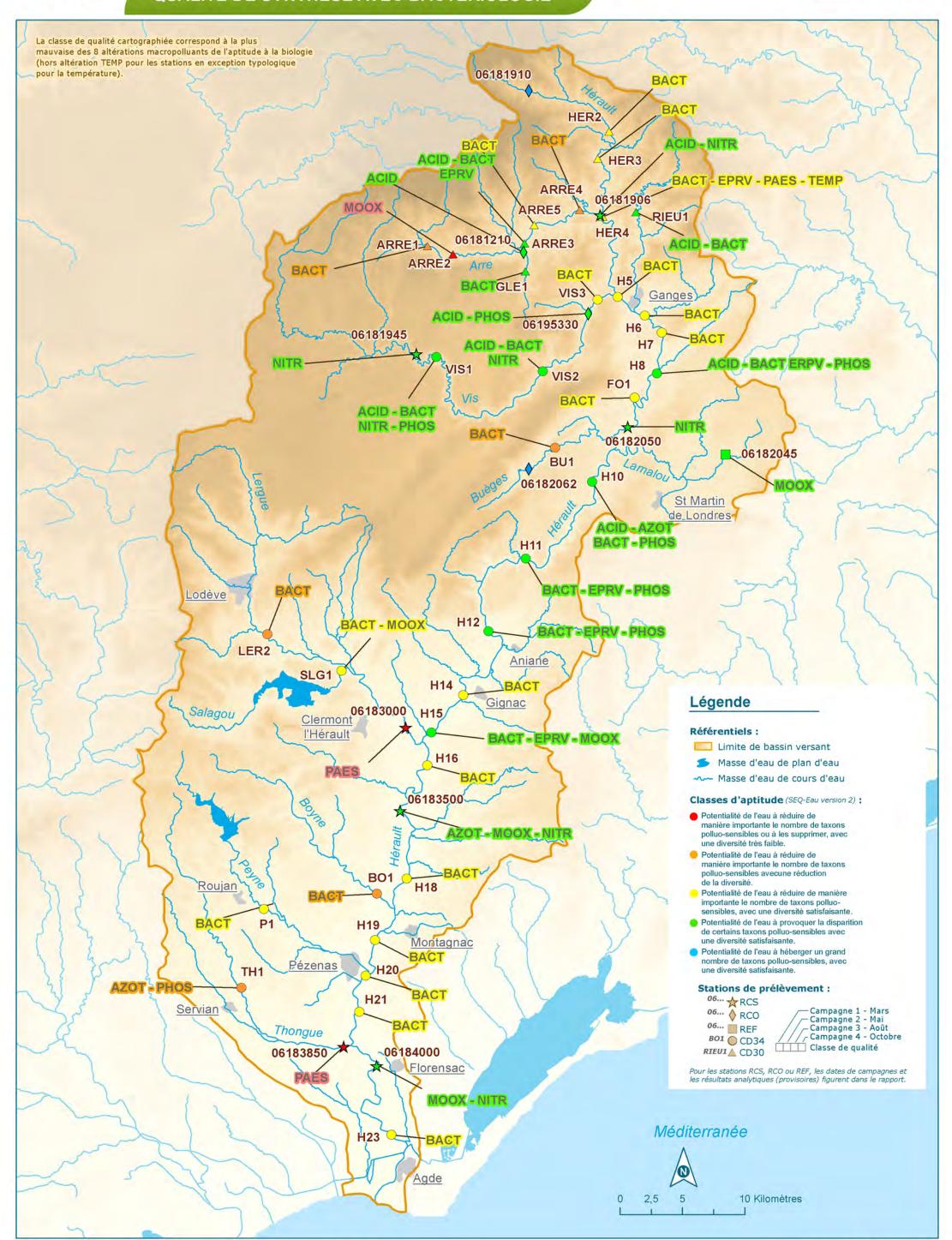
ALTERATION MATIERES AZOTEES


Departement

ALTERATION NITRATES

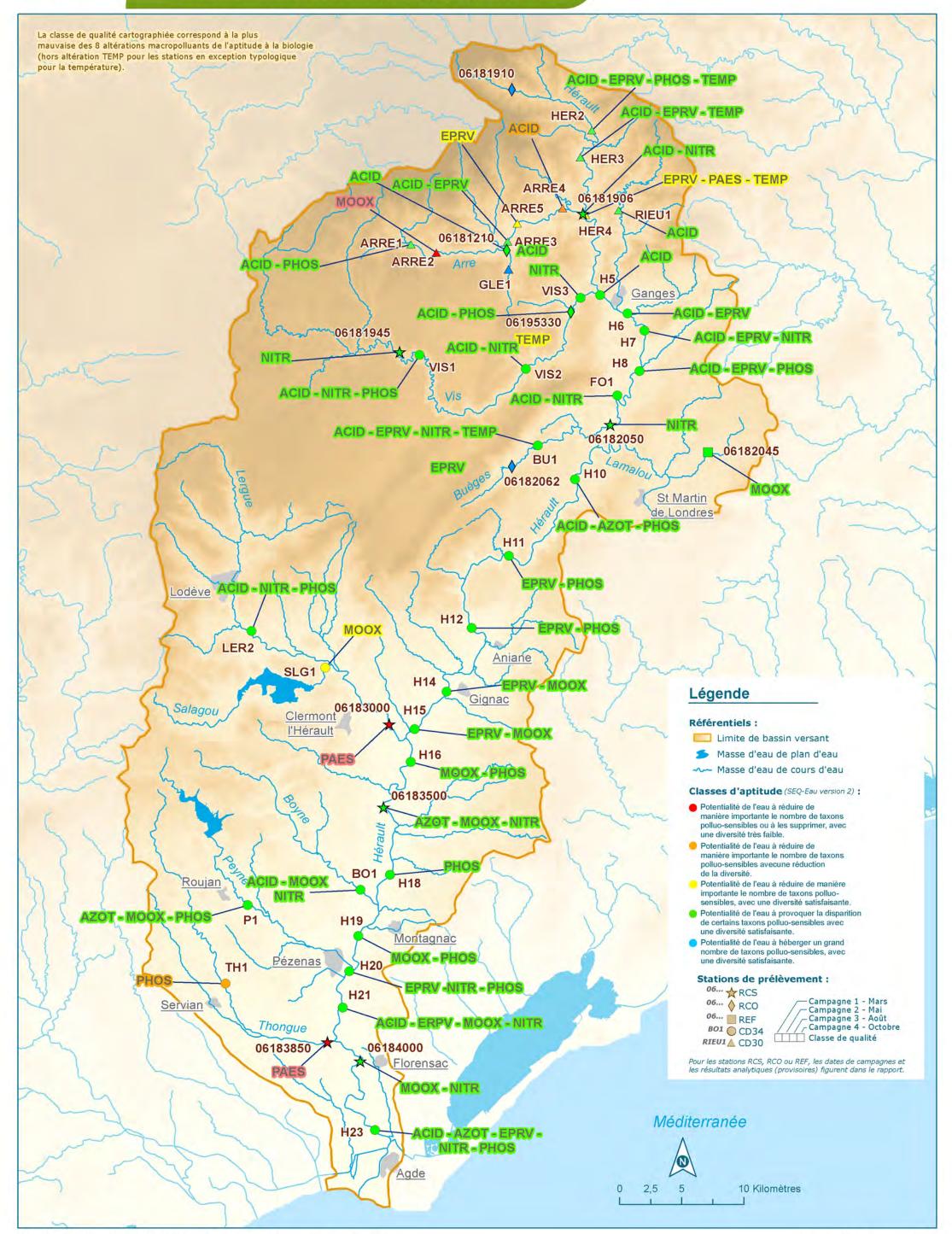

Departement

ALTERATION MATIERES PHOSPHOREES


Pepartement

EVALUATION DE L'ETAT ECOLOGIQUE - NUTRIMENTS

Departement


QUALITE DE SYNTHESE AVEC BACTERIOLOGIE

Etude de la qualité des eaux du bassin versant de l'Hérault Campagnes de 2016

Departement

QUALITE DE SYNTHESE SANS BACTERIOLOGIE

INDICE BIOLOGIQUE GLOBAL NORMALISE

INDICE BIOLOGIQUE DIATOMEES

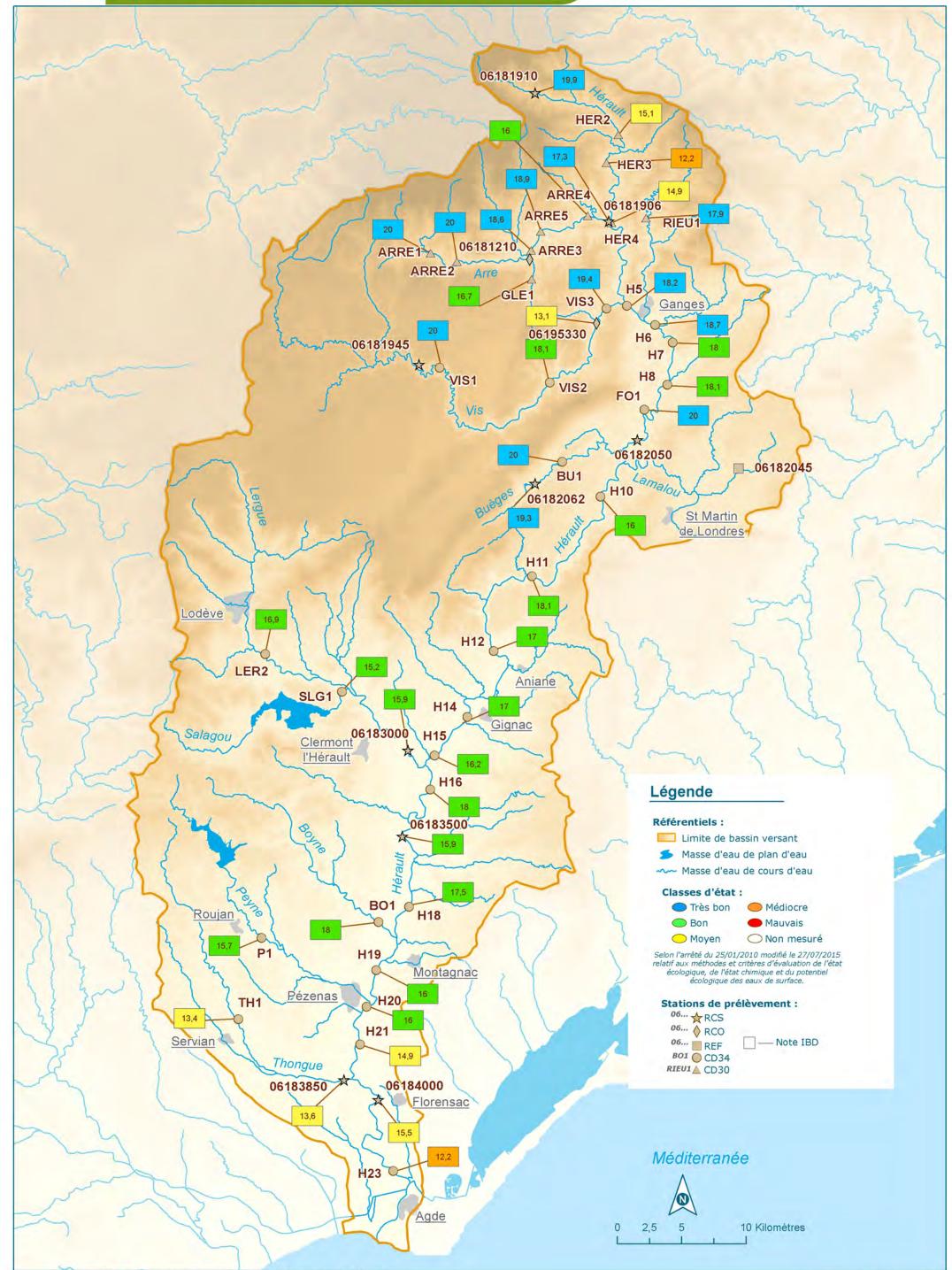


Tableau 38 : synthèse de la qualité de l'Hérault et de ses affluents dans le département de l'Hérault – 2011, 2015 et 2016

			Ph	ysico-ch	nimie géi	nérale	Bactériologie					tébrés	(équiva	lent IBGN)	Diatomées (IBD)				
code station	Station (libellé)	Code du suivi départemental	2011	2015	2016	Evolution	2011	2015	2016	Evolution	2011	2015	20126	Evolution	2011	2015	2016	Evolution	
06181990	HERAULT A CAZILHAC	H5				=				=				A				A	
06182000	HERAULT A LAROQUE	H6	EPRV			A				=				=				=	
06182020	HERAULT A AGONES	H7	EPRV			A				=				A				=	
06182030	HERAULT A ST-BAUZILLE- DE-PUTOIS	H8	EPRV	EPRV		A				A				=				•	
06182050	HERAULT A BRISSAC 1	H9 (RCS-CO)												=				▼	
06300051	HERAULT A CAUSSE-DE- LA-SELLE 1	H10				=				A				=				•	
06182120	HERAULT A PUECHABON	H11				=				A				=				▼	
06184510	HERAULT A ST-JEAN-DE- FOS 3	H12				=				A								▼	
06182300	HERAULT A ST-JEAN-DE- FOS 2	H13																	
06182400	HERAULT A GIGNAC	H14		ACID		=				=				=				=	
06182900	HERAULT A POUZOLS	H15				=				A								=	
06183200	HERAULT A CANET	H16				=				=				=				=	
06183500	HERAULT A ASPIRAN	H17 (RCS)				=								=				▼	
06183685	HERAULT A ST-PONS-DE- MAUCHIENS	H18				=				=				A				▼	
06183700	HERAULT A PEZENAS 1	H19				=				=								=	
06183820	HERAULT A PEZENAS 2	H20				=				=				=				=	
06183835	HERAULT A PEZENAS 3	H21				=				=								▼	
06184000	HERAULT A FLORENSAC	H22 (RCS-CO)												A				=	
06184200	HERAULT A AGDE 6	H23				=				=				A				•	

			Physico-chimie générale					Bact	tériolo	gie	Inver	tébrés	(équiva	lent IBGN)	Diatomées (IBD)				
code station	Station (libellé)	Code du suivi départemental	2011	2015	2016	Evolution	2011	2015	2016	Evolution	2011	2015	20126	Evolution	2011	2015	2016	Evolution	
06181945	VIS A BLANDAS	RCS-CO-REF																=	
06181950	VIS A ST-MAURICE- NAVACELLES	Vis1		ACID		=				=				=				=	
06181960	VIS A GORNIES	Vis2		ACID		=				=				A				▼	
06181980	VIS A ST-LAURENT-LE- MINIER	Vis3				=				=				A				=	
06182045	LAMALOU A LE-ROUET	Lam0		MOOX		A													
06184630	LAMALOU A BRISSAC	Lam1 (CO/étude)																	
06184640	RUISSEAU DE BRISSAC A BRISSAC	Fo1				=				=				=				=	
06182062	BUEGES A PEGAIROLLES- DE-BUEGES	Bu0 (RCS)				A								=				=	
06184620	BUEGES A ST-JEAN-DE- BUEGES 2	Bu1		ACID		=				A				=				=	
06182460	LERGUE A LODEVE 3	Ler1																	
06300053	LERGUE A LODEVE 2	Ler2		ACID		=				A				A				=	
06183000	LERGUE A BRIGNAC	Ler3 (RCS-CO)			PAES									▼				=	
06182600	SALAGOU A LE-BOSC	Slg1	MOOX	моох	MOOX	A				A				=				A	
06183900	BOYNE A CAZOULS- D'HERAULT 2	Bo1				=				=				=				▼	
06183750	PEYNE A ROUJAN	P1	MOOX			A				=				A				A	
06183800	PEYNE A PEZENAS	P2 (CO)												A				A	
06183840	TONGUE A SERVIAN	Th1	моох	PHOS	PHOS	=				=				=				▼	
06183850	THONGUE A ST-THIBERY	Th2 (RCS-CO)		MOOX	PAES	=								▼				=	

Classes de qualité physico-chimie et bactériologie selon le SEQ-Eau version 2

Très bonne moyenne médiocre mauvaise

Code couleur état écologique invertébré et diatomées selon l'arrêté du 25 janvier 2010 modifié en juillet 2015

NB : L'évolution est indiquée par comparaison entre les années de suivi 2011 et 2016 ou, à défaut de chronique de données complète, entre les autres années disponibles.

6.1.1. L'Hérault

Les résultats du suivi de l'année 2016 sont assez proches de ceux obtenus en 2015. La qualité physico-chimique de l'Hérault est globalement bonne et ne présente pas de signe de perturbation particulière. La charge en nutriments est faible sur l'ensemble des stations suivies. La tendance à l'amélioration de la qualité de l'eau depuis 2011 à Laroque (H6), Agones (H7) et Saint-Bauzille-de-Putois (H8) observée en 2015 se confirme cette année. Les sursaturations observées lors des suivis précédents ont disparu en 2016. La température de l'eau a atteint des valeurs élevées en période estivale à l'aval des gorges et plus particulièrement à partir de Saint-Pons-de-Mauchiens, à l'image de ce qui a été observé lors des suivis précédents. Dans ces secteurs, les écoulements lents et l'éclairement du lit favorisent le réchauffement de l'eau.

A l'instar des précédents suivis, la bactériologie constitue encore en 2016 le paramètre le plus déclassant.

Dans le Gard, une pollution bactériologique importante atteint l'Hérault à Pont-d'Hérault notamment (bactériologie élevée relevée dans le cadre du suivi départemental, interdiction de baignade). La mauvaise qualité bactériologique du fleuve en amont de notre secteur d'étude persiste vers l'aval à Cazilhac (H5) et Laroque (H6).

En amont de Brissac (à H8) la qualité bactériologique relevée en 2016 est meilleure qu'en 2015 et assez semblable à celle observée en 2011 (bien que les couleurs soient différentes). En effet, les valeurs moyennes observées en 2011 sont directement liée à des épisodes pluvieux importants qui se sont déroulés avant ou au moment des campagnes de mesures de mars et novembre 2011. Si l'on exclue ces conditions particulières, et que l'on compare les valeurs obtenues par temps sec, les résultats sont proches de ceux de 2016.

A l'aval de Laroque, la contamination bactériologique dépasse tout juste le seuil de qualité « moyenne », excepté ponctuellement à Gignac (H14), Canet (H16) et Pézenas (H21) où elle est plus importante. Dans le secteur des gorges, les résultats des suivis réalisés en 2015 et 2016 indiquent une amélioration de la qualité bactériologique depuis 2011.

A l'aval, dans la plaine, les travaux d'amélioration des systèmes d'assainissement de Saint-André-de-Sangonis notamment, Jonquières, Tressan, Adissan, et dans une moindre mesure d'Aumelas, semblent avoir eu un effet bénéfique parfois bien marqué (station H15) sur la qualité bactériologique de l'Hérault. Un nouveau lagunage à Pouzols, en amont de Canet et la nouvelle station de Tressan, en amont d'Aspiran devraient contribuer à améliorer encore la qualité de l'eau de l'Hérault. Des mesures ont également et prises pour améliorer le fonctionnement des réseaux d'assainissement dans la plaine (Lézignan-la-Cèbe, Nézignan) notamment par temps de pluie.

La bactériologie relevée à Agde (H23) en 2016 est plus favorable qu'en 2011 et 2015. La mise en service en 2015 de la station de Bessan semble avoir également favorisé la diminution de la charge bactériologique de l'Hérault dans ce secteur.

On ne relève pas de pollution par les pesticides dans l'Hérault en 2016, comme en 2015.

A l'inverse, une pollution significative par les métaux est observée en 2016. En effet, à partir de Laroque (H6), les eaux sont contaminées par du plomb et du zinc et une concentration élevée en arsenic est relevée à Puechabon (H11). Les métaux proviennent du lessivage d'anciens sites miniers, notamment celui des Malines qui se situe au bord de la Vis, affluent qui rejoint l'Hérault à Cazilhac.

L'analyse des peuplements invertébrés de l'Hérault révèle un très bon état biologique sur la quasitotalité de son linéaire. Seules les stations Hérault à Canet (H16) et Hérault à Agde (H23) présentent des états biologiques qualifiés de « bons ». A Canet, l'analyse de la qualité de l'eau ne révèle pas de pollution importante, toutefois, elle montre quelques signes de perturbation (présence de phosphore et bactériologie moyennement élevée). Des apports ponctuels et la fréquentation du site par les baigneurs peuvent avoir un impact sur les populations invertébrées. La station d'Agde semble être plus « pénalisée » par sa qualité physique, et notamment par des habitats aquatiques homogènes, que par la qualité de l'eau (aucune pollution détectée). Les résultats obtenus cette année confortent l'amélioration globale de l'Hérault constatée l'année dernière.

Les peuplements de diatomées de l'Hérault caractérisent un état écologique très bon jusqu'à Laroque. La qualité du peuplement est globalement un peu moins favorable vers l'aval mais reste toutefois bonne jusqu'à Pézénas. Une dégradation notable est observée à Agde en 2016 (qualité « médiocre »). Contrairement aux invertébrés, l'évolution des indices IBD et IPS indiquent une légère baisse de la qualité des peuplements à partir de Brissac. La qualité de l'eau de l'Hérault au regard des diatomées est globalement bonne mais ne reflète pas la tendance à l'amélioration mise en évidence par les analyses physico-chimiques et les invertébrés.

D'autres travaux relatifs aux systèmes d'assainissement qui sont d'ores et déjà prévus devraient encore contribuer à l'amélioration de la qualité de l'Hérault :

- amélioration du fonctionnement de postes de relevage défectueux à Ganges,
- construction d'une nouvelle station d'épuration pour Saint-Bauzille-de-Putois et Agonès sans rejet dans le fleuve (2018),
- mise en service à l'automne 2017 d'une station d'épuration à Brissac (hameau de Coupiac),
- poursuite de la modernisation de l'assainissement à Aumelas (en cours),
- résolution des problèmes d'eaux parasites et construction d'une nouvelle station à Aniane (2020),
- modernisation de la station de Canet avec traitement du phosphore (en cours),
- amélioration du réseau de Lézignan-la Cèbe et de Nézignan (en cours).

Certains dysfonctionnements avérés des systèmes d'assainissement ne font l'objet, pour le moment, d'aucun projet de travaux. Le potentiel d'amélioration reste donc important notamment vis-à-vis des points suivants :

- rejets directs dans l'Arre au Vigan (Gard),
- assainissement insuffisant de Pont-d'Hérault (Gard),
- rejets directs dans le Rieutord et mauvais fonctionnement de la station d'épuration à Sumène (Gard),
- mauvais fonctionnement de la station de Lagamas, en amont de Gignac,
- problèmes détectés dans le fonctionnement de la station de Montpeyroux (Saint-Etienne) en amont de Gignac,
- rejets directs par temps de pluie du réseau unitaire du centre ancien de Gignac,
- surcharge de la station de Saint-Pargoire et le mauvais fonctionnement de la station de Vendémian en amont de Saint-Pons-de-Mauchiens.

6.1.2. Les affluents de l'Hérault

La qualité physico-chimique de la Vis est globalement très bonne en 2016 et ne présente pas d'évolution significative depuis 2011.

La qualité bactériologique de la Vis est bonne jusqu'à Gorniès et se dégrade vers l'aval (VIS3). Les analyses réalisées en 2016 (CD34 et ARS) montrent que la charge bactériologique est élevée à partir de Saint-Laurent-le-Minier, notamment à cause des apports du village de Saint-Laurent-le-Minier véhiculés par la Crenze. Cette contamination était déjà mise en évidence en 2011 et en 2015. Malgré la suppression en 2016 des rejets directs d'eaux usées dans la Crenze, aucune amélioration n'est constatée cette année. Le mauvais fonctionnement de la station d'épuration actuellement en service semble même avoir généré une légère dégradation de la qualité bactériologique par rapport à 2015.

La construction d'une nouvelle station d'épuration à Navacelles (en projet) devrait permettre de conserver voire améliorer la qualité physico-chimique et bactériologique de l'eau de la Vis dans ce secteur (VIS1).

Les analyses ont mis en évidence une pollution importante par les métaux à l'aval de Saint-Laurentle-Minier, notamment par le plomb, le zinc et le cadmium. Cette pollution est ancienne (observée lors des précédents suivis) et liée au passé minier de la commune.

Les possibilités d'amélioration de la qualité du cours d'eau vis-à-vis des métaux consistent à réduire les apports en provenance des anciens sites miniers. Un projet de phyto-remédiation et de valorisation a débuté en 2012 sur le site des Malines. Cette année, les résultats sont légèrement plus favorables qu'en 2015, mais les contaminations restent élevées. Il sera intéressant lors des prochains suivis d'observer si ces variations sont liées aux conditions d'échantillonnage ou à une diminution des apports en polluants métalliques.

L'analyse des peuplements invertébrés indique un état biologique « très bon » à Navacelles et Saint-Laurent-le-Minier et seulement « bon » à Gorniès. A l'inverse des résultats bactériologiques auxquels ils sont peu sensibles, les invertébrés observés à Saint-Laurent-le-Minier en 2016 sont plus favorables que lors des suivis précédents.

Les peuplements de diatomées sont très bons. On constate toutefois une légère baisse à Gorniès (Vis2) qui semble liée aux caractéristiques de la station (écoulements lents, profondeur). Les indices ne mettent pas en évidence de dégradation particulière du milieu à la station aval.

La station d'épuration de Saint-Laurent-le-Minier a été remise en service en 2016 mais présente des dysfonctionnements importants. La commune ayant obtenu gain de cause auprès du constructeur, un nouveau projet doit être prochainement soumis aux services de l'Etat.

■ Le Lamalou (suivi DCE)

Le Lamalou est un cours d'eau de bonne qualité. Les perturbations relevées en 2015 (faibles teneurs en oxygène en période estivale) n'ont pas été observées en 2016. Il ne véhicule pas d'apport polluant particulier vers l'Hérault. La modernisation des systèmes d'assainissement de Notre-Dame-de-Londres et Saint-Martin-de-Londres qui a eu lieu depuis 2011 participe certainement au maintien de la bonne qualité de ce cours d'eau.

La Foux

A Brissac, la qualité physico-chimique du ruisseau de la Foux est bonne et stable depuis 2011. Cependant, bien que la charge bactériologique du ruisseau soit le plus souvent faible, des pollutions ponctuelles par des eaux usées ont lieu (observées en aout 2016, octobre 2015, août 2011, juillet et octobre 2007). Cette pollution n'a pas une origine clairement identifiée. Elle peut provenir du lagunage situé en amont du point de prélèvement, de défauts de raccordements dans le village, du hameau de la Papeterie, d'habitations situées au bord du cours d'eau...

Les indices hydrobiologiques (invertébrés et diatomées) sont excellents et indiquent que le cours d'eau est en « très bon » état.

La Buèges

La Buèges possède une excellente qualité d'eau près des sources. A l'aval de Saint-Jean-de-Buèges, la physico-chimie demeure bonne mais la bactériologie se dégrade nettement.

La station d'épuration de Saint-Jean-de-Buèges, qui présente des dysfonctionnements chroniques, génère des apports entraînant de fortes pollutions bactériologiques à l'aval du village (qualité « médiocre » en mars 2016). L'exploitation de cette installation est difficile, notamment en raison de voies d'accès étroites et en mauvais état. La modernisation de cette station améliorerait la qualité bactériologique de la Buèges mais n'apparaît pas prioritaire au regard des difficultés d'accès à l'installation et de l'absence d'objectif de baignade dans le cours d'eau.

Cette année, les indices hydrobiologiques indiquent un « très bon » état écologique de la Buèges. La qualité des peuplements invertébrés à Saint-Jean-de-Buèges est un peu plus favorable qu'en 2015. En dehors de la qualité bactériologique, on n'observe pas de dégradation particulière de la qualité de la Buèges à l'aval de Pégairolles-de-Buèges.

La Lergue

La qualité physico-chimique de l'eau de la Lergue est globalement bonne à l'aval de Lodève (Ler2) mais présente quelques signes de perturbations. La conductivité est globalement élevée et on note la présence de phosphore (concentrations toutefois faibles) qui peuvent indiquer des apports au milieu. Les fortes concentrations en germes bactériens relevées en 2016 confirment la présence d'apports d'eaux usées. Il semble que les effluents de la station d'épuration de Lodève génèrent une pollution bactériologique chronique. A celle-ci s'ajoutent des débordements d'eaux usées épisodiques du réseau unitaire de la ville de Lodève (centre historique).

L'activité agricole qui a lieu dans le bassin versant ne semble pas dégrader significativement la qualité de l'eau. En effet, les nitrates sont présents mais leur concentration reste peu élevée et les analyses n'ont pas révélé de pollution par les pesticides en 2016.

La charge en métaux de la Lergue est faible et ne traduit aucune pollution métallique particulière.

Depuis le dernier suivi, la qualité physico-chimique de l'eau a peu évolué. La contamination bactériologique était déjà présente en 2015. L'absence de suivi bactériologique en 2011 ne permet pas d'estimer l'évolution de ce paramètre sur les 5 dernières années.

Des travaux d'amélioration des systèmes d'assainissement ont été réalisés récemment au niveau des stations d'épuration de Saint-Etienne-de-Gourgas, Saint-Pierre-la-Fage et Soubès en amont de Lodève et du Bosc à Brignac. Bien que ces stations d'épuration soient éloignées de la Lergue et de petite taille, ces investissements participent à la réduction des apports globaux du bassin versant.

Les peuplements invertébrés caractérisent une excellente qualité et un très bon état écologique du cours d'eau. Depuis 2011, on remarque une augmentation de l'indice IBGN qui traduit une amélioration des peuplements invertébrés. Les indices diatomiques sont plus mitigés car ils indiquent un « bon » état écologique et ont peu évolué depuis 2011.

Le Salagou

Les résultats des analyses physico-chimiques réalisées dans le Salagou montrent que la qualité de l'eau est bonne en hiver et au printemps et se dégrade lorsque le débit du cours d'eau est faible. En effet, en été et en automne, l'oxygénation de l'eau est insuffisante et les polluants sont légèrement plus concentrés (notamment le phosphore).

En 2016, la bactériologie est ponctuellement élevée (moyenne en octobre). Cette contamination semble liée à la présence du hameau de Mas-Audran en amont de la station.

Depuis 2011, la qualité physico-chimique s'est nettement améliorée. Des désoxygénations persistent en période estivale mais le COD, les nitrates et le phosphore, sont nettement plus favorables qu'en 2011. La bactériologie a également chuté significativement entre 2011 et 2015. La mise en place du système d'assainissement de Mas Audran a donc eu un effet positif et permis une amélioration de la qualité du cours d'eau. En 2016, une nouvelle station d'épuration mise en service sur la commune du Bosc devrait permettre de poursuivre l'amélioration globale de la qualité du Salagou.

L'analyse du peuplement invertébré est excellente et correspond à un « très bon » état écologique. La note IBGN a néanmoins diminué entre 2015 (20/20) et 2016 (17/20). Cette différence semble liée aux variations des conditions environnementales entre les deux prélèvements. L'état biologique au regard des diatomées est bon depuis 2015.

La Boyne

La qualité physico-chimique de la Boyne est globalement bonne mais reflète néanmoins l'existence d'apports domestiques (minéralisation élevée, contamination bactériologique) qui sont d'autant plus impactants que les débits sont faibles.

L'origine des apports domestiques reste indéterminée (dysfonctionnement momentané de la station d'épuration d'Adissan, rejets non traités en provenance des habitations et des mas agricoles qui bordent le cours d'eau...). La commune de Valmascle a effectué de récents travaux de modernisation de sa station d'épuration. Celle-ci se situe très en amont de la station d'étude et les données collectées dans le cadre de ce suivi ne permettent pas de mettre en évidence les effets de ces travaux. Cependant, ils participent à la réduction de la charge globale du cours d'eau et de ce fait, à l'amélioration de la qualité de l'eau de la Boyne. La commune de Fontes élabore actuellement un schéma directeur d'assainissement qui devrait conduire à une amélioration des infrastructures d'assainissement communal et de leur fonctionnement.

L'activité agricole est importante dans le bassin versant de la Boyne et génère des apports de nitrates dont la concentration reste toutefois peu élevée. L'agriculture génère également une pollution significative par les pesticides qui dégrade nettement la qualité du cours d'eau. Notons que plusieurs molécules qui ont été détectées sont actuellement interdites en France.

La Peyne

La qualité de l'eau de la Peyne est globalement bonne. Seule une minéralisation importante et de légers déficits en oxygène dissous semblent indiquer la présence d'apports domestiques. Depuis 2011, la qualité physico-chimique de la Peyne s'est globalement améliorée. La charge en matières organiques et en nitrites (COD et NO₂) a diminué laissant supposer une diminution des rejets domestiques. Notons qu'aucune amélioration majeure des systèmes collectifs d'assainissement ne nous a été signalée par les services départementaux en amont du point de mesure.

Une contamination bactériologique est relevée en août 2016, indiquant que des apports d'eaux usées contaminent ponctuellement les eaux de la Peyne. Le cours d'eau reçoit les effluents de plusieurs stations d'épuration, la plus proche étant située à Vailhan environ 10 km en amont du point de mesure. Cet éloignement important laisse penser que la pollution bactériologique provient d'une autre source, plus proche. Le défaut d'assainissement des habitations et mas agricoles situés en bordure du cours d'eau (signalés par les services du SPANC de l'agglomération de Béziers) peut générer des pollutions bactériologiques.

La qualité hydrobiologique de la Peyne est bonne. Les indices indiquent un « très bon » état écologique au regard des invertébrés et un « bon état » vis-à-vis des peuplements de diatomées.

Une contamination importante de la Peyne par les pesticides est relevée, particulièrement au printemps. Un grand nombre de molécules ont été détectées, parmi elles, certaines dont l'usage est interdit en France depuis plusieurs années. L'agriculture (principalement la viticulture), très développée dans le bassin versant, génère une pollution importante du cours d'eau.

La Thongue

La qualité physico-chimique de la Thongue à Servian est médiocre en 2016. Les résultats des analyses caractérisent l'existence de pollutions domestiques : la minéralisation est élevée et la charge en nutriments (azote et phosphore) est importante. Ceci est confirmé par la bactériologie élevée observée en mars et en mai 2016. En période estivale, le cours d'eau s'assèche, donc aucune analyse n'a été réalisée en août et en octobre.

A l'aval, à Saint-Thibéry, les analyses réalisées dans le cadre du suivi DCE (RCS et CO) montrent que la qualité de l'eau se dégrade. La charge en matières organiques est élevée et de fortes désoxygénations témoignent de l'eutrophisation importante du cours d'eau.

Le cours d'eau présente également une pollution par les pesticides liée à l'activité agricole très développée dans le bassin versant. Un grand nombre de molécules sont détectées à des concentrations parfois élevées. Parmi ces substances, certaines sont actuellement interdites en France.

Depuis 2011, on ne constate pas d'évolution importante de la qualité de l'eau de la Thongue à Servian. Une dégradation ponctuelle a été relevée en 2015 (qualité « mauvaise ») en raison de fortes concentrations en phosphore au mois d'octobre. En 2016, le phosphore était légèrement plus favorable, toutefois, aucune analyse n'a été réalisée à la reprise des écoulements de l'automne.

Cette année, comme en 2015, la bactériologie est élevée, témoignant de la contamination du cours d'eau par des eaux usées. Notons qu'en 2011, ce paramètre n'a pas été analysé.

La Thongue reçoit les effluents de nombreuses stations d'épuration traitant les eaux usées de communes qui connaissent une forte croissance démographique. Certaines installations sont anciennes et participent à la charge élevée en azote et en phosphore observée. La station de Gabian ne traite pas spécifiquement le phosphore et celle d'Abeilhan présente des problèmes de traitement de l'azote. Des travaux de modernisation de ces deux installations seront réalisés en 2017.

Une nouvelle station d'épuration a été construite à Fos fin 2015. La commune se situe en tête de bassin versant. Cet aménagement est éloigné du point de mesure de Servian mais ces travaux participent à la réduction globale des apports dans le bassin versant.

Les indices biologiques déterminent un état écologique moyen de la Thongue. Les peuplements sont pénalisés par la qualité de l'eau dégradée mais également par la faiblesse des débits en période estivale.

6.2. ORIENTATIONS D'ACTION

Les suivis réalisés en 2015 et 2016 ont permis de caractériser la qualité des principaux cours d'eau du bassin versant de l'Hérault. Au regard de ces conclusions et des objectifs de qualité des milieux, nous proposons ci-dessous une série d'actions prioritaires.

Pour satisfaire les objectifs de baignade de l'Hérault, de la Lergue et de la Vis, il est nécessaire de réduire la contamination bactériologique de ces cours d'eau.

Des efforts doivent être réalisés en vue d'améliorer l'assainissement des communes bordant l'Hérault dans sa partie amont :

- à Ganges, la recherche des points de débordement du réseau d'assainissement doit se poursuivre et ces points doivent être supprimés ;
- nous attirons également l'attention sur l'importance de l'amélioration de l'assainissement de plusieurs communes du Gard : Le Vigan, Sumène et notamment Pont d'Hérault ;
- l'ARS préconise d'accroître la surveillance des systèmes d'assainissement de ce secteur et de poursuivre les interdictions préventives pour les sites de baignade les plus sensibles, en période pluvieuse notamment.

A l'aval des gorges de l'Hérault, plusieurs systèmes d'assainissement présentent un mauvais fonctionnement. La rénovation de ces installations permettrait de **réduire la charge globale des apports qui atteignent l'Hérault.**

- En amont de Gignac, les stations de Lagamas et Montpeyroux présentent des dysfonctionnements tandis que le lagunage de Saint-Jean-de-Fos est en limite de capacité.
- A Gignac, le réseau unitaire du centre-ville doit être amélioré afin de supprimer les débordements par temps de pluie.
- En amont de Saint-Pons-de-Mauchiens, les stations de Saint-Pargoire et Vendémian ont un mauvais fonctionnement

Dans l'Hérault, il convient également de déterminer l'impact des fortes températures sur le milieu aquatique. Nous préconisons la mise en place d'un suivi permettant de mesurer les variations de ces températures en période estivale. Ce qui fournirait ultérieurement des indications quant à la gestion des débits et de la ripisylve.

L'assainissement des communes bordant la Lergue doit également être amélioré. A Lodève, notamment, des travaux importants sur le réseau unitaire sont nécessaires et les déversements chroniques doivent être supprimés.

La vallée de la Vis est un lieu touristique important où l'activité de baignade est beaucoup pratiquée. La station d'épuration de Saint-Laurent-le-Minier (dans le Gard) doit être améliorée. Outre la bactériologie liée aux apports d'eaux usées qui compromet l'activité de baignade, la Vis est atteinte par une forte pollution liée à l'ancien site minier des Malines. Les travaux de restauration et de dépollution du site doivent se poursuivre :

- · limitation du lessivage des sols contaminés,
- phyto-remédiation,
- suivi de la contamination du milieu...

Les résultats du suivi de l'installation épuratoire située sur le site minier dont dispose la DDTM (30 et 34) devront être utilisés pour estimer la charge polluante qui atteint la Vis. Cette contamination par les métaux lourds, le plomb, l'arsenic et le cadmium s'étend dans l'Hérault.

La contamination de l'Hérault par les métaux n'est actuellement pas précisément caractérisée. Pour définir l'étendue de la contamination et son évolution, il faudrait réaliser des analyses sur l'ensemble du cours du fleuve selon un protocole rigoureux qui permettrait notamment de tenir compte d'éventuelles hétérogénéités longitudinales et transversales dans la répartition des polluants au sein des masses d'eau ou des sédiments. Les résultats des analyses de sédiment réalisées à Brissac, Aspiran et Florensac par l'Agence de l'Eau dans le cadre des réseaux de surveillance pourront également être exploités.

Les autres cours d'eau n'ont pas d'objectif de baignade mais feront l'objet de préconisations visant à favoriser l'amélioration de leur qualité physico-chimique ou biologique.

A Saint-Jean-de-Buèges, les dysfonctionnements de la station d'épuration génèrent principalement une pollution bactériologique dans **la Buèges**. L'amélioration de cette installation n'apparait toutefois pas prioritaire en raison des difficultés de mise en œuvre de travaux et de l'absence d'objectif de baignade dans la Buèges.

Actuellement, les apports au Salagou proviennent de fuites sur les vannes de la prise d'eau de la conduite forcée, qui alimente la centrale hydroélectrique, et les vannes de vidange. La prise d'eau se situe environ 30 m sous la surface de l'eau et les vannes de vidange au fond de la retenue. L'eau qui alimente le Salagou est donc pauvre en oxygène. Le Salagou à l'aval du barrage bénéficierait probablement d'une meilleure oxygénation de l'eau en période estivale si un débit réservé était prélevé au-dessus de l'oxycline de la retenue. Les possibilités techniques d'une telle solution (modification de la prise d'eau) devront être étudiées avec BRL, le gestionnaire du barrage. A défaut, la mise en place d'un système de ré-oxygénation de l'eau il pourrait également être envisagé.

Les cours d'eau de plaine (Boyne, Thongue et Peyne) reçoivent des effluents de stations d'épuration, mais également des eaux usées peu ou pas traitées provenant de mas agricoles ou d'habitations bordant les cours d'eau. L'identification de ces rejets et leur suppression permettraient d'améliorer sensiblement la qualité de ces cours d'eau dans certains secteurs notamment en étiage lorsque les débits de dilution sont faibles. L'agglomération de Béziers mènera prochainement une étude de l'aire d'alimentation des captages (AAC) de Servian qui comportera un état des lieux des filières d'assainissement autonome. Ce travail constituera une première étape dans l'identification des installations problématiques.

Les stations d'épuration de Gabian et Abeilhan qui rejettent leurs effluents dans la Thongue apparaissent, d'après le SATESE, en limite de leur capacité de traitement. Des travaux en cours en 2017 doivent améliorer les performances de traitement. Toutefois, une réflexion pourrait être engagée pour anticiper un éventuel dépassement de leur capacité.

D'une façon générale, les villages de la plaine connaissent actuellement un fort développement et il convient de rester vigilant vis-à-vis de l'adéquation entre les systèmes d'épuration et l'augmentation de la population.

L'origine des apports en phosphore de la Thongue doit être identifiée. Dans un premier temps, il est nécessaire de déterminer si des dysfonctionnements des réseaux d'assainissement ou des filières de traitement du phosphore des stations d'épuration en sont à l'origine. Ensuite, une réflexion globale sur le bassin versant de la Thongue pourrait être engagée concernant la gestion quantitative de l'eau et les apports atteignant le milieu. Cette démarche devra porter, à minima sur :

- l'étude quantitative de la ressource,
- l'étude des possibilités d'améliorations de traitement des rejets des stations d'épuration,
- l'usage des pesticides et son impact sur le milieu,
- l'assainissement des caves coopératives et particulières (peu de données disponibles actuellement),
- l'impact de l'augmentation de la population dans le bassin versant.

L'étude AAC (alimentation des captages) qui sera menée par l'Agglomération de Béziers sur le bassin versant de la Thongue devrait aborder ces différentes questions.

La connaissance précise de ces éléments permettra de formuler des propositions d'actions ciblées et estimer les coûts associés.

Enfin, les analyses de pesticides ont mis en évidence la présence de molécules dont l'usage est interdit dans la Peyne, la Thongue et la Boyne. Les actions de sensibilisation des agriculteurs ainsi que les contrôles des autorités doivent persister afin de faire évoluer les pratiques et arrêter l'usage de ces produits. Vu la contamination importante de la Peyne et la Thongue, il semble également important de poursuivre le contrôle du bon respect des zones non traitées (ZNT) bordant ces cours d'eau.

7. BIBLIOGRAPHIE

AQUASCOP, 2016 : Etude de la qualité du bassin versant de l'Hérault et du plan d'eau du Salagou – suivi 2015; *Conseil Départemental de l'Hérault*

AQUASCOP, 2012 : Etude de la qualité du bassin versant de l'Hérault – suivi 2011; *Conseil Général de l'Hérault*

AQUASCOP, 2011 : Etude de la qualité du bassin versant de l'Orb et du plan d'eau du Salagou – suivi 2010; *Conseil Général de l'Hérault*

AQUASCOP, 2008 : Etude de la qualité du bassin versant de l'Hérault – suivi 2007; *Conseil Général de l'Hérault*

AQUASCOP, 2003 : Etude de la qualité du bassin versant de l'Hérault – suivi 2002; *Conseil Général de l'Hérault*

Agence régionale de santé (ARS), 2016 : La qualité des eaux de baignade des départements de l'Hérault et du Gard en 2016

Agence régionale de santé (ARS), 2016 : Résultats des analyses bactériologiques réalisées en 2016.

Banque HYDRO, 2016 – Ministère de l'Ecologie du Développement Durable et de l'Energie ; site internet : http://www.hydro.eaufrance.fr/

CEREG, 2016: Elaboration du schéma directeur de la ressource en eau sur le bassin de l'Hérault - Détermination des volumes maximums prélevables ; *Syndicat Mixte du Bassin du Fleuve Hérault*.

INSEE, 2012: Recensements de population ; site internet : http://www.insee.fr

SIEE, 2005 : SAGE du fleuve Hérault ; Syndicat Mixte du Bassin du Fleuve Hérault

Syndicat Mixte du Bassin du Fleuve Hérault, 2017 : Plan de gestion de la ressource en eau du bassin du fleuve Hérault, bilan des prélèvements- Etat quantitatif – demandes 2030

Système d'Information sur l'Eau du bassin Rhône-Méditerranée et Corse, 2016; site internet http://www.rhone-mediterranee.eaufrance.fr/

8. ANNEXES

- 8.1. Stations d'étude fiches descriptives
- 8.2. Extrait du SEQ-Eau version 2
- 8.3. Extrait de l'arrêté du 25/07/2015
- 8.4. Pesticides : NQE-VGE
- 8.5. Physico-chimie
 - 8.5.1. Fiches descriptive des conditions de prélèvements
 - 8.5.2.Graphiques de l'évolution des résultats du suivi du bassin de l'Hérault en 2016 -

Comparaison des résultats aux niveaux de qualité de l'arrêté du 25/01/2010 modifié par l'arrêté du 27/07/2015.

- 8.5.3.Résultats des analyses de pesticides réalisées en 2016 dans le cadre des réseaux de surveillance.
- 8.5.4. Résultats des analyses physico-chimiques réalisées en 2016 dans le cadre des réseaux de surveillance.
- 8.5.6.Résultats des analyses de pesticides réalisées en 2016 par le Conseil Départemental du Gard
- 8.5.7. Résultats des analyses de métaux réalisées en 2016 par le Conseil Départemental du Gard
- 8.5.8. Résultats des analyses bactériologiques réalisées en 2016 par l'ARS
- 8.6. Invertébrés benthiques
 - 8.6.1.Rapports d'essai macro-invertébrés petits cours d'eau
 - 8.6.2.Plan d'échantillonnage et listes faunistiques macro-invertébrés grands cours d'eau
 - 8.6.3. Schémas d'échantillonnage des macro-invertébrés
- 8.7. Diatomées
 - 8.7.1. Spécificités des diatomées
 - 8.7.2. Traitement des échantillons de diatomées
 - 8.7.3. Calcul et grille de valeurs des indices diatomiques
 - 8.7.4. Classification écologique de Van Dam et al. (1994)
 - 8.7.5. Fiches de prélèvement des diatomées
 - 8.7.6.Listes floristiques des diatomées de l'Hérault
 - 8.7.7.Listes floristiques des diatomées des affluents de l'Hérault

8.1. STATIONS D'ÉTUDE - FICHES DESCRIPTIVES

HERAULT à Cazilhac

Station H5 (06181990)

VIS3 Ganges
95330 H6
H7

- Accès :
 En aval du barrage
- Commune (code INSEE) : Cazilhac (34067)

Coordonnées :

Lambert 93 :X : 755 543Y : 6 315 673

6787270

Hérault vers l'amont - mai 2016

Hérault vers l'aval – août 2016

HERAULT à Laroque

Station H6 (06182000)

VIS3 H5
Ganges
H6
H7
H8
VIS2 FO1

Accès:

Aval Ganges - amont Laroque.

Commune (code INSEE) :

Laroque (34128)

Coordonnées:

Lambert 93 :X : 757 736

X: 757 736 Y: 6 314 182

Hérault vers l'aval – août 2016

HERAULT à Agonès

Station H7 (06182020)

H6
H7
H8
F01

- Accès : Lieu-dit Le Moulins
- Commune (code INSEE) : Agonès (34005)

- Coordonnées :
- Lambert 93 :X : 759 104Y : 6 312 806

Hérault vers l'aval – mai 2016

HERAULT à Saint Bauzille de Putois

Station H8 (06182030)

H6 H7 H8 F01 06182050 J1

Accès:

Base de canoé Montana

■ Commune (code INSEE) :

Saint Bauzille de Putois (34243)

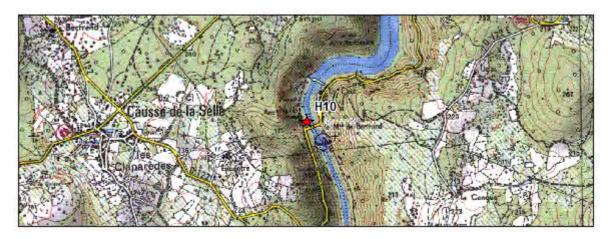
Coordonnées:

Lambert 93 :X : 758 700Y : 6 309 538

Hérault vers l'amont - août 2016

Hérault vers l'aval - mai 2016

HERAULT à Causse de la Selle


Station H10 (06300051)

St Martin de Londres

- Accès:
- Commune (code INSEE) : Causse de la Selle (34060)

Coordonnées :

Lambert 93 : X:753 500 Y:6300834

Hérault vers l'aval - août 2016

HERAULT à Puechabon

Station H11 (06182120)

H112

Accès:

En aval du barrage

■ Commune (code INSEE) :

Puechabon (34221)

Coordonnées :

Lambert 93:X:748 180Y:6 294 663

Hérault vers l'aval - août 2016

HERAULT à Saint Jean de Fos

Station H12 (06184510)

Accès :

Aval commune.

Commune (code INSEE):

Saint Jean de Fos (34010)

Coordonnées:

• Lambert 93 :

X: 745 194 Y: 6 288 843

Hérault vers l'amont - août 2016

Hérault vers l'aval - octobre 2016

HERAULT à Gignac

Station H14 (06182400)

- Accès :300 m aval pont de Gignac
- Commune (code INSEE): Gignac (34114)

- Coordonnées :
- Lambert 93 :X : 743 157Y : 6 283 721

HERAULT à Pouzols

Station H15 (06182900)

- Accès: Lieu-dit Bages
- Commune (code INSEE) :

Pouzols (34215)

Coordonnées :

• Lambert 93 : X:740 597 Y:6280717

Hérault vers l'amont - mai 2016

Hérault vers l'aval – août 2016

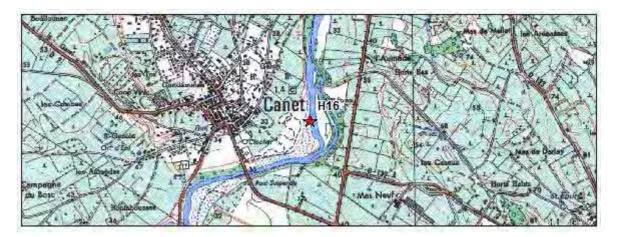
HERAULT à Canet

Station H16 (06183200)

H16 06183500

Accès:

Station de pompage


■ Commune (code INSEE) :

Canet (34285)

Coordonnées :

Lambert 93 :X : 740 277

Y : 6 278 073

Hérault vers l'amont - août 2016

Hérault vers l'aval - mars 2015

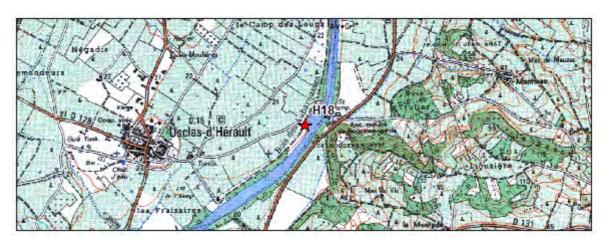
HERAULT à Saint Pons de Mauchiens

Station H18 (06183685)

BO1 H18
H19
Montagnac

Accès:

Moulin de Roquemengarde


Commune (code INSEE) :

Saint Pons de Mauchiens (34312)

Coordonnées :

• Lambert 93 :

X:738 619 Y:6 268 978

Hérault vers l'amont - mai 2016

Hérault vers l'aval - août 2016

HERAULT à Pézenas 1

Station H19 (06183700)

Accès:

Pont N113 - Montagnac

■ Commune (code INSEE) :

Pézenas (34199)

Coordonnées :

Lambert 93 :X : 736 060Y : 6 264 047

Hérault vers l'amont - mai 2016

Hérault vers l'aval - août 2016

HERAULT à Pézenas 2

Station H20 (06183820)

H19
06183800 Montagnac
Pézenas H20
H21

Accès :

Pont de la D32E

■ Commune (code INSEE) :

Pézenas (34199)

Coordonnées :

Lambert 93 :X : 735 325Y : 6 261 200

Hérault vers l'aval – août 2016

HERAULT à Pézenas 2

Station H21 (06183835)

- Accès : Lieu-dit Saint-Joseph
- Commune (code INSEE) : Pézenas (34199)

Coordonnées :

Lambert 93 :X : 734 809Y : 6 258 281

HERAULT à Agde 6

Station H23 (06184200)

- Accès : Lieu-dit les Prades
- Commune (code INSEE) : Agde (34003)

■ Coordonnées :

Lambert 93 :X : 737 390Y : 6 248 425

Hérault vers l'amont - octobre 2016

Hérault vers l'aval - mai 2016

VIS à Saint Maurice de Navacelles

Station VIS1 (06181950)

Accès:

Gué D713

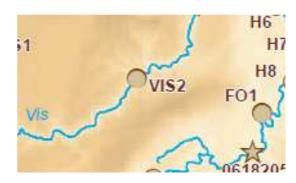
Commune (code INSEE) :

Saint Maurice de Navacelles (34277)

Coordonnées :

Lambert 93 :X : 740 992Y : 6 310 846

Vis vers l'aval – mai 2016



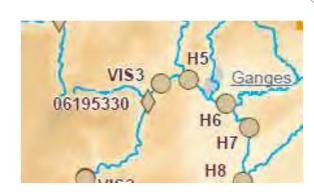
VIS à Gornies

Station VIS2 (06181960)

- Accès : Pont du hameau du Mas
- Commune (code INSEE) : Gornies (34115)

Coordonnées :

Lambert 93 :X : 749 552Y : 6 309 714



VIS à Saint Laurent le Minier

Station VIS3 (06181980)

Accès:

Pont de Mange Chataigne

■ Commune (code INSEE) :

Saint Laurent le Minier (30280)

Coordonnées :

Lambert 93 :X : 753 954Y : 6 315 448

Vis vers l'amont - mai 2016

Vis vers l'aval - mars 2016

RUISSEAU DE BRISSAC à Brissac

Station FO1 (06184640)

- Accès : Amont confluence
- Commune (code INSEE) : Brissac (34042)

- Coordonnées:
- Lambert 93 :X : 756 917Y : 6 307 590

Rui. de Brissac vers l'aval – août 2016

BUEGES à Saint Jean de Buèges

Station BU1(06184620)

- Accès : Amont village
- Commune (code INSEE) : Saint Jean de Buèges (34264)

Coordonnées:

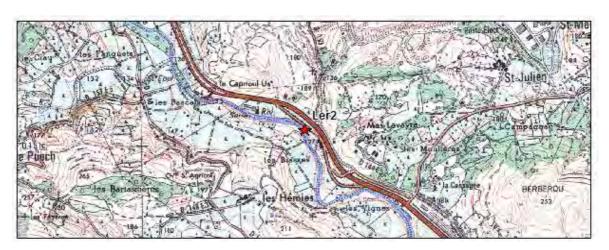
• Lambert 93: X:750 524 Y: 6 303 557

Buèges vers l'aval - août 2016

LERGUE à Lodève

Station LER2(06300053)

Accès :


Les Biasses

Commune (code INSEE) :

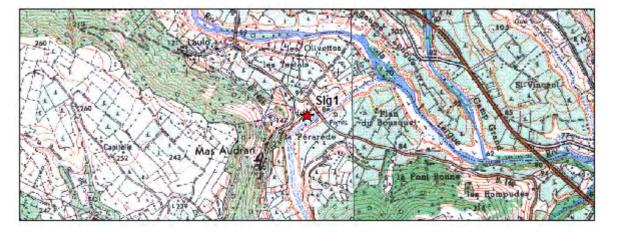
Lodève (34142)

Coordonnées :

Lambert 93 :X : 727 439Y : 6 288 606

Lergue vers l'aval – octobre 2016

SALAGOU à Le Bosc


Station SLG1(06182600)

- Accès : Pont de la D140
- Commune (code INSEE) : Le Bosc (34124)

Coordonnées:

Lambert 93 :X : 733 396Y : 6 285 666

Salagou vers l'amont – octobre 2016

Salagou vers l'aval - mai 2016

BOYNE à Cazouls d'Hérault

Station BO1(06183900)

- Cazouls d'Hérault (34068)

Accès : Gué sous la N9

Coordonnées :Lambert 93 :X : 736 233

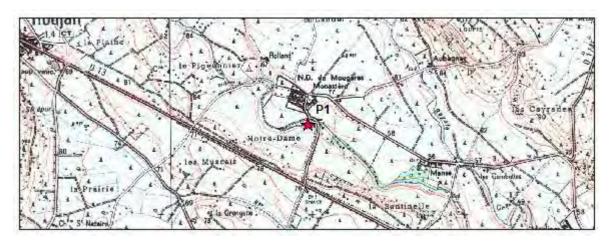
X: 736 233 Y: 6 267 777

Boyne vers l'amont - mai 2016

Boyne vers l'aval – octobre 2016

PEYNE à Roujan

Station P1 (06183750)


Gué de Notre Dame de Mougères

Commune (code INSEE) : Roujan (34237)

Accès:

• Lambert 93 : X: 727 150 Y: 6 266 542

TH₁

THONGUE à Servian

Station TH1 (06183840)

TH1

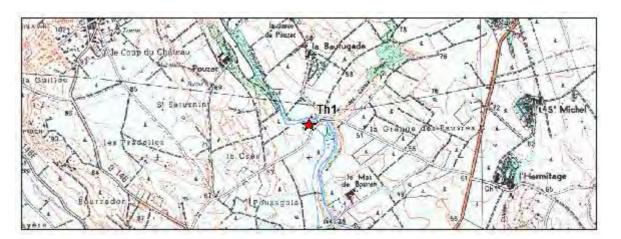
Pézenas

Servian

Thongue

Accès:

Lieu-dit La Bautugade


Commune (code INSEE) :

Servian (34300)

Coordonnées :

Lambert 93 :X : 725 352

Y: 6 260 223

Thongue vers l'aval – mai 2016

8.2. EXTRAIT DU SEQ-EAU VERSION 2

Classe de qualité	Très bon	bon	passable	médiocre	mauvais		
MATIERES ORGANIQUES ET OXYDABLES (MOOX)							
Oxygène dissous (mg/l)	8	6	4	3			
Taux sat. O2 (%)	90	70	50	30			
DBO5 (mg/l O2)	3	6	10	25			
DCO (mg/l O2)	20	30	40	80			
COD (mg/l C)	5	7	10	15			
NH ₄ [†] (mg/l NH ₄)	0,5	1,5	2,8	4			
NKJ (mg/l N)	1	2	4	6			
MATIERES AZOTEES HORS NITRATES (AZOT)							
NH ₄ [†] (mg/l NH ₄)	0,1	0,5	2	5			
NKJ (mg/l N)	1	2	4	10			
NO ₂ (mg/l NO ₂)	0,03	0,3	0,5	1			
NITRATES (NITR)							
NO ₃ (mg/l NO ₃)	2	10	25	50			
MATIERES PHOSPHOREES (PHOS)							
PO₄ (mg/l PO ₄)	0,1	0,5	1	2			
P total (mg/l)	0,05	0,2	0,5	1			
EFFETS DES PROLIFERATIONS VEGETALES (EPRV)							
Chlorophylle a + phéopig. (µg/l)	10	60	120	240			
Taux de saturation en O2 (%)	110	130	150	200			
PH	8,0	8,5	9,0	9,5			
Δ O2 (mini-maxi) (mg/l O ₂)	1	3	6	12			
PARTICULES EN SUSPENSION (PAES)							
MES (mg/l)	2	25	38	50			
Turbidité (NTU)	1	35	70	100			
Transparence Secchi (cm)	600	160	130	100			
TEMPERATURE (TEMP)							
Température (°C) – 1 ^{ère} cat. pisc	20	21,5	25	28			
Température (°C) – 2 ^{eme} cat. pisc	24	25,5	27	28			
MINERALISATION							
Conductivité(µS/cm) max	2500	3000	3500	4000			
MICRO-ORGANISMES							
Coliformes thermotolérants (u/100 ml)	20	100	2000	20000			
Streptocoques fécaux (u/100 ml)	20	200	1000	10000			
Coliformes totaux (u/100 ml)	50	500	5000	10000			

8.3. EXTRAIT DE L'ARRÊTÉ DU 25/07/2015

Arrêté du 27 juillet 2015 - évaluation de l'état écologique pour les masses d'eau cours d'eau- - paramètres physicochimiques - EXTRAITS

Eléments physico-chimiques généraux - eaux

Paramètres par élément de qualité	Limites des classes d'état							
Parametres par element de quante	Très bon	Bon	Moyen	Médiocre	Mauvais			
Bilan de l'oxygène								
Oxygène dissous (mg O².l)	> 8	6	4	3	≤ 3			
Taux de saturation en O ² dissous (%)	> 90	70	50	30	≤ 30			
DBO5 (mg O ² .I)	< 3	6	10	25	≥ 25			
Carbone organique dissous(mg C.I)	< 5	7	10	15	≥ 15			
Température								
Eaux salmonicoles (°C)	< 20	21,5	25	28	≥ 28			
Eaux cyprinicoles (°C)	< 24	25,5	27	28	≥ 28			
Nutriments								
PO4 (mg PO4/I)	< 0,1	0,5	1	2	≥ 2			
Phosphore total (mg P/I)	< 0,05	0,2	0,5	1	≥ 1			
NH4 (mg NH4/I)	< 0,1	0,5	2	5	≥ 5			
NO2 (mg NO2/I)	< 0,1	0,3	0,5	1	≥ 1			
NO3 (mg NO3/I)	< 10	50	*	*	*			
Acidification								
pH minimum	> 6,5	6	5,5	4,5	≤ 4,5			
pH maximum	< 8,2	9	9,5	10	≥ 10			
Salinité								
Conductivité	*	*	*	*	*			
Chlorures	*	*	*	*	*			
Sulfates	*	*	*	*	*			

Polluants spécifiques de l'état écologique - polluants spécifiques non synthétiques - eaux

Nom de la substance	NQE moyenne annuelle (µg/l)		
Arsenic	0,83		
Chrome	3,4		
Cuivre	1		
Zinc	7,8		

Polluants spécifiques de l'état écologique - polluants spécifiques synthétiques - eaux

		Bassins pou	r lesquels la norm	ne s'applique
Nom de la substance	NQE moyenne annuelle (μg/l)	Adour-Garonne	Rhône- Mediterranée	Corse
Chlortoluron	0,1	X	X	X
Métazachlore	0,019	Х	X	X
Aminotriazole	0,08	х	x	X
Nicosulfuron	0,035	х	х	X
Oxadiazon	0,09	х	x	X
AMPA	452	Х	X	X
Glyphosate	28	х	х	Х
Bentazone	70	Х		
2,4 MCPA	0,5	Х	Х	X
Diflufenicanil	0,01		х	Х
Cyprodinil	0,026		Х	X
Imidalcopride	0,2			
2,4 D	1,5			
Azoxystrobine	0,95			
Toluène	74			
Phosphate de tributyle	82		Х	X
Biphényle	3,3			
Boscalid	11,6			
Métaldéhyde	60,6			
Tebuconazole	1			
Chlorprophame	4		Х	X
Xylène	1			
Linuron	1			
Thiabendazole	1,2			
Chlordécone	0,005 ng/l			
Pendiméhaline	0,02		Х	Х

8.4. PESTICIDES: NQE-VGE

Nom du paramètre	Code SANDRE du paramètre	NQE-MA 2015 Eaux de surfaces intérieures	NQE-CMA 2015 Eaux de surfaces intérieures	VGE _{EAU-DOUCE} (μg/L) eau destinée à la production d'eau potable	VGE _{EΛUDOUCE} (μg/L) eau non destinée à la production d'eau potable	MAC-EQS _{EAN-DOUGE} (µg/L)	Minimum des normes µg/l
tributylétain-cation	2879	0,0002	0,0015	0			0,0002
1,1,2,2-Tétrachloroéthane 1,1,2-Trichloroéthane	1271 1285			0,02	0,02	140 300	0,02
1,1 Dichloroethylene	1162			3	8	1.16	3
1.2 Dichloroéthane	1161	10	sans objet				10
1.2,4,5 Tétrachlorobenzene	1631 1163			0,00345 44,990	0,00345 44,990	Non calculée Données insuffi	0,00345
1,2-Dichloroéthylène 1-Chloro-2-nitrobenzène	1469			0,546	0,546	32,000	0,546
1-Chloro-3 nitrobenzène	1468			0,0846	0,0846	5,5000	0,0846
1-Chloro-4-nitrobenzène 245 T	1470 1264			0,0957	0,0957	20,0000	0,0957
2,3-dichlaro nitrobenzene	1617			0,1	0,8	16	0,1
2,4 MCPA	1212	0,5				13	0,5
4-D (dont sels de 2,4-D et esters de 2,4-	1141	2,2		0,25	0.05	No. of R	2,2
2,5-dichloro nitrobenzène 2-Chloroani ine	1615 1593			0,64	0,25	Non calculée 4,6	0,25
2-Chlorophénol	1471			1,422	1,422	21,000	1,422
2 Chlorotoluène	1602 1614			0,5	0,5	23	0,5
3,4-dichloro nitrobenzene 3-Chloroanline	1592			1,3	1,3	3,2 3,5	1,3
3-Chlorophénol	1651			1,05	1,141	40	1,05
3-Chlorotoluene	1601			8	8	16	В
4-Chloro-3-méthylphénol 4-Chloroaniline	1636 1591			9,2 0,156	9,2	9,2	9,2 0,156
4-Chlorophénol	1650			0,05	0,05	25	0,05
4-Chlorotoluene	1600			11,982	11,982	160,000	11,982
onylphériol (nonyl. linéaire) para-nonylph Acètochlore	1958 1903	0,3	2	0.006	0,006	Non calculée	0,3
Acide chloroacétique	1465			0,58	0,58	2,5	0,58
Acionifen	1688	0,12	0.12				0,12
Alachiore Amnotriazole	1101	0,3	0,7	0,08	0,08	0,15	0,3
AMPA	1907	452		0,00	0,00	Non calculée	452
Anthracène	1458	0,1	0,1				0,1
Antimoine Argent	1376 1368			113 0,05	0,05	Non calculée	0,05
Arsenic et composés	1369	0,83		0,05	0,05	Non calculée	0,83
Atrazine	1107	0,6	2		T .		0,6
Azoxystrobine	1951 1396	0,95		60	60	Nav salvidés	0,95 60
Baryum Bentazone	1113	70		60	60	Non calculée 450	70
Benzène	1114	10	50				10
Berizo (a) pyrène	1115	0,00017	0,27		1		0,00017
Benzo (b) fluoranthène Benzo (g,h,i) pérylène	1116		0,017				0.0082
Benzo (k) fluoranthène	1117		0,017				0,017
Béryllium	1377			0,04	0,04	Non calculée	0,04
Bifénox Bifenthrine	1119	0,012	0,04	0,000019	0,000019	0,01	0,012
Bore	1362			218.5	218,5	Non calculée	218,5
Bromacil	1686			0,01	0,01	Non calculée	0,01
Bromoxinyl Bromoxinyl octanoate	1125 1941			0,5 0,25	0.25	Non calculée non calculée	0,5
G10-13 Chloroalcanes	1955	0.4	1,4	0,23	0,2.0	non cacase	0,4
Cadmium	1388	0.25	1,5	4			0,25
Carbaryl Carbendazime	1463			0,1	0,15	0,7	0,1
Carbofuran	1130			0,02	0,02	Non calculée	0,02
Chlordane	1132			9,47E-06	9,47E-06	1,27E-02	9,47E-06
Chlordécone Chlortenvinphos	1866 1464	0,000005	0,3	0,000005	0,000005	0,07	0,000005
Chlorprophame	1474	4	U ₁ O			Non calculée	4
Chlorpyriphes-éthylChlorpyrifes	1083	0,03	0,1				0,03
Chlortoluran	1136	0,1 3,4		0,1	0,1	2	0,1
Chrome Clomazone	1389 2017	3,4		2	2	Non calculée	3,4
Cobalt	1379			0,3	0,3	Non calculée	0,3
Coumaphos Crésol ortho	1682 1640			0,0034	0,0034	Non calculée	0,0034
Curre	1392	1 (1)					0
Cyperméthrine (Alpha; Zéta)	1140	0,00008	0,0006				0,00008
Cyproconazole	1680 1359	0,026		0,1	0,6 0,026	0,77	0,1
Cyprodinil Deltamethine	1149	0,020		0,0001	0,026	0,32 Non calculée	0,026
Dicamba	1480			0,1	0,5	6,1	0,1
Dichlorométhane Dichlorprop	1168	20	sans objet	0,1	1,6	9,1	20 0,1
Dichlorprop-P (sel de DMA)	2544			1,3	1,3	Non calculée	1,3
Dichlorure de dibutylétain	1769		1 3	0,2	0,2	0,2	0,2
Dichlorvos Dicolol	1170	0,0006	0,0007 sans objet				0,0006
Diéthofencarbe	1402	0,0013	sans objet	2			0,0013
Diéthylamine	2826			20	20	Non calculée	20
Difenoconazole Difluténicanil	1905 1814	0,01		0,1	0,6	0,6 0,045	0,1
Diméthénamid	1678	0,01		0.1	0,01	1,3	0,01
Dimethenamide-p (DMTA-p)	5617			0,1	0,2	1,3	0,1
Dimethoate	1175	-		0,1	0,1	170	0,1
Diméthomorphe Diméthylamine	1403 2773		1	0,1 40	5,6 40	34 Non calculée	0,1 40
Disultoton	1492			0,004	0,004	Non calculée	0,004
Distron	1177	0,2	1,8		0.4	70	0,2
DTA (acide éthylène diamine tétracétique nEndosulfan familleEndosulfan total (alo	1493 1743	0,005	0,01	37	37	78	0,005
Epichlorohydrine	1494	5,000		0,1	1,3	6,5	0,1
Epoxiconazole	1744			0,1 1,5	0,18	11,9 Non calculée	0,1
Etain	1380						

Nom du paramètre	Code SANDRE du paramètre	NQE-MA 2015 Eaux de surfaces intérieures	NQE-CMA 2015 Eaux de surfaces intérieures	VGE _{EAU-DOUCE} (µg/L) eau destinée à la production d'eau potable	VGE _{EAU-DOUCE} (µg/L) eau non destinée à la production d'eau potable	MAC-EQS _{EAU-DOUCE} (µg/L)	Minimum des normes µg/l
Fenbuconazole	1906			0,1	0,7	3	0,1
Fenitrothion	1.187			0,0087	0,0087	0,86	0,0087
Fénoxycarbe	1967			0,0002	0,0002	Non calculée	0,0002
Fludioxonyl	2022			0,5	0,5	Non calculée	0,5
Fluoranthène	1191	0,0063	0,12				0,0063
Fluroxypyt	1765			20	20	Non calculée	20
luroxypyr méthyl heptyl ester	2547			0,3	0,3	Non calculée	0,3
Fluzilazole	1194			0,3	0,3	Non calculée	0,3
Formol (Formaldehyde)	1702			10,2	10,2	102	10,2
Glyphosate	1506	28				64	28
HCH alpha	1200	0,02	0,04				0,02
HCH béta	1201	0,02	0,04				0,02
HCH delta	1202	0,02	0,04				0,02
HCH gamma(Lindane)	1203	0,02	0,04				0,02
Heptachlore	1197	Heptachlore époxy	Heptachlore époxy	de \sum = 3*10**			0,0000002
Heptachlore époxyde	1198	Heptachlore époxy	leptachlore époxy	de \sum,= 3*10-4			0,0000002
Hexachlorobenzène	1199		0,05				0,05
Hexachlorobutadiene	1652		0,6			Donnees	0,6
Hexaconazole	1405			-0,1	0,675	insulfacetos.	0,1
Imidadopride	1877	0,2		-		0,3	0,2
Iprodione	1206	0,35	0	0,35	0,35	Non calculée	0,35
Isopropyi benzene	1633			22	22	60	22
Isoproturon	1208	0,3	1	0.01	0.87	****	0,3
Krésoxim méthyl	1950			0,24	0,24	non calculée	0,24
Lambda cyhalothrine	1094			0,00019	0.00019	0,00041	0,00019
Linuron	1209	1			86.55		11
Mecoprop	1214		0.74	0,1	20,29	60	0,1
Mercure total	1377		0,07	-	- 12		0,07
Métalaxyl m =mefenoxam	1706			10	10	Non calculée	10
Métamitrone	1215	0.070		0,1	4	22	0,1
Métazachlore	1670	0,019		0,019	0,019	0,7	0,019
Méthabenzthiazuron	1216 1671			0,033	0,033	3,3	0,033
Méthamidophos Métolachlore				0,1	1,11		0,1
	1221			0,07	0,07	Non calculée	0,07
Mévinphos	1395			0,0013 6,7	0,0013	Non calculée	0,0013
Molybdène	1227			0,1	6,7 0,507	Non calculée	6,7
Monolinuron Naphtalène	1517	2	130	0,1	0,507		0,1
	1519	- 2	130	5	5	Non calculée	5
Napropamide Nickel	1386	4,00(1)	34	2		Non calculee	- 5
Nicosulturon	1882	0,035	34	0,035	0,035	0.17	0,035
Norflurazone	1669	0,000		0,6	0,6	Non calculée	0,6
Octylphénois	2904	0,1	sans objet	0,0	0,0	14011 Calculot	0,1
Omethoate	1230	0,1	Suris Cojut	0,00084	0.00084	0.22	0,00084
Oxadiazon	1667	0.09		0.09	0,09	0.3	0,09
Oxyde de dibutyletain	1770			4,43E-05	4,43E-05	8,40E+00	4,43E-05
Oxy-demeton-methyl	1231	0		0,1	0,56	2.8	0,1
a para DOT44' DDDDDDD p,p'	1144	0.01	sans objet				0,01
Paraguat	1522			0.00023	0.00023	0.023	0,00023
Penconazele	1762			0,1	3,5	6	0.1
Pentachlorobenzène	1888	0,007					0,007
Pentachlorophénol	1235	0,4	1				0,4
nloroéthyléne(tétrachloroéthyléne)	1272	10	sans objet				10
Phosphate de tributyle	1847	82				82	82
Phoxime	1665			0,001	0,001	0,008	0,001
Plomb	1382	1,20(1)	14				1,2
Procymidane	1664			0,1	0,981	6,89	0,1
Propanil	1532			0,1	0.2	2	0,1
Propyzamide	1414			8	8	Non calculée	8
Pyrazone (Chloridazone)	1133			0,1	10	60	0,1
Pyriméthanii	1432		4	0,1	2	180	0,1
Quinoxyfen	2028	0,15	2,7				0,15
Rimsulfuron	1892			0,009	0,009	4,8	0,009
Sélénium	1385			0,95	0,95	Non calculée	0,95
Simazine	1253	1	4				1
Somme DDT	3268	sans objet	0,025				0,025
Sulcotrione	1662			0,1	5,1	350	0,1
Tébuconazole	1694			0,1		1,44	0,1
Terbuthylazine	1268			0,06	0,06	0,032	0,032
Terbutryne	1269	0,065	0,34			1	0,065
Tetrabutyletain	1936			0.045	0,045	Non calculée	0,045
Tétrachiorure de carbone	1276	12	sans objet				12
Tetraconazole	1660			0,1	0,579	4,1	0,1
Thallium	2555			0,2	0,2	Non calculée	0,2
Titane	1373		1	2	2	Non calculée	2
Triazophos	1657			0,03	0,03	Non calculée	0,03
tributylétain	1820	0,0002	0,0015				0,0002
Trichlorfen	1287		L. Comment	0.0006	0,0006	0,018	0,0006
	1630	0,4	sans objet	A			0,4
Trichlorobenzène	1286	10	sans objet			1	10
	1200						2,5
Trichlorobenzene Trichloroethylene	1135	2,5	sans objet	-			
Trichlorobenzène Trichloroethylène richlorométhane (chloroforme)		2,5	sans objet	0.1	700	4200	
Trichlorobenzene Trichloroethylene richlorométhane (chloroforme) Trichopyr	1135			0,1	700	4200	0,1
Trichlorobenzène Trichloroethylene richlorométhane (chloroforme) Trichopyr Trifluratine	1135 1288 1289	0,03	sans objet			-	0,1 0,03
Trichlorobenzene Trichloroethylene richlorométhane (chloroforme) Trichloryr	1135 1288			0,1 0,3 2,5	700 0,3 2,5	4200 Non calculée Non calculée	0,1

^{(1) :} ces NQE se rapportent aux concentrations biodisponibles des substances.

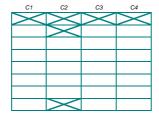
- 8.5. PHYSICO-CHIMIE
- 8.5.1. Fiches descriptive des conditions de prélèvements

COURS D'EAU: HERAULT

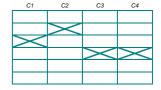
N°de campagne	
C1	
C2	
C3	
C:4	

Date				
21/03/2016				
23/05/2016				
01/08/2016				
10/10/2016				

Heure	
10h30	
11h00	Ī
11h00	Ī
10h20	
	Т


Intervenants
MJEZ
ACOR
SDAL
SDAL

CODE STATION: 06181990 (H5)


Conditions météorologiques et hydrologiques

Hydrologie

lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques pas d'eau

Météo des jours précédents

C1	Ensoleillé
C2	Sec ensoleillé + vent
C3	Pluie la veille
C4	Stable sec

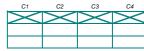
Commentaires

C1 : Eau limpide, incolore C2 : Eau limpide, incolore C3: Eau limpide, incolore


C4 : Eau limpide, incolore

Végétation

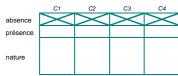
Végétation aquatique

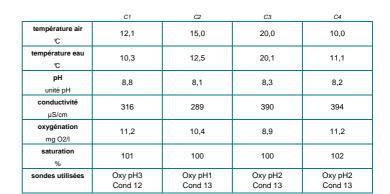

		< 5 %	5 à 10 %	10 à 25 %	25 à 50 %	50 à 75 %	> 75 %
SS	C1	$>\!\!<$					
hyte	C2	$>\!\!<$					
hélophytes	C3	$>\!\!<$					
he	C4	$>\!<$					
Ses	C1	$>\!\!<$					
hydrophytes	C2	$>\!\!<$					
drop	СЗ	$>\!\!<$					
ž	C4	$>\!\!<$					
	C1	$>\!\!<$					
algues	C2	$>\!<$					
	СЗ	$>\!\!<$					
	C4	$>\!<$					
	•						

Périphyton

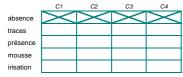
Cyanobactéries

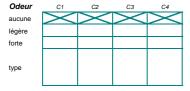
Espèces aquatiques rencontrées

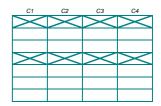

Végétation des berges


absents ou rares
discontinus
continus ou presque

herbes	arbustes	arbres
$>\!\!<$		
	\langle	\setminus


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : rien à signaler

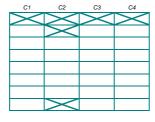
C2 : rien à signaler C3 : rien à signaler C4 : Niveau bas, beaucoup de diatomées

COURS D'EAU: HERAULT

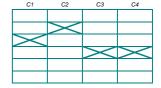
N°de campagne		
C1		
C2		
C3		
C4		

Date
21/03/2016
23/05/2016
01/08/2016
10/10/2016

Heure	
11h00	
11h30	Ī
13h00	Ī
10h45	Ī
	Т


Intervenants
MJEZ
ACOR
SDAL
SDAL

CODE STATION: 06182000 (H6)


Conditions météorologiques et hydrologiques

Météorologie		
ensoleillé		
nuageux		
pluvieux		
orageux		
neigeux		
gel		
brume, brouillard		
venteuv		

Hydrologie débordement

débordement lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques pas d'eau

Météo des jours précédents

C1	Ensoleillé
C2	Sec ensoleillé et vent
СЗ	Pluie la veille
C4	Temps sec

Commentaires

C1 : Eau limpide, incolore C2 : Eau limpide, incolore

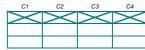
C3 : Eau limpide, incolore

C4 : Eau limpide, incolore

Végétation

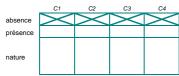
Végétation aquatique

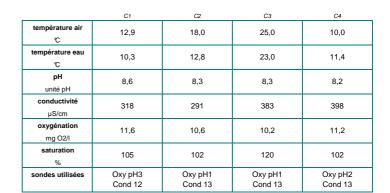
		< 5 %	5 à 10 %	10 à 25 %	25 à 50 %	50 à 75 %	> 75 %
	_	< 5 %	5 a 10 %	10 a 25 %	25 a 50 %	50 a 75 %	> /5 %
SS	C1	\sim					
hyte	C2	$>\!\!<$					
hélophytes	СЗ	$>\!\!<$					
he	C4	$>\!\!<$					
es	C1	$>\!\!<$					
hydrophytes	C2	$>\!\!<$					
Juop	СЗ	$>\!\!<$					
λý	C4	$>\!\!<$					
	C1	$>\!\!<$					
algues	C2	$>\!\!<$					
	СЗ	$>\!\!<$					
	C4	${}$					


Périphyton

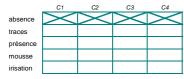
Cyanobactéries

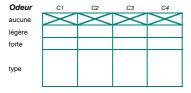
Espèces aquatiques rencontrées

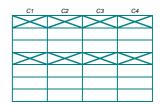

Végétation des berges


absents ou rares
discontinus
continus ou presque

herbes	arbustes	arbres
$>\!\!<$	\times	
		$>\!\!<$


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : rien à signaler

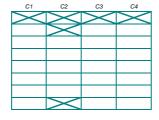
C2 : rien à signaler C3 : rien à signaler

COURS D'EAU: HERAULT

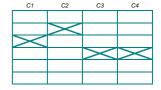
N° de campagne		
C1		
C2		
C3		
C4		

Date	
21/03/2016	
23/05/2016	
01/08/2016	
10/10/2016	

Heure	
11h30	
12h00	
13h45	
11h10	


Intervenants	
MJEZ	
ACOR	Ī
SDAL	Ī
SDAL	
	_

CODE STATION: 06182020 (H7)


Conditions météorologiques et hydrologiques

Hydrologie

débordement lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques pas d'eau

Météo des jours précédents

C1	Ensoleillé
C2	Ensoleillé et vent
СЗ	Pluie la veille
C4	Stable - sec

Commentaires

C1 : Eau limpide, incolore C2 : Eau limpide, incolore

C3 : Eau limpide, incolore

C4 : Eau limpide, incolore

Végétation

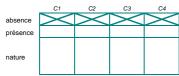
Végétation aquatique

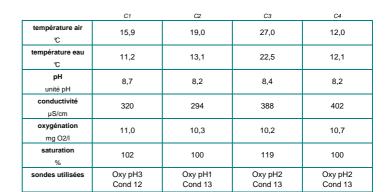
		< 5 %	5 à 10 %	10 à 25 %	25 à 50 %	50 à 75 %	> 75 %
SS	C1	$>\!\!<$					
hyte	C2	$>\!\!<$					
hélophytes	СЗ	$>\!\!<$					
ρų	C4	$>\!\!<$					
es	C1	$>\!\!<$					
hydrophytes	C2	$>\!\!<$					
drop	СЗ	$>\!\!<$					
hyı	C4	$>\!\!<$					
	C1	$>\!\!<$					
algues	C2	$>\!\!<$					
algı	СЗ	$>\!\!<$					
	C4	$>\!\!<$					

Périphyton

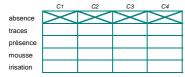
Cyanobactéries

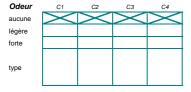
Espèces aquatiques rencontrées

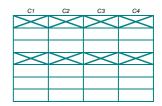

Végétation des berges


absents ou rares
discontinus
continue ou presque

herbes	arbustes	arbres
$>\!\!<$		$>\!\!<$
	\times	


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : rien à signaler

C2 : rien à signaler C3 : rien à signaler

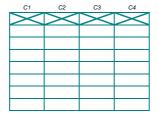
C4 : centre de canoe fermé

COURS D'EAU: HERAULT

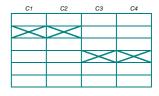
N°de campagne
C1
C2
C3
C4

Date
21/03/2016
23/05/2016
01/08/2016
10/10/2016

Heure	
13h45	
13h00	
13h45	
13h45	


Intervenants
JGST / SDAL
SDAL / MJEZ
JGST / MCRO
MJEZ / GSEV

CODE STATION: 06182030 (H8)


	N°photographie
	83/84
	24/26
ı	

Conditions météorologiques et hydrologiques

Hydrologie débordement lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques

Météo des jours précédents

C1	Pluie la veille
C2	Pluie la veille
СЗ	Orageux
C4	Ensoleillé

Commentaires

C1 : Eau limpide, incolore C2 : RAS

C3 : RAS C4 : RAS

pas d'eau

Végétation

Végétation aquatique

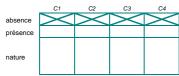
		< 5 %	5 à 10 %	10 à 25 %	25 à 50 %	50 à 75 %	> 75 %
S	C1	$>\!<$					
hélophytes	C2	> <					
doj	СЗ	$>\!\!<$					
he	C4	$>\!<$					
sə,	C1	\sim					
hydrophytes	C2	\sim					
drop	СЗ	\sim					
ž	C4	\sim					
	C1	\sim					
algues	C2	\sim					
alg	СЗ		$>\!<$				
	C4		$>\!<$				

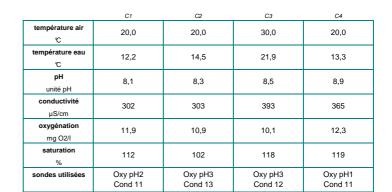
Périphyton

Cyanobactéries

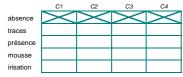
Espèces aquatiques rencontrées

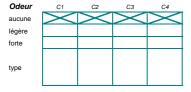
Diatomées

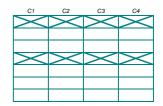

Végétation des berges


absents ou rares
discontinus
continus ou presque

	$>\!\!<$	$>\!\!<$
$>\!\!<$		
herbes	arbustes	arbres


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Vitesse courant élevée

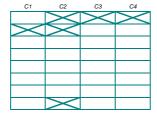
C2 : RAS C3 : RAS C4 : Niveau bas, présence de diatomées

COURS D'EAU: HERAULT

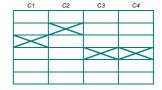
N° de campagne
C1
C2
C3
C4

Date
21/03/2016
23/05/2016
01/08/2016
10/10/2016

Heure	
14h00	
14h00	
14h20	
12h00	
•	


Intervenants
MJEZ
ACOR
SDAL
SDAL

CODE STATION: 06300051 (H10)

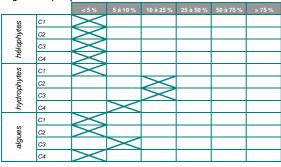

Conditions météorologiques et hydrologiques

Hydrologie

débordement lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques pas d'eau

Météo des jours précédents

C1	Ensoleillé
C2	Pluie moyenne et vent
СЗ	Pluie la veille
C4	Stable - sec


Commentaires

C1 : Eau limpide, incolore C2 : Eau limpide, incolore C3 : Eau limpide, incolore

C4 : Hydrologie très basse


Végétation

Végétation aquatique

Périphyton

absent ou rare présence moyenne abondant

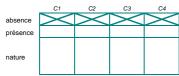
Cyanobactéries

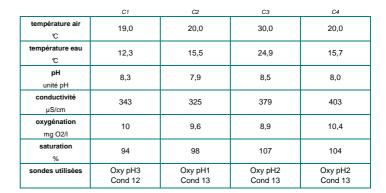
absentes ou rares présence moyenne abondantes

Espèces aquatiques rencontrées

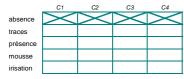
C2 : bryophytes

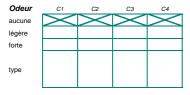
C4 : périphyton très abondant

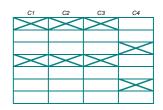

Végétation des berges


absents ou rares
discontinus
continus ou presque

herbes	arbustes	arbres
\sim	\sim	\sim


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Rien à signaler

C2 : rien à signaler C3 : départ de canoe

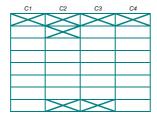
C4 : plus de canoe, eau trouble

COURS D'EAU: HERAULT

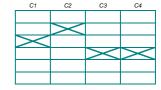
N°de campagne
C1
C2
C3
C4

Date	
21/03/2016	
23/05/2016	
01/08/2016	
10/10/2016	

Heure	
15h00	
14h30	
15h20	
13h00	


Intervenants				
MJEZ				
ACOR				
SDAL				
SDAL				

CODE STATION: 06182120 (H11)


Conditions météorologiques et hydrologiques

Hydrologie débordement

débordement lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques pas d'eau

Météo des jours précédents

C1	Ensoleillé
C2	Pluie moyenne et vent
СЗ	Pluie la veille
C4	Stable - sec

Commentaires

C1 : Eau limpide, incolore C2 : Eau limpide, incolore

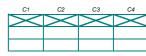
C3 : Eau limpide, incolore

C4 : Eau limpide, incolore

Végétation

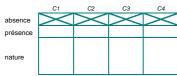
Végétation aquatique

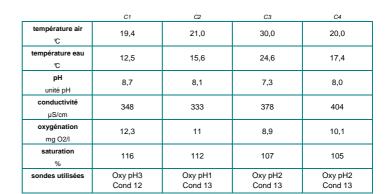
•							
		< 5 %	5 à 10 %	10 à 25 %	25 à 50 %	50 à 75 %	> 75 %
SS	C1	$>\!\!<$					
hyte	C2	\times					
hélophytes	СЗ	$>\!\!<$					
14	C4	$>\!\!<$					
se	C1	$>\!\!<$					
hydrophytes	C2	$>\!\!<$					
drot	СЗ	$>\!\!<$					
17	C4	$>\!\!<$					
algues	C1	$>\!\!<$					
	C2	$>\!\!<$					
algı	СЗ	$>\!\!<$					
	C4	\sim					


Périphyton

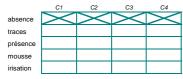
Cyanobactéries

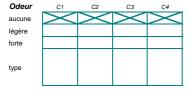
Espèces aquatiques rencontrées

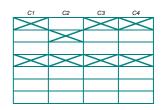

Végétation des berges


absents ou rares
discontinus
continus ou presque

herbes	arbustes	arbres
$>\!\!<$		\times
	$>\!\!<$	


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Rien à signaler - Lame d'eau sur le seuil = 30 cm

C2 : rien à signaler - Lame d'eau sur le seuil = 55 cm + déverse vanne RD et RG

C3 : Beaucoup de canoe. Échelle aval barrage 28 cm - Hauteur d'eau = 10 cm

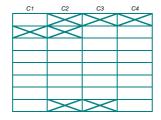
C4 : Lame d'eau sur le seuil = 15 cm

COURS D'EAU: HERAULT

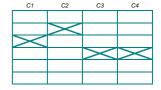
N°de campagne				
C1				
C2				
C3				
C4				

Date				
21/03/2016				
23/05/2016				
01/08/2016				
10/10/2016				

Heure				
16h00				
15h15				
16h30				
13h30				


Intervenants				
MJEZ				
ACOR				
SDAL				
SDAL				
	_			

CODE STATION: 06184510 (H12)


Conditions météorologiques et hydrologiques

Hydrologie

débordement lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques pas d'eau

Météo des jours précédents

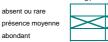
C1	Ensoleillé
C2	Pluie moyenne et vent
C3	Pluie la veille
C4	Stable - sec

Commentaires

C1 : Eau limpide, incolore

C2 : Eau teintée bleu/vert

C3 : Eau légèrement colorée verte


C4 : Niveau d'eau bas

Végétation

Végétation aquatique

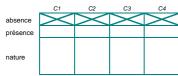
		< 5 %		10 à 25 %	25 à 50 %	50 à 75 %	
Š	C1	$>\!\!<$					
hyte	C2	$>\!\!<$					
hélophytes	СЗ	$>\!\!<$					
he	C4	$>\!<$					
sə	C1	$>\!<$					
hydrophytes	C2	$>\!\!<$					
	СЗ		$>\!\!<$				
	C4		$>\!\!<$				
algues	C1	$>\!<$					
	C2	$>\!\!<$					
	СЗ	$>\!\!<$					
	C4	$>\!\!<$					

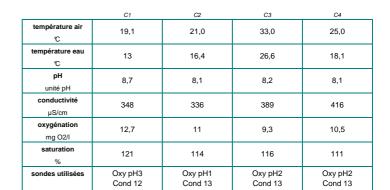
Périphyton

Cyanobactéries

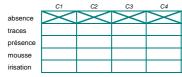
Espèces aquatiques rencontrées

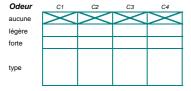
MYR.SPI

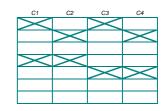

Végétation des berges


absents ou rares
discontinus

herbes	arbustes	arbres
$>\!\!<$		
	$>\!\!<$	$>\!\!<$


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Rien à signaler

C2 : rien à signaler C3 : présence de baigneurs

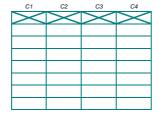
C4 : Bruit de chute d'eau provenant de la rive droite (apport inconnu ?)

COURS D'EAU: HERAULT

N°de campagne	
C1	
C2	
C3	
04	

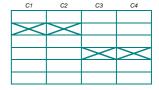
Date	
22/03/2016	
24/05/2016	
02/08/2016	
10/10/2016	

Heure	
09h00	
08h50	
09h15	
14h15	


Intervenants
MJEZ
ACOR
SDAL
SDAL

CODE STATION: 06182400 (H14)

N°photographie
15/16


Conditions météorologiques et hydrologiques

Hydrologie

lit plein ou presque moyennes eaux trous d'eau ou flaques pas d'eau

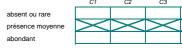
Météo des jours précédents

C1	Ensoleillé
C2	Pluie légère et vent
СЗ	Pluie 2 jours avant
C4	Stable - Beau temps

Commentaires

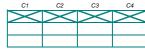
C1 : Eau limpide, incolore C2 : Eau bleue/verte

C3 : Légère coloration verte


C4 : RAS

Végétation

Végétation aquatique

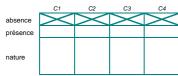

		< 5 %	10 à 25 %	25 à 50 %	50 à 75 %	
SS	C1	$>\!\!<$				
hyte	C2	$>\!\!<$				
hélophytes	СЗ	$>\!\!<$				
he	C4	$>\!\!<$				
Se.	C1	$>\!\!<$				
hyt	C2	$>\!\!<$				
hydrophytes	СЗ	$>\!<$				
ž	C4	$>\!\!<$				
	C1	$>\!\!<$				
algues	C2	$>\!<$				
algı	СЗ	$>\!\!<$				
	C4	$>\!<$				

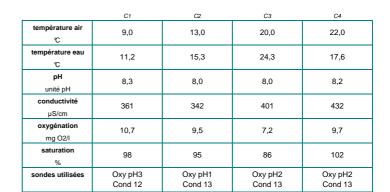
Périphyton

Cyanobactéries

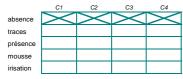
Espèces aquatiques rencontrées

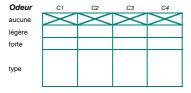
Bryophytes sur le seuil

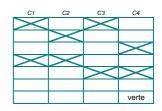

Végétation des berges


discontinus continus ou presque

herbes	arbustes	arbres
$>\!\!<$		
	\sim	
		\sim


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

C1 : Rien à signaler Commentaires

C2 : Rien à signaler

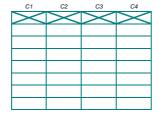
C3 : Rien à signaler C4 : Eau légèrement verte

COURS D'EAU: HERAULT

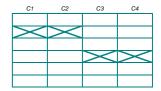
N°de campagne	
C1	
C2	
C3	
C4	

Date
22/03/2016
24/05/2016
02/08/2016
10/10/2016

Heure	
10h30	
09h20	
10h00	
16h00	


Intervenants
MJEZ
ACOR
SDAL
SDAL

CODE STATION: 06182900 (H15)


Conditions météorologiques et hydrologiques

Hydrologie débordement

lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques pas d'eau

Météo des jours précédents

C1	Ensoleillé
C2	Pluie légère et vent
СЗ	Pluie 2 jours avant
C4	Stable - Beau temps

Commentaires

C1 : Eau limpide, incolore C2 : Eau bleue/verte

C3: RAS

C4 : RAS

Végétation

Végétation aquatique

		< 5 %		10 à 25 %	25 à 50 %	50 à 75 %	
S	C1	$>\!\!<$					
hyte	C2	$>\!<$					
hélophytes	СЗ	$>\!\!<$					
14	C4	$>\!\!<$					
s _e s	C1	$>\!<$					
hydrophytes	C2	$>\!\!<$					
drop	СЗ		$>\!\!<$				
<i>y</i>	C4	$>\!\!<$					
	C1	$>\!<$					
algues	C2	$>\!\!<$					
algı	СЗ	$>\!\!<$					
	C4	$>\!<$					

Périphyton

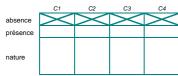
absent ou rare présence moyenne abondant

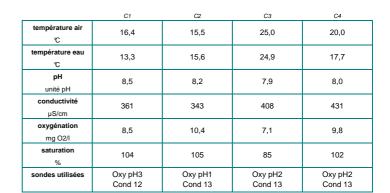
Cyanobactéries

absentes ou rares présence moyenne abondantes

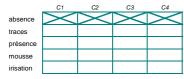
Espèces aquatiques rencontrées

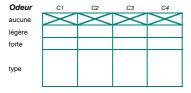
POT.NOD MYR.SPI

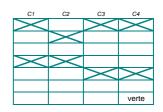

Végétation des berges


discontinus continus ou presque

herbes	arbustes	arbres
$>\!\!<$		\times
	$>\!\!<$	


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Rien à signaler

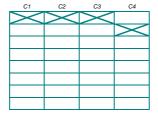
C2 : Rien à signaler C4 : Eau légèrement verte

COURS D'EAU: HERAULT

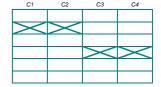
N° de campagne
C1
C2
C3
C4

Date
22/03/2016
24/05/2016
02/08/2016
11/10/2016

Heure	
11h00	
10h00	
10h30	
09h45	
	_


Intervenants
MJEZ
ACOR
SDAL
SDAL

CODE STATION: 06183200 (H16)


Conditions météorologiques et hydrologiques

Hydrologie

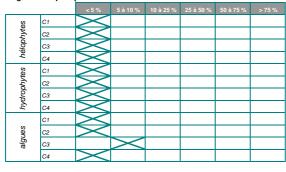
débordement lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques pas d'eau

Météo des jours précédents

C1	Ensoleillé
C2	Pluie moyenne et vent
C3	Pluie 2 jours avant
C4	Stable - beau temps

Commentaires

C1 : Eau limpide, incolore


C2 : Eau bleue/verte

C3: RAS

C4 : Rejet au niveau du pompage (eau propre)

Végétation

Végétation aquatique

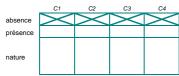
Périphyton

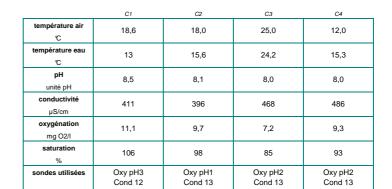
absent ou rare présence moyenne abondant

Cyanobactéries

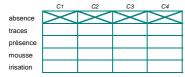
absentes ou rares présence moyenne abondantes

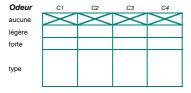
Espèces aquatiques rencontrées

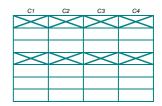

Végétation des berges


absents ou rares
discontinus
continus ou presque

herbes	arbustes	arbres
$>\!\!<$		
	$\overline{}$	$\overline{}$


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Rien à signaler

C2 : Agriculteur en train de désherber chimiquement

C4 : Rien à signaler

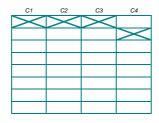
C3 : Présence de baigneurs

COURS D'EAU: HERAULT

N°de campagne
C1
C2
C3
C4

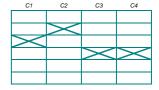
Date
22/03/2016
24/05/2016
02/08/2016
11/10/2016

Heure
12h00
10h30
11h30
10h20


Intervenants	
MJEZ	
ACOR	
SDAL	
SDAL	
	_

CODE STATION: 06183685 (H18)

N°photographie
21/22


Conditions météorologiques et hydrologiques

Hydrologie

débordement lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques pas d'eau

Météo des jours précédents

C1	Ensoleillé
C2	Pluie moyenne et vent
СЗ	Pluie 2 jours avant
C4	Stable

Commentaires

- C1 : Eau limpide, incolore
- C2: Couleur verte
- C3: Couleur verte
- C4 : Niveau d'eau bas, étaige sévère

Végétation

Végétation aquatique

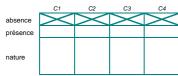
175 % > 75 %	50 à 75 %	25 à 50 %	10 à 25 %	5 à 10 %	< 5 %		
					$>\!\!<$	C1	S
					$>\!\!<$	C2	hyte
					$>\!\!<$	СЗ	hélophytes
					\times	C4	he
					$>\!\!<$	C1	hydrophytes
					\times	C2	
					$>\!\!<$	СЗ	
					\times	C4	
					$>\!\!<$	C1	
				$>\!\!<$		C2	algues
				$>\!\!<$		СЗ	
					$>\!\!<$	C4	
				\approx	>	C2 C3	algues

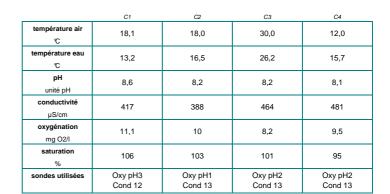
Périphyton

Cyanobactéries

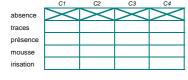
Espèces aquatiques rencontrées

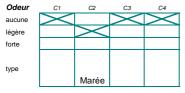
C4 : Beaucoup de périphyton

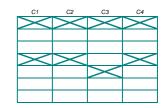

Végétation des berges


absents ou rares
discontinus

herbes	arbustes	arbres
$>\!\!<$		
	\times	
		> <


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Rien à signaler

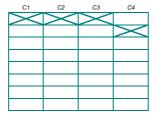
- C2 : Viticulteur en train de traiter la vigne. Prélèvement en pied de passe poisson
- C3 : Camping (toilettes sauvages) à proximité. Légère coloration verte

COURS D'EAU: HERAULT

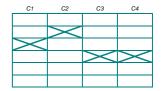
N°de campagne				
C1				
C2				
C3				
C4	Т			

	Date			
Γ	22/03/2016			
Γ	24/05/2016			
Γ	02/08/2016			
Γ	11/10/2016			
-				

Heure	
12h30	
11h45	
12h20	
11h00	


Intervenants				
MJEZ				
ACOR				
SDAL				
SDAL				

CODE STATION: 06183700 (H19)


Conditions météorologiques et hydrologiques

Hydrologie débordement

lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques pas d'eau

Météo des jours précédents

C1	Ensoleillé
C2	Pluie moyenne
СЗ	Pluie 2 jours avant
C4	Temps stable

Commentaires

C1 : Eau limpide, incolore

C2 : Eau verdâtre

C3: RAS

C4 : Niveau d'eau bas, étiage sévère

Végétation

Végétation aquatique

		< 5 %	5 à 10 %	10 à 25 %	25 à 50 %	50 à 75 %	> 75 %
လွ	C1	$>\!<$					
hyte	C2	$>\!<$					
hélophytes	СЗ	$>\!\!<$					
he	C4	$>\!<$					
hydrophytes	C1	$>\!\!<$					
	C2	$>\!<$					
	СЗ	$>\!\!<$					
	C4	$>\!<$					
	C1	$>\!\!<$					
algues	C2		\sim				
	СЗ	$>\!\!<$					
	C4	$>\!<$					

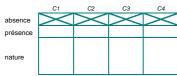
Périphyton

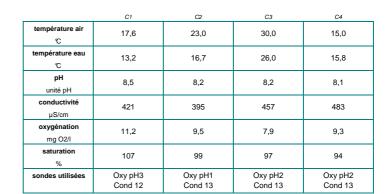
absent ou rare présence moyenne abondant

Cyanobactéries

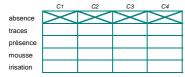
absentes ou rares présence moyenne abondantes

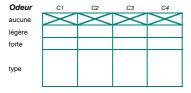
Espèces aquatiques rencontrées

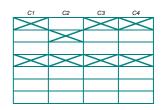

Végétation des berges


absents ou rares
discontinus
continus ou presque

	\sim	$\overline{}$
$>\!<$		
herbes	arbustes	arbres


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Rien à signaler

C2 : Rien à signaler C3 : Très gros embâcle au pont

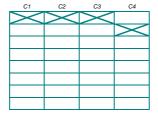
C4 : embâcle au pont presque supprimé

COURS D'EAU: HERAULT

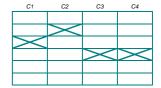
N°de campagne		
C1		
C2		
C3		
C4		

Date	
22/03/2016	
24/05/2016	
02/08/2016	
11/10/2016	
•	

Heure	
13h00	
12h30	
13h30	
11h20	


Intervenants	
MJEZ	
ACOR	
SDAL	
SDAL	

CODE STATION: 06183820 (H20)


Conditions météorologiques et hydrologiques

Hydrologie

débordement lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques pas d'eau

Météo des jours précédents

C1	Ensoleillé
C2	Pluie moyenne
C3	Pluie 2 jours avant
C4	Stable - beau temps

Commentaires

C1 : Eau limpide, incolore

C2 : Eau verte

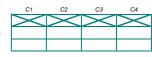
C3: RAS

C4 : Niveau d'eau très bas, eau légèrement verte

Végétation

Végétation aquatique

		< 5 %	5 à 10 %	10 à 25 %	25 à 50 %	50 à 75 %	> 75 %
hélophytes	C1	\sim					
	C2	\sim					
doJś	СЗ	\sim					
μę	C4	\sim					
Se Se	C1	\sim					
hydrophytes	C2	\sim					
	СЗ	\sim					
	C4	\sim					
algues	C1	\sim					
	C2	\sim					
	СЗ	\sim					
	C4	\sim					

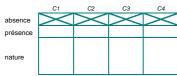

Périphyton

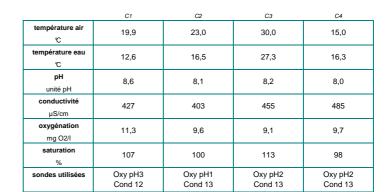
absent ou rare présence moyenne abondant

Cyanobactéries

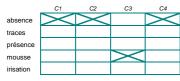
absentes ou rares présence moyenne abondantes

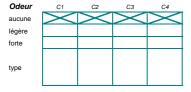
Espèces aquatiques rencontrées

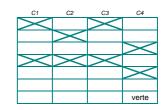

Végétation des berges


absents ou rares
discontinus
continus ou presque

herbes	arbustes	arbres
$>\!\!<$	\times	\times


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Rien à signaler

C2 : Rien à signaler C3 : Mous

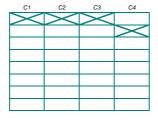
C3 : Mousse au niveau de la mise à l'eau

COURS D'EAU: HERAULT

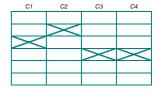
N°de campagne	
C1	
C2	
C3	
C4	

Date	
22/03/2016	
24/05/2016	
02/08/2016	
11/10/2016	

Heure
13h30
14h00
13h50
11h40


Intervenants
MJEZ
ACOR
SDAL
SDAL

CODE STATION: 06183835 (H21)


Conditions météorologiques et hydrologiques

Hydrologie débordement

débordement lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques pas d'eau

Météo des jours précédents

C1	Ensoleillé
C2	Pluie moyenne et vent
C3	Pluie 2 jours avant
C4	Stable - beau temps

Commentaires

- C1 : Eau limpide, incolore C2 : Eau limpide, incolore
- C3 : Eau limpide, incolore
- C3 : Niveau d'eau bas, étiage sévère

Végétation

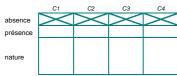
Végétation aquatique

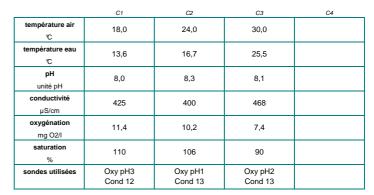
		< 5 %	5 à 10 %	10 à 25 %	25 à 50 %	50 à 75 %	> 75 %
hélophytes	C1	$>\!\!<$					
	C2	\times					
doj	СЗ	$>\!\!<$					
he	C4	$>\!\!<$					
Se	C1	$>\!\!<$					
hydrophytes	C2	$>\!\!<$					
	СЗ	$>\!\!<$					
	C4	$>\!\!<$					
algues	C1	$>\!\!<$					
	C2	$>\!\!<$					
	СЗ	$>\!\!<$					
	C4	$>\!\!<$					

Périphyton

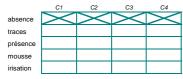
Cyanobactéries

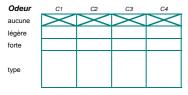
Espèces aquatiques rencontrées

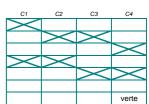

Végétation des berges


absents ou rares	
discontinus	
continus ou presque	

herbes	arbustes	arbres


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau limpide

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Rien à signaler

C2 : Rien à signaler C3 : Rien à signaler

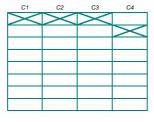
C4 : Pompage (arrêté) en amont

COURS D'EAU: HERAULT

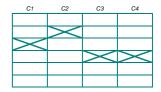
N°de campagne			
C1			
C2			
C3			
C4			

Date			
22/03/2016			
24/05/2016			
02/08/2016			
11/10/2016			

Heure				
14h15				
14h45				
14h30				
12h30				


Intervenants	
MJEZ	
ACOR	
SDAL	
SDAL	
	_

CODE STATION: 06184200 (H23)


Conditions météorologiques et hydrologiques

Hydrologie débordement

Météo des jours précédents

C1	Ensoleillé
C2	Pluie moyenne
СЗ	Pluvieux
C4	Stable

Commentaires

- C1 : Eau limpide, incolore C2 : Eau limpide, incolore
- C3 : Eau limpide, incolore
- C4 : Etiage sévère

Végétation

Végétation aquatique

				10 à 25 %	25 à 50 %	50 à 75 %	
Se	C1	$>\!\!<$					
hyte	C2	\sim					
hélophytes	СЗ	$>\!\!<$					
14	C4	\sim					
Se	C1	$>\!\!<$					
tyhc	C2	?	?				
hydrophytes	СЗ	?	?				
ž	C4	?	?				
	C1	$>\!\!<$					
ser	C2	?	?				
algues	СЗ	?	?				
	C4	?	?				

Périphyton

	C1	02	
absent ou rare			
présence moyenne	?	?	
abondant			

Cyanobactéries

absentes ou rares
présence moyenne
abondantes

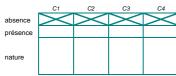
C1	C2	СЗ	C4	
	?			
?		?	?	

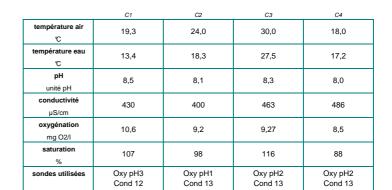
Espèces aquatiques rencontrées

C1 : pas de visibilité des fonds

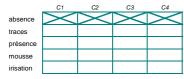
C2 : pas de visibilité des fonds C3 : pas de visibilité des fonds

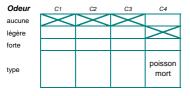
C4 : fond peu visible, algues filamenteuses

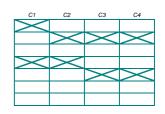

Végétation des berges


absents ou rares
discontinus
continus ou presque

herbes	arbustes	arbres
$>\!\!<$	\times	
		\rangle


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Rien à signaler

C2 : Rien à signaler C3 : Présence de baigneurs, péniche et camping. Eau un peu trouble et verte

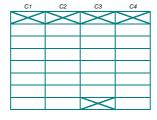
C4 : eau trouble et lègèrement colorée verte, présence de pêcheurs

COURS D'EAU: VIS

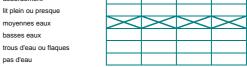
N°de campagne C1 C2 СЗ C4

Date
21/03/2016
23/05/2016
01/08/2016
10/10/2016

Heure	
10h30	
10h30	
10h30	
10h45	


Intervenants
JGST / SDAL
MJEZ / SDAL
JGST / MCRO
MJEZ / GSEV

CODE STATION: 06181950 (VIS1)



Conditions météorologiques et hydrologiques

Hydrologie débordement lit plein ou presque moyennes eaux basses eaux

Météo des jours précédents

C1	Pluie la veille
C2	Pluie la veille
C3	Orageux
C4	Ensoleillé

Commentaires

C1 : Eau limpide, incolore C2 : incolore, léger trouble

C3: RAS

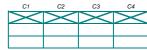
C4 : RAS

pas d'eau

Végétation

Végétation aquatique

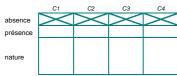
		< 5 %	5 à 10 %	10 à 25 %	25 à 50 %	50 à 75 %	> 75 %
SS	C1	\sim					
λγte	C2	\sim					
hélophytes	СЗ	\sim					
h	C4	\sim					
Seg	C1	\sim					
tyq	C2	\sim					
hydrophytes	СЗ	\sim					
176	C4	$>\!\!<$					
sendle	C1	\sim					
	C2	$>\!\!<$					
	СЗ	><					
	C4	$>\!\!<$					

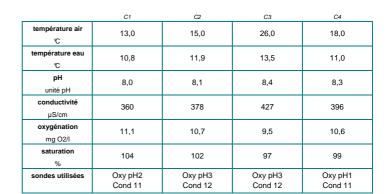

Périphyton

Cyanobactéries

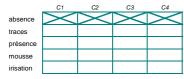
Espèces aquatiques rencontrées

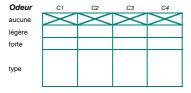
pellia endiviifolia, fissidens crassipes, marchantia polymorpha, diatomées (melosira sp), spirogyra sp

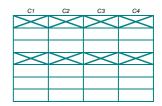

Végétation des berges


	herbes
absents ou rares	
discontinus	
continus ou presque	$>\!\!<$

herbes	arbustes	arbres
$>\!\!<$	$>\!\!<$	$>\!\!<$


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

C1 : Rien à signaler Commentaires

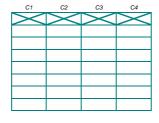
C2 : Rien à signaler C3: Rien à signaler

COURS D'EAU: VIS

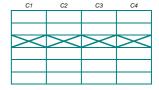
N° de campagne
C1
C2
C3
C4

Date
21/03/2016
23/05/2016
01/08/2016
10/10/2016

Heure
11h40
11h50
11h40
11h55


Intervenants	
JGST / SDAL	
SDAL / MJEZ	
JGST / MCRO	
MJEZ / GSEV	

CODE STATION: 06181960 (VIS2)



Conditions météorologiques et hydrologiques

Hydrologie débordement lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques

Météo des jours précédents

C1	Pluie la veille
C2	Pluie la veille
СЗ	Orages le weekend
C4	Ensoleillé

Commentaires

pas d'eau

C1 : Eau limpide, incolore C2 : Eau limpide, incolore C3 : Eau limpide, incolore C4 : Eau limpide, incolore

Végétation

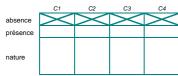
Végétation aquatique

		< 5 %	5 à 10 %	10 à 25 %	25 à 50 %	50 à 75 %	> 75 %
hélophytes	C1	$>\!<$					
	C2	><					
doj	СЗ	$>\!<$					
14	C4	><					
hydrophytes	C1	$>\!<$					
	C2	><					
	СЗ	$>\!<$					
	C4	><					
sendle	C1	$>\!<$					
	C2	><					
	СЗ	$>\!\!<$					
	C4	$\geq \leq$					

Périphyton

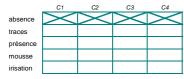
Cyanobactéries

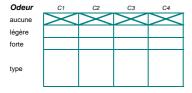
Espèces aquatiques rencontrées

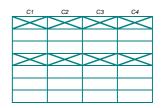

Végétation des berges

absents ou rares
discontinus
continus ou presque

herbes	arbustes	arbres


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Rien à signaler

C2 : Rien à signaler C3 : Rien à signaler

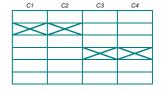
COURS D'EAU: VIS

N° de campagne	
C1	
C2	
C3	
C1	

Date				
21/03/2016				
23/05/2016				
01/08/2016				
10/10/2016				


Intervenants
MJEZ
ACOR
SDAL
SDAL

CODE STATION: 06181980 (VIS3)


Conditions météorologiques et hydrologiques

Météorologie
ensoleillé
nuageux
pluvieux
orageux
neigeux
gel
brume, brouillard
ventouv

Hydrologie débordement

débordement lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques pas d'eau

Météo des jours précédents

C1	Pluie la veille
C2	Stable (soleil/vent)
C3	Pluie la veille
C4	Stable

Commentaires

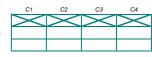
C1 : Eau limpide, incolore C2 : Eau limpide, incolore

C3 : Eau limpide, incolore C4 : Eau limpide, incolore

Végétation

Végétation aquatique

• .							
		< 5 %	5 à 10 %	10 à 25 %	25 à 50 %	50 à 75 %	> 75 %
hélophytes	C1	$>\!\!<$					
	C2	$>\!<$					
doj	C3	$>\!\!<$					
he	C4	$>\!<$					
Ses	C1	$>\!<$					
thy	C2	$>\!<$					
hydrophytes	СЗ	$>\!\!<$					
ž	C4	$>\!<$					
algues	C1	$>\!<$					
	C2	><					
	СЗ	$>\!\!<$					
	C4	><					

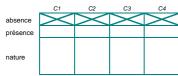

Périphyton

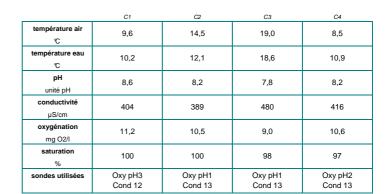
absent ou rare
présence moyenne
abondant

Cyanobactéries

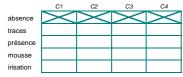
absentes ou rares présence moyenne abondantes

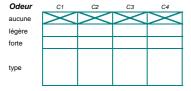
Espèces aquatiques rencontrées

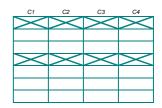

Végétation des berges


absents ou rares
discontinus
continus ou presque

herbes	arbustes	arbres
$>\!\!<$		
		$\overline{}$
	\sim	\sim


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Rien à signaler

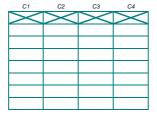
C2 : Rien à signaler C3 : Rien à signaler

COURS D'EAU: RUISSEAU DE BRISSAC

N°de campagne	
C1	
C2	
C3	
0.4	

Date
21/03/2016
23/05/2016
01/08/2016
10/10/2016

Heure
14h40
14h45
15h00
15h00


Intervenants
JGST / SDAL
MJEZ / SDAL
JGST / MCRO
MJEZ / GSEV

CODE STATION: 06184640 (FO1)

Conditions météorologiques et hydrologiques

Hydrologie débordement lit plein ou presque

Météo des jours précédents

C1	Pluie la veille
C2	Pluie la veille
СЗ	Orageux
C4	Ensoleillé

Commentaires

- C1 : Eau limpide, incolore
- C2 : Eau limpide, incolore
- C3: RAS
- C4 : RAS

Végétation

Végétation aquatique

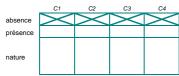
		< 5 %	5 à 10 %	10 à 25 %	25 à 50 %	50 à 75 %	> 75 %
SS	C1	$>\!<$					
hélophytes	C2	><					
doJé	СЗ	$>\!\!<$					
ų	C4	$>\!<$					
ses	C1	$>\!\!<$					
hydrophytes	C2	$>\!<$					
drop	СЗ	$>\!\!<$					
ž	C4	$>\!<$					
	C1	$>\!\!<$					
sən	C2	$>\!<$					
algues	СЗ	$>\!\!<$					
	C4	$\geq \leq$					

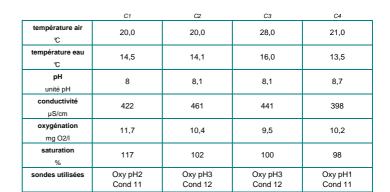
Périphyton

Cyanobactéries

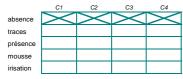
Espèces aquatiques rencontrées

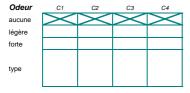
hildenbrandia sp, fissidens crassipes, chiloscyphus polyanthos

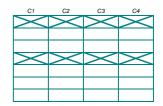

Végétation des berges


absents ou rares
discontinus
continus ou presque

herbes	arbustes	arbres
$>\!\!<$	$>\!\!<$	$>\!\!<$


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1: Rien à signaler

C2:RAS C3: RAS

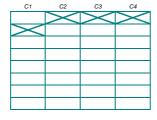
C4: RAS

COURS D'EAU: BUEGES

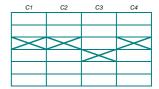
N° de campagne C1 C2 C3 C4

Date	
21/03/2016	
23/05/2016	
01/08/2016	
10/10/2016	
•	

Heure
15h45
15h45
16h00
16h00


Intervenants
JGST / SDAL
MJEZ / SDAL
JGST / MCRO
MJEZ / GSEV

CODE STATION: 06184620 (BU1)


Conditions météorologiques et hydrologiques

Météorologie		
ensoleillé		
nuageux		
pluvieux		
orageux		
neigeux		
gel		
brume, brouillard		
venteux		

Hydrologie débordement

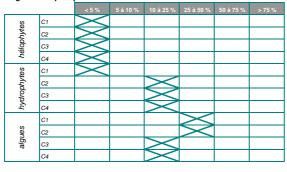
débordement lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques pas d'eau

Météo des jours précédents

C1	Pluie la veille
C2	Pluie la veille
C3	Orageux
C4	Ensoleillé

Commentaires

C1 : Eau limpide, incolore


C2 : Eau limpide et incolore

C3: RAS

C4 : Mousse, eau limpide et incolore

Végétation

Végétation aquatique

Périphyton

absent ou rare présence moyenne abondant

Cyanobactéries

absentes ou **rares** présence moyenne abondantes

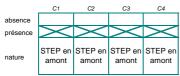
Espèces aquatiques rencontrées

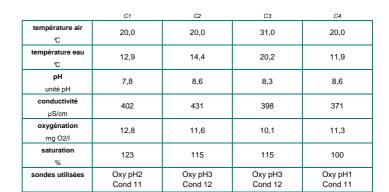
C1 : Bryophytes = 25 à 50 %

C2 : Bryophytes = 25 à 50 %

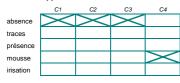
C3 : Bryophytes

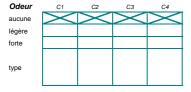
C4 : Bryophytes = 10 à 25% + algues

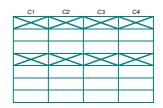

Végétation des berges


absents ou rares
discontinus

herbes		
	$>\!\!<$	
		$>\!\!<$
$>\!\!<$		


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau limpide

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Ancienne STEP en amont au niveau du gué

C2 : Pas ancienne STEP, odeur STEP

C3: RAS

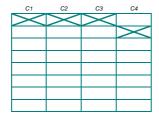
C4 : Odeur de STEP, mousse, bryophytes eutrophes

COURS D'EAU: THONGUE

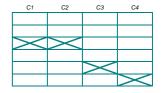
N° de campagne C1 C2 C3 C4

Date		
22/03/2016		
24/05/2016		
02/08/2016		
11/10/2016		

Heure	
14h15	
14h30	
14h15	
12h15	


Intervenants
JGST / SDAL
SDAL / MJEZ
JGST / MCRO
ACOR / GSEV

CODE STATION: 06183840 (TH1)


Conditions météorologiques et hydrologiques

Hydrologie débordement lit plein ou presque

Météo des jours précédents

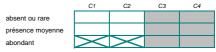
C1	Pluie le 20/03 ?
C2	Pluie le 22/05 ?
СЗ	Nuageux
C4	Ensoleillé

Commentaires

C1 : RAS

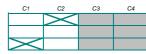
C2: RAS

C3 : Cours d'eau pratiquement à sec, trous d'eau, pas d'écoulement


C4 : Cours d'eau à sec depuis longtemps

Végétation

Végétation aquatique

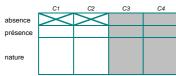

			10 à 25 %	25 à 50 %	50 à 75 %	
hélophytes	C1	$>\!<$				
	C2	$>\!<$				
	СЗ					
14	C4					
sə	C1	$>\!\!<$				
hy.	C2	$>\!\!<$				
hydrophytes	СЗ					
	C4					
algues	C1				$>\!\!<$	
	C2					\times
	СЗ					
	C4					

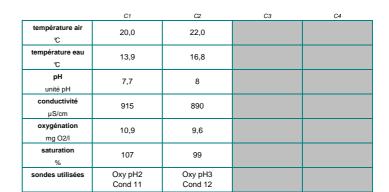
Périphyton

Cyanobactéries

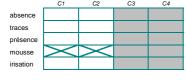
Espèces aquatiques rencontrées

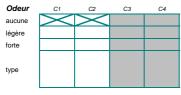
C1 : Lentilles + algues filamenteuses

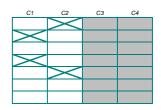

Végétation des berges


absents ou rares	
discontinus	
continus ou presque	

herbes	arbustes	arbres
\sim		


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Présence légère de mousse

C2 : Très léger trouble, quelques mousses, beaucoup d'algues et lentilles d'eau

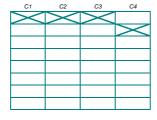
C3 : Cours d'eau pratiquement à sec, trous d'eau, pas d'écoulement C4 : Cours d'eau à sec

COURS D'EAU : PEYNE

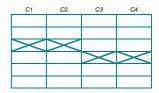
N°de campagne C1 C2 СЗ C4

Date				
22/03/2016				
24/05/2016				
02/08/2016				
11/10/2016				
	1			

Heure	
12h00	
12h00	
13h30	
11h45	


Intervenants
JGST/SDAL
SDAL/MJEZ
JGST/MCRO
ACOR / GSEV

CODE STATION: 06183750 (P1)


Conditions météorologiques et hydrologiques

Hydrologie lit plein ou presque moyennes eaux

Météo des jours précédents

C1	Pluie le 20/03 ?
C2	Pluie le 22/05
СЗ	Ensoleillé
C4	Ensoleillé

Commentaires

C1 : Eau limpide, incolore

C2: RAS C3: RAS C4 : RAS

Végétation

Végétation aquatique

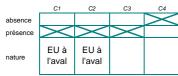
regetat	ion aquatic	Juc					
		< 5 %	5 à 10 %	10 à 25 %	25 à 50 %	50 à 75 %	> 75 %
SS	C1	$>\!\!<$					
hyte	C2	$>\!<$					
hélophytes	C3	$>\!\!<$					
he	C4	$>\!<$					
es	C1	$>\!\!<$					
hydrophytes	C2	$>\!<$					
drop	C3	$>\!\!<$					
ž	C4		$>\!\!<$				
	C1					$>\!\!<$	
algues	C2		$>\!\!<$				
algı	C3		$>\!\!<$				
	C4		$>\!\!<$				

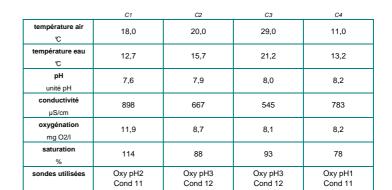
Périphyton

Cyanobactéries

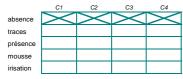
Espèces aquatiques rencontrées

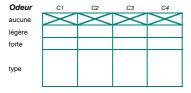
Vaucheria sp, leptodictyum riparium

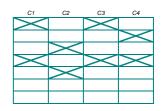

Végétation des berges


absents ou rares
discontinus
continus ou presque

herbes	arbustes	arbres


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Rejet EU en aval de la station, écoulement faible mais assez stable

C2: RAS

C3: RAS

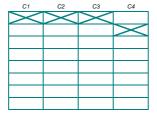
C4 : Débit estimé à 7-8 l/s - prélèvement réalisé à l'aval du Gué

COURS D'EAU: BOYNE

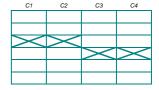
N°de campagne
C1
C2
C3
C4

Date
22/03/2016
24/05/2016
02/08/2016
11/10/2016

Heure	
11h10	
11h00	
10h50	
11h00	


Intervenants
JGST/SDAL
SDAL/MJEZ
JGST/MCRO
ACOR / GSEV

CODE STATION: 06183900 (BO1)

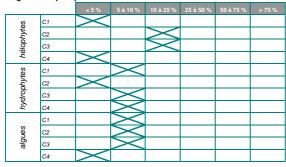

Conditions météorologiques et hydrologiques

Hydrologie

débordement lit plein ou presque moyennes eaux basses eaux trous d'eau ou flaques pas d'eau

Météo des jours précédents

C1	Pluie le 20/03 ?
C2	Pluie le 22/05
C3	Ensoleillé
C4	Ensoleillé


Commentaires

C1 : Entretien du lit en cours (coupe, brûlage végétaux)

C2 : RAS C3 : RAS C4 : RAS

Végétation

Végétation aquatique

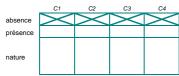
Périphyton

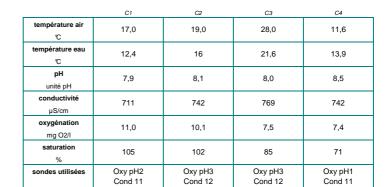
absent ou rare présence moyenne abondant

Cyanobactéries

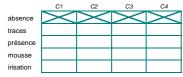
absentes ou rares présence moyenne abondantes

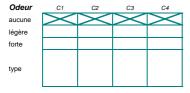
Espèces aquatiques rencontrées

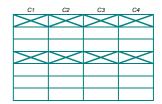

Végétation des berges


absents ou rares
discontinus

herbes	arbustes	arbres
$>\!\!<$	\times	\times


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Rien à signaler

C2: Rien à signaler C3 : Rien à signaler

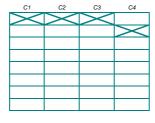
C4 : Rien à signaler, débit estimé à 5 l/s

COURS D'EAU: SALAGOU

N° de campagne C1 C2 C3 C4

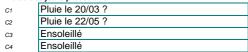
Date
22/03/2016
24/05/2016
02/08/2016
11/10/2016

Heure	
10h35	
10h00	
10h00	
10h00	


Intervenants
JGST/SDAL
MJEZ/SDAL
JGST/MCRO
ACOR / GSEV

CODE STATION: 06182600 (SLG1)

Conditions météorologiques et hydrologiques



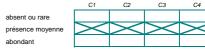
Hydrologie débordement lit plein ou presque

moyennes eaux basses eaux trous d'eau ou flaques pas d'eau

Météo des jours précédents

Commentaires

C1 : Eau limpide, incolore


C2 : Eau claire C3 : RAS C4 : RAS

Végétation

Végétation aquatique

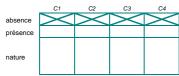
		< 5 %	5 à 10 %	10 à 25 %	25 à 50 %	50 à 75 %	> 75 %
hélophytes	C1		$>\!\!<$				
	C2		$>\!<$				
	СЗ		$>\!\!<$				
	C4	\sim					
hydrophytes	C1	\sim	1				
	C2	\sim					
	СЗ	\sim					
	C4		$>\!<$				
algues	C1		$>\!<$				
	C2	\sim					
algı	СЗ	\sim					
	C4	\sim					

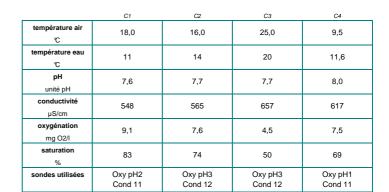
Périphyton

Cyanobactéries

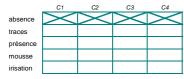
Espèces aquatiques rencontrées

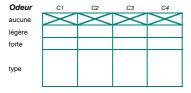
C1 : Vaucheria

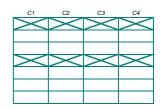

Végétation des berges


absents ou rares
discontinus
continus ou presque

		\sim
herbes	arbustes	arbres


Physico-chimie


Rejets polluants à proximité


Pollution apparente

Aspect de l'eau

limpide louche trouble incolore légèrement colorée fortement colorée couleur

Commentaires C1 : Rien à signaler

C2 : Rien à signaler C3 : Rien à signaler

FICHE DE DESCRIPTION DES CONDITIONS ENVIRONNEMENTALES D'ECHANTILLONNAGE

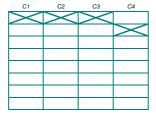
COURS D'EAU : LERGUE

N°de campagne C1 C2 C3

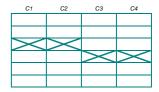
C4

Date					
22/03/2016					
24/05/2016					
02/08/2016					
11/10/2016					

Heure	
09h45	
09h30	
09h15	
09h25	


Intervenants
JGST / SDAL
SDAL / MJEZ
JGST / MCRO
ACOR / GSEV

CODE STATION: 06300053 (LER2)


Conditions météorologiques et hydrologiques

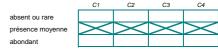
Hydrologie débordement lit plein ou presque moyennes eaux basses eaux

Météo des jours précédents

C1	Pluie le 20/03 ?
C2	Pluie le 22/05
СЗ	Ensoleillé
C4	Ensoleillé

Commentaires

C1 : Eau limpide, incolore


C2 : RAS C3 : RAS C4 : RAS

Végétation

Végétation aquatique

	< 5 %		10 à 25 %	25 à 50 %	50 à 75 %	
C1	$>\!\!<$					
C2	\times					
СЗ	$>\!\!<$					
C4	\times					
C1	$>\!\!<$					
C2	\times					
СЗ	$>\!\!<$					
C4	\sim					
C1	$>\!\!<$					
C2	\sim					
СЗ					$>\!\!<$	
C4				$>\!\!<$		
	C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3	C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3	C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C3 C4	C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C3 C4 C4 C5	C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C3 C4	C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C3 C4 C5 C5 C6 C7 C7 C8 C8 C8 C9

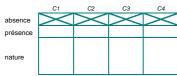
Périphyton

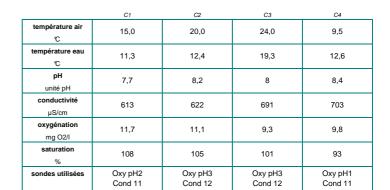
Cyanobactéries

Espèces aquatiques rencontrées

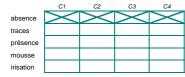
C1 : peu d'éspèces car beaucoup d'arbres couchés (crue 2015)

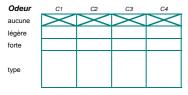
C4 : beaucoup d'algues

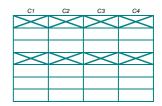

Végétation des berges


absents ou rares	
discontinus	
continus ou presque	

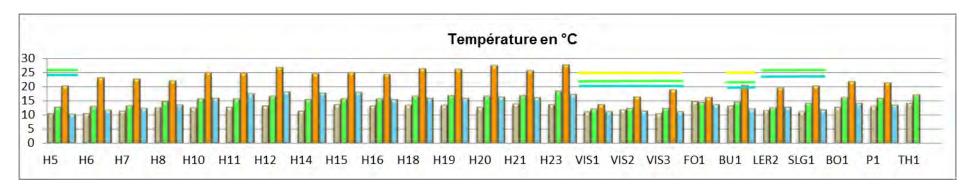
herbes	arbustes	arbres
$>\!\!<$	\times	\times

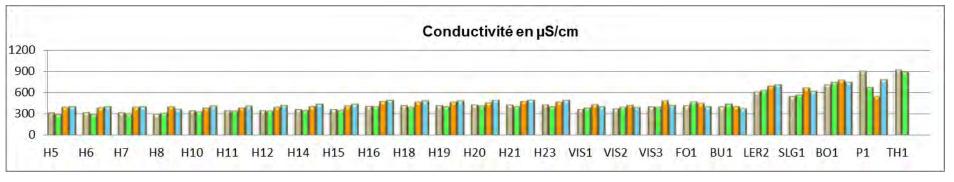

Physico-chimie


Rejets polluants à proximité

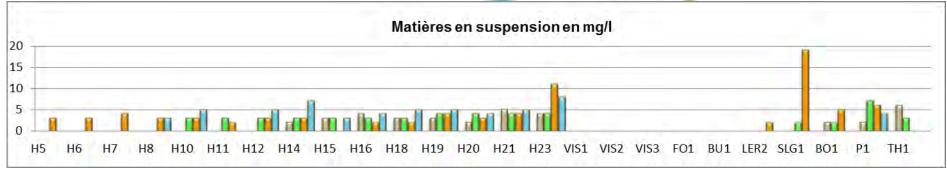

Pollution apparente

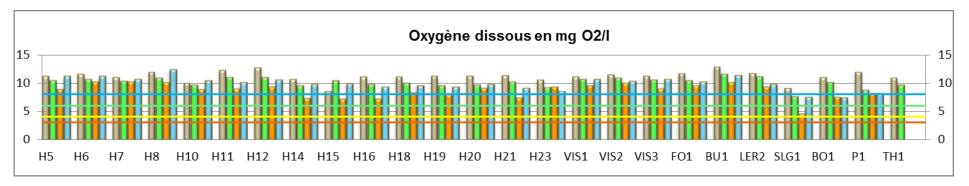
Aspect de l'eau

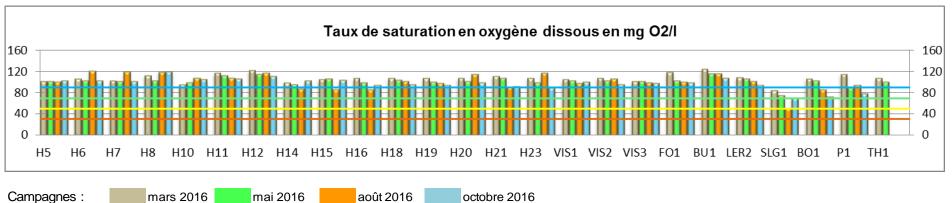

limpide
louche
trouble
incolore
légèrement colorée
fortement colorée
couleur



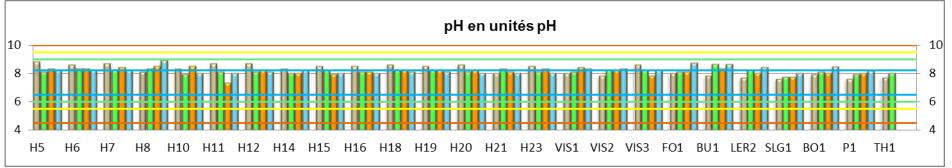
Commentaires C1 : Rien à signaler

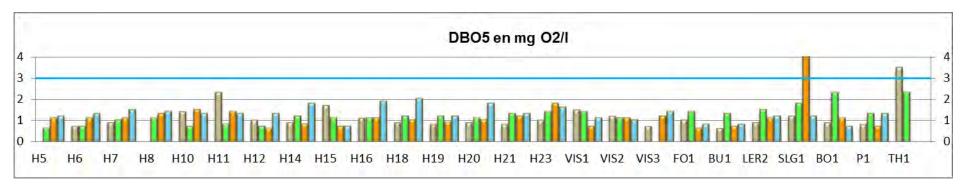

8.5.2. Graphiques de l'évolution des résultats du suivi du bassin de l'Hérault en 2016 - Comparaison des résultats aux niveaux de qualité de l'arrêté du 25/01/2010 modifié par l'arrêté du 27/07/2015.

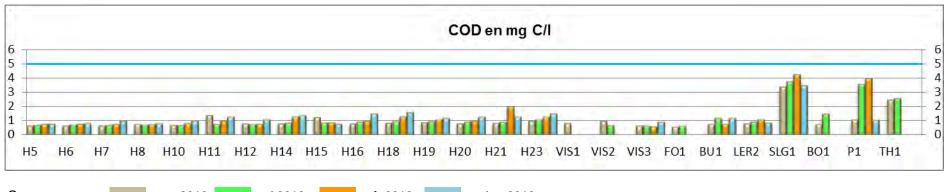


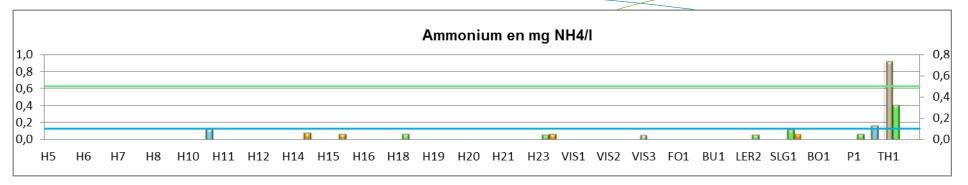


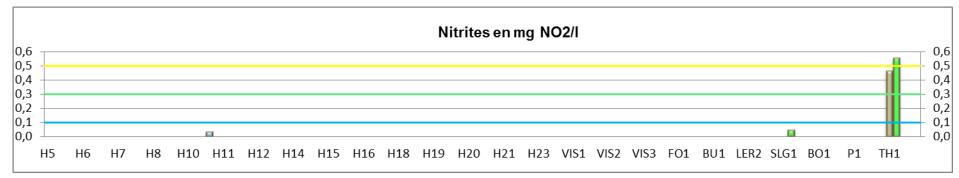
Campagnes: mars 2016 mai 2016 août 2016 octobre 2016

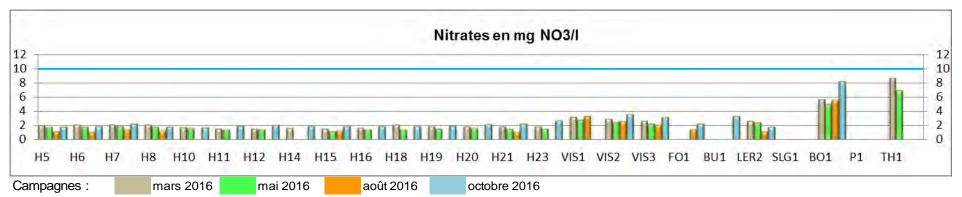


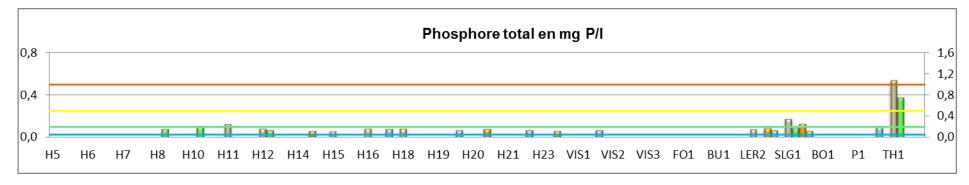


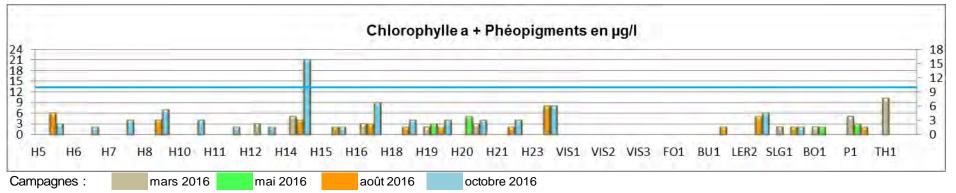


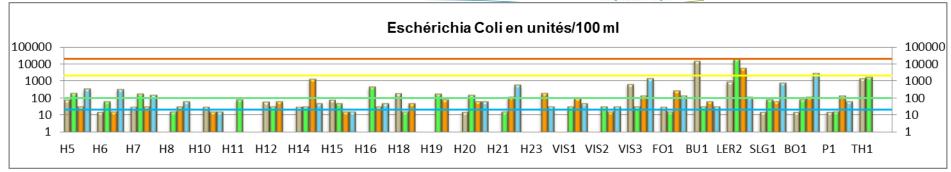


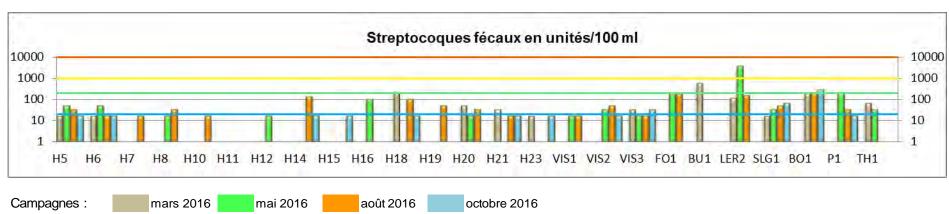












8.5.3. Résultats des analyses de pesticides réalisées en 2016 dans le cadre des réseaux de surveillance.

Tableau 39 - Pesticides sur eau brute ayant dépassé le seuil de quantification du laboratoire en 2016 (source SIE).

l ableau 3	39 - Pesticides sur eau brute ayant dépas	ssé le seuil de d	quantificat	tion du laboratoire en 2016 (sou	irce SIE).	
Code de la						
station de	Nom de la station de mesure	Date du	Code	Nom du paramètre	Résultat	Unité
mesure		prélèvement	Sandre			
6183850	THONGUE A ST-THIBERY	21/01/2016	1109	Atrazine déisopropyl	0,026	μg/L
6183850	THONGUE A ST-THIBERY	21/01/2016	1263	Simazine	0,027	μg/L
6183850			1493	EDTA		
	THONGUE A ST-THIBERY	21/01/2016			6	μg/L
6183850	THONGUE A ST-THIBERY	21/01/2016	1506	Glyphosate	0,067	μg/L
6183850	THONGUE A ST-THIBERY	21/01/2016	1694	Tébuconazole	0,028	μg/L
6183850	THONGUE A ST-THIBERY	21/01/2016	1877	Imidaclopride	0,021	μg/L
6183850	THONGUE A ST-THIBERY	21/01/2016	1907	AMPA	0,85	μg/L
6183850	THONGUE A ST-THIBERY	21/01/2016	2009	Fipronil	0,016	μg/L
6183850	THONGUE A ST-THIBERY	12/02/2016	1109	Atrazine déisopropyl	0,028	μg/L
6183850	THONGUE A ST-THIBERY	12/02/2016	1221	Métolachlore	0,12	μg/L
6183850	THONGUE A ST-THIBERY	12/02/2016	1263	Simazine	0,03	μg/L
6183850	THONGUE A ST-THIBERY	12/02/2016	1268	Terbuthylazine	0,103	μg/L
6183850	THONGUE A ST-THIBERY	12/02/2016	1694	Tébuconazole	0,022	μg/L
6183850	THONGUE A ST-THIBERY	12/02/2016	1954	Terbuthylazine hydroxy	0,021	μg/L
6183850	THONGUE A ST-THIBERY	12/02/2016	2009	Fipronil	0,014	μg/L
6183850	THONGUE A ST-THIBERY	12/02/2016	2009	Terbuthylazine déséthyl	0,014	μg/L
					,	
6183850	THONGUE A ST-THIBERY	12/02/2016	5526	Boscalid	0,035	μg/L
6183850	THONGUE A ST-THIBERY	16/03/2016	1105	Aminotriazole	0,058	μg/L
6183850	THONGUE A ST-THIBERY	16/03/2016	1109	Atrazine déisopropyl	0,02	μg/L
6183850	THONGUE A ST-THIBERY	16/03/2016	1221	Métolachlore	0,076	μg/L
6183850	THONGUE A ST-THIBERY	16/03/2016	1263	Simazine	0,028	μg/L
6183850	THONGUE A ST-THIBERY	16/03/2016	1268	Terbuthylazine	0,034	μg/L
6183850	THONGUE A ST-THIBERY	16/03/2016	1414	Propyzamide	0,054	μg/L
6183850	THONGUE A ST-THIBERY	16/03/2016	1506	Glyphosate	0,145	μg/L
6183850	THONGUE A ST-THIBERY	16/03/2016	1517	Naphtalène	0,008	μg/L
6183850	THONGUE A ST-THIBERY	16/03/2016	1664	Procymidone	0,006	μg/L
6183850	THONGUE A ST-THIBERY	16/03/2016	1694	Tébuconazole	0,03	μg/L
6183850	THONGUE A ST-THIBERY	16/03/2016	1814	Diflufénicanil	0,006	μg/L
6183850	THONGUE A ST-THIBERY	16/03/2016	1830	Atrazine déséthyl déïsopropyl	0,000	
				AMPA		μg/L
6183850	THONGUE A ST-THIBERY	16/03/2016	1907		1,43	μg/L
6183850	THONGUE A ST-THIBERY	16/03/2016	2009	Fipronil	0,014	μg/L
6183850	THONGUE A ST-THIBERY	16/03/2016	5526	Boscalid	0,022	μg/L
6183850	THONGUE A ST-THIBERY	14/04/2016	1116	Benzo (b) Fluoranthène	0,0005	μg/L
6183850	THONGUE A ST-THIBERY	14/04/2016	1118	Benzo (ghi) Pérylène	0,0006	μg/L
6183850	THONGUE A ST-THIBERY	14/04/2016	1263	Simazine	0,024	μg/L
6183850	THONGUE A ST-THIBERY	14/04/2016	1268	Terbuthylazine	0,024	μg/L
6183850	THONGUE A ST-THIBERY	14/04/2016	1414	Propyzamide	0,061	μg/L
6183850	THONGUE A ST-THIBERY	14/04/2016	1506	Glyphosate	0,482	μg/L
6183850	THONGUE A ST-THIBERY	14/04/2016	1660	Tétraconazole	0,136	μg/L
6183850	THONGUE A ST-THIBERY	14/04/2016	1694	Tébuconazole	0,024	μg/L
6183850	THONGUE A ST-THIBERY	14/04/2016	1814	Diflufénicanil	0,008	μg/L
6183850	THONGUE A ST-THIBERY	14/04/2016	1830	Atrazine déséthyl déïsopropyl	0,135	μg/L
6183850	THONGUE A ST-THIBERY	14/04/2016	1907	AMPA	1,21	
6183850	THONGUE A ST-THIBERY	14/04/2016	1939	Flazasulfuron	0,037	
						µg/L
6183850	THONGUE A ST-THIBERY	14/04/2016	1954	Terbuthylazine hydroxy	0,024	μg/L
6183850	THONGUE A ST-THIBERY	14/04/2016	1975	Foséthyl aluminium	24,6	μg/L
6183850	THONGUE A ST-THIBERY	14/04/2016	2009	Fipronil	0,006	μg/L
6183850	THONGUE A ST-THIBERY	20/05/2016	1116	Benzo (b) Fluoranthène	0,0005	μg/L
6183850	THONGUE A ST-THIBERY	20/05/2016	1157	Diazinon	0,014	μg/L
6183850	THONGUE A ST-THIBERY	20/05/2016	1414	Propyzamide	0,043	μg/L
6183850	THONGUE A ST-THIBERY	20/05/2016	1506	Glyphosate	0,125	μg/L
6183850	THONGUE A ST-THIBERY	20/05/2016	1519	Napropamide	0,05	μg/L
6183850	THONGUE A ST-THIBERY	20/05/2016	1660	Tétraconazole	0,038	μg/L
6183850	THONGUE A ST-THIBERY	20/05/2016	1672	Isoxaben	0,202	μg/L
6183850	THONGUE A ST-THIBERY	20/05/2016	1687	Bénalaxyl	0,202	μg/L
6183850	THONGUE A ST-THIBERY	20/05/2016	1694	Tébuconazole	0,19	μg/L μg/L
6183850	THONGUE A ST-THIBERY	20/05/2016	1706			
				Métalaxyl	0,048	µg/L
6183850	THONGUE A ST-THIBERY	20/05/2016	1907	AMPA	1,15	μg/L
6183850	THONGUE A ST-THIBERY	20/05/2016	1954	Terbuthylazine hydroxy	0,024	μg/L

Code de la		Date du	Code	N. I. Si	D. 11. 1	11. 14.7
station de	Nom de la station de mesure	prélèvement	Sandre	Nom du paramètre	Résultat	Unité
mesure	THOUGHT A OT THEFT			- (u))))	2 1-1	
6183850	THONGUE A ST-THIBERY	20/05/2016	1975	Foséthyl aluminium	0,454	μg/L
6183850	THONGUE A ST-THIBERY	20/05/2016	2009	Fipronil	0,006	μg/L
6183850	THONGUE A ST-THIBERY	20/05/2016	2987	Méfonoxam	0,048	μg/L
6183850	THONGUE A ST-THIBERY	20/05/2016	5526	Boscalid	0,672	μg/L
6183850	THONGUE A ST-THIBERY	14/06/2016	1116	Benzo (b) Fluoranthène	0,0016	μg/L
6183850	THONGUE A ST-THIBERY	14/06/2016	1117	Benzo (k) Fluoranthène	0,0013	μg/L
6183850	THONGUE A ST-THIBERY	14/06/2016	1118	Benzo (ghi) Pérylène	0,0026	μg/L
6183850	THONGUE A ST-THIBERY	14/06/2016	1204	Indéno (123c) Pyrène	0,002	μg/L
6183850	THONGUE A ST-THIBERY	20/06/2016	1082	Benzo (a) Anthracène	14	μg/kg
6183850	THONGUE A ST-THIBERY	20/06/2016	1115	Benzo (a) Pyrène	16	μg/kg
6183850	THONGUE A ST-THIBERY	20/06/2016	1116	Benzo (b) Fluoranthène	26	μg/kg μg/kg
			1117			
6183850	THONGUE A ST-THIBERY	20/06/2016		Benzo (k) Fluoranthène	10	μg/kg
6183850	THONGUE A ST-THIBERY	20/06/2016	1118	Benzo (ghi) Pérylène	19	μg/kg
6183850	THONGUE A ST-THIBERY	20/06/2016	1146	DDE-p,p'	21	μg/kg
6183850	THONGUE A ST-THIBERY	20/06/2016	1204	Indéno (123c) Pyrène	14	μg/kg
6183850	THONGUE A ST-THIBERY	20/06/2016	1476	Chrysène	16	μg/kg
6183850	THONGUE A ST-THIBERY	20/06/2016	6616	DEHP	266	μg/kg
6183850	THONGUE A ST-THIBERY	20/07/2016	1105	Aminotriazole	0,084	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1116	Benzo (b) Fluoranthène	0,0007	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1118	Benzo (ghi) Pérylène	0,0008	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1204	Indéno (123c) Pyrène	0,0007	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1263	Simazine	0,027	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1268	Terbuthylazine	0,022	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1414	Propyzamide	0,022	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1432	Pyriméthanil	0,033	
						μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1660	Tétraconazole	0,055	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1687	Bénalaxyl	0,016	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1694	Tébuconazole	0,079	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1702	Formaldéhyde	13	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1706	Métalaxyl	0,075	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1810	Clopyralide	0,022	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1814	Diflufénicanil	0,006	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1830	Atrazine déséthyl déïsopropyl	0,171	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1831	Simazine hydroxy	0,038	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1881	Myclobutanil	0,034	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1954	Terbuthylazine hydroxy	0,044	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	2011	2 6 Dichlorobenzamide	0,006	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	2014	Azaconazole	0,012	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	2987	Méfonoxam	0,012	
				Boscalid		μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	5526		0,28	μg/L
6183850	THONGUE A ST-THIBERY	20/07/2016	6390	Thiamethoxam	0,026	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1083	Chlorpyriphos éthyl	0,008	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016		Aminotriazole	0,192	
6183850	THONGUE A ST-THIBERY	14/09/2016	1116	Benzo (b) Fluoranthène	0,0005	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1118	Benzo (ghi) Pérylène	0,0005	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1206	Iprodione	0,008	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1263	Simazine	0,027	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1268	Terbuthylazine	0,084	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1403	Diméthomorphe	0,041	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1414	Propyzamide	0,021	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1506	Glyphosate	0,216	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1517	Naphtalène	0,01	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1660	Tétraconazole	0,01	
6183850		14/09/2016	1687	Bénalaxyl	0,088	μg/L
	THONGUE A ST THIBERY				-	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1694	Tébuconazole	0,061	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1706	Métalaxyl	0,026	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1765	Fluroxypyr	0,028	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1814	Diflufénicanil	0,005	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1830	Atrazine déséthyl déïsopropyl	0,176	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1831	Simazine hydroxy	0,033	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1847	Tributylphosphate	0,016	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1877	Imidaclopride	0,035	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1881	Myclobutanil	0,074	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1907	AMPA	1,31	μg/L
					.,0.	

Code de la station de mesure	Nom de la station de mesure	Date du prélèvement	Code Sandre	Nom du paramètre	Résultat	Unité
6183850	THONGUE A ST-THIBERY	14/09/2016	1954	Terbuthylazine hydroxy	0,052	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	2009	Fipronil	0,019	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	2011	2 6 Dichlorobenzamide	0,013	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	2014	Azaconazole	0,009	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	2743	Fenhexamid	0,031	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	2987	Méfonoxam	0,024	μg/L
6183850	THONGUE A ST-THIBERY	14/09/2016	5526	Boscalid	0,415	μg/L
6183850	THONGUE A ST-THIBERY	17/11/2016	1506	Glyphosate	0,075	μg/L
6183850	THONGUE A ST-THIBERY	17/11/2016	1517	Naphtalène	0,005	μg/L
6183850	THONGUE A ST-THIBERY	17/11/2016	1830	Atrazine déséthyl déïsopropyl	0,114	μg/L
6183850 6183850	THONGUE A ST-THIBERY THONGUE A ST-THIBERY	17/11/2016 17/11/2016	1907 1954	AMPA Terbuthylazine hydroxy	1,31 0,023	μg/L
6183850	THONGUE A ST-THIBERY	17/11/2016	2009	Fipronil	0,023	μg/L μg/L
6183850	THONGUE A ST-THIBERY	17/11/2016	2664	Spiroxamine	0,000	μg/L μg/L
6183850	THONGUE A ST-THIBERY	17/11/2016	5526	Boscalid	0,021	μg/L μg/L
6183850	THONGUE A ST-THIBERY	13/12/2016	1263	Simazine	0,02	μg/L
6183850	THONGUE A ST-THIBERY	13/12/2016	1954	Terbuthylazine hydroxy	0,045	μg/L
6182050	HERAULT A BRISSAC 1	21/07/2016	1907	AMPA	0,036	μg/L
6182050	HERAULT A BRISSAC 1	20/10/2016	1907	AMPA	0,021	μg/L
6182050	HERAULT A BRISSAC 1	10/08/2016	1458	Anthracène	10	μg/kg
6182050	HERAULT A BRISSAC 1	10/08/2016	1082	Benzo (a) Anthracène	39	μg/kg
6182050	HERAULT A BRISSAC 1	10/08/2016	1115	Benzo (a) Pyrène	38	μg/kg
6182050	HERAULT A BRISSAC 1	10/08/2016	1116	Benzo (b) Fluoranthène	69	μg/kg
6182050	HERAULT A BRISSAC 1	15/09/2016	1116	Benzo (b) Fluoranthène	0,0012	μg/L
6182050	HERAULT A BRISSAC 1	10/08/2016	1118	Benzo (ghi) Pérylène	29	μg/kg
6182050	HERAULT A BRISSAC 1	15/09/2016	1118	Benzo (ghi) Pérylène	0,001	μg/L
6182050	HERAULT A BRISSAC 1	10/08/2016	1117	Benzo (k) Fluoranthène	23	μg/kg
6182050	HERAULT A BRISSAC 1	15/09/2016	1117	Benzo (k) Fluoranthène	0,0006	μg/L
6182050	HERAULT A BRISSAC 1	10/08/2016	1476	Chrysène	41	μg/kg
6182050	HERAULT A BRISSAC 1	10/08/2016	1638	Crésol-para	405	μg/kg
6182050 6182050	HERAULT A BRISSAC 1 HERAULT A BRISSAC 1	10/08/2016 10/08/2016	6616 1191	DEHP Fluoranthène	238 59	μg/kg
6182050	HERAULT A BRISSAC 1	10/08/2016	1204	Indéno (123c) Pyrène	24	μg/kg μg/kg
6182050	HERAULT A BRISSAC 1	18/11/2016	1517	Naphtalène	0,007	μg/kg μg/L
6182050	HERAULT A BRISSAC 1	10/08/2016	1537	Pyrène	51	μg/kg
6182062	BUEGES A PEGAIROLLES-DE-BUEGES	10/08/2016	1638	Crésol-para	101	μg/kg
6182062	BUEGES A PEGAIROLLES-DE-BUEGES	10/08/2016	6616	DEHP	191	μg/kg
6182062	BUEGES A PEGAIROLLES-DE-BUEGES	15/09/2016	1517	Naphtalène	0,006	μg/L
6182062	BUEGES A PEGAIROLLES-DE-BUEGES	15/12/2016	6616	DEHP	0,84	μg/L
6195330	CRENZE A ST-LAURENT-LE-MINIER	22/01/2016	1517	Naphtalène	0,006	μg/L
6195330	CRENZE A ST-LAURENT-LE-MINIER	17/03/2016	1517	Naphtalène	0,007	μg/L
6195330	CRENZE A ST-LAURENT-LE-MINIER	10/08/2016	1082	Benzo (a) Anthracène	23	μg/kg
6195330	CRENZE A ST-LAURENT-LE-MINIER	10/08/2016	1115	Benzo (a) Pyrène		μg/kg
6195330	CRENZE A ST-LAURENT-LE-MINIER	10/08/2016	1116	` '	35	μg/kg
6195330	CRENZE A ST-LAURENT-LE-MINIER	10/08/2016	1117	Benzo (k) Fluoranthène	11	μg/kg
6195330	CRENZE A ST-LAURENT-LE-MINIER	10/08/2016	1118	Benzo (ghi) Pérylène	17	μg/kg
6195330	CRENZE A ST-LAURENT-LE-MINIER	10/08/2016	1191	Fluoranthène	44	μg/kg
6195330	CRENZE A ST-LAURENT-LE-MINIER	10/08/2016	1204	Indéno (123c) Pyrène	13	μg/kg
6195330	CRENZE A ST-LAURENT-LE-MINIER	10/08/2016	1476	Chrysène	23	μg/kg
6195330 6195330	CRENZE A ST-LAURENT-LE-MINIER CRENZE A ST-LAURENT-LE-MINIER	10/08/2016 10/08/2016	1537 1638	Pyrène Crésol-para	41 81	μg/kg μg/kg
6195330	CRENZE A ST-LAURENT-LE-MINIER CRENZE A ST-LAURENT-LE-MINIER	10/08/2016	6616	DEHP	143	μg/kg μg/kg
6195330	CRENZE A ST-LAURENT-LE-MINIER	20/10/2016	1517	Naphtalène	0,006	μg/kg μg/L
6195330	CRENZE A ST-LAURENT-LE-MINIER	20/10/2016	1907	AMPA	0,000	μg/L μg/L
6195330	CRENZE A ST-LAURENT-LE-MINIER	20/10/2016	2013	Anthraquinone	0,018	μg/L
6195330	CRENZE A ST-LAURENT-LE-MINIER	18/11/2016	1517	Naphtalène	0,01	μg/L
6195330	CRENZE A ST-LAURENT-LE-MINIER	15/12/2016	1257	Propiconazole	0,026	μg/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	22/01/2016	1517	Naphtalène	0,008	μg/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	18/02/2016	1517	Naphtalène	0,007	μg/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	17/03/2016	1517	Naphtalène	0,006	μg/L
6181906	ARRE A SAINT-ANDRE-DE-	21/07/2016	1506	Glyphosate	0,025	μg/L

Code de la		Date du	Code			
station de	Nom de la station de mesure	prélèvement	Sandre	Nom du paramètre	Résultat	Unité
mesure		protovomoni	Guilaio			
	MAJENCOULES					
6181906	ARRE A SAINT-ANDRE-DE-	21/07/2016	1907	AMPA	0,12	μg/L
0404000	MAJENCOULES	45/00/0040	4440	5 (1) 51 (1)	0.0044	"
6181906	ARRE A SAINT-ANDRE-DE-	15/09/2016	1116	Benzo (b) Fluoranthène	0,0011	μg/L
0404000	MAJENCOULES	45/00/0040	4447	5 (1) 51	0.0005	"
6181906	ARRE A SAINT-ANDRE-DE-	15/09/2016	1117	Benzo (k) Fluoranthène	0,0005	μg/L
0404000	MAJENCOULES	45/00/0040	4440	Danes (alc) Dán Das	0.0000	
6181906	ARRE A SAINT-ANDRE-DE-	15/09/2016	1118	Benzo (ghi) Pérylène	0,0009	μg/L
C40400C	MAJENCOULES	45/00/0040	4004	Indéna (400a) Dunèna	0.0000	/1
6181906	ARRE A SAINT-ANDRE-DE-	15/09/2016	1204	Indéno (123c) Pyrène	0,0009	μg/L
6181906	MAJENCOULES ARRE A SAINT-ANDRE-DE-	20/10/2016	1517	Nonhtalàna	0,011	/1
6161906		20/10/2016	1517	Naphtalène	0,011	μg/L
6181906	MAJENCOULES ARRE A SAINT-ANDRE-DE-	20/10/2016	1907	AMPA	0,021	ua/l
0101900	MAJENCOULES	20/10/2016	1907	AWIFA	0,021	μg/L
6181906	ARRE A SAINT-ANDRE-DE-	18/11/2016	1517	Naphtalène	0,015	μg/L
0101300	MAJENCOULES	10/11/2010	1317	Napritalelle	0,013	µg/L
6181906	ARRE A SAINT-ANDRE-DE-	15/12/2016	1618	Méthyl-2-Naphtalène	0,005	μg/L
0101000	MAJENCOULES	10/12/2010	1010	Motify 2 Hapmaiono	0,000	P9/-
6181910	HERAULT A VALLERAUGUE 2	10/08/2016	1082	Benzo (a) Anthracène	12	μg/kg
6181910	HERAULT A VALLERAUGUE 2	10/08/2016	1116	Benzo (b) Fluoranthène	25	μg/kg
6181910	HERAULT A VALLERAUGUE 2	10/08/2016	1118	Benzo (ghi) Pérylène	10	μg/kg
6181910	HERAULT A VALLERAUGUE 2	10/08/2016	1638	Crésol-para	259	μg/kg
6181910	HERAULT A VALLERAUGUE 2	10/08/2016	6616	DEHP	340	μg/kg
6181910	HERAULT A VALLERAUGUE 2	15/12/2016	6616	DEHP	0,5	μg/L
6181910	HERAULT A VALLERAUGUE 2	15/09/2016	1517	Naphtalène	0,008	μg/L
6181210	GLEPE A AVEZE	22/01/2016	1517	Naphtalène	0,007	μg/L
6181210	GLEPE A AVEZE	18/02/2016	1517	Naphtalène	0,006	μg/L
6181210	GLEPE A AVEZE	17/03/2016	1517	Naphtalène	0,007	μg/L
6181210	GLEPE A AVEZE	10/08/2016	1082	Benzo (a) Anthracène	287	μg/kg
6181210	GLEPE A AVEZE	10/08/2016	1115	Benzo (a) Pyrène	176	μg/kg
6181210	GLEPE A AVEZE	10/08/2016	1116	Benzo (b) Fluoranthène	358	μg/kg
6181210	GLEPE A AVEZE	10/08/2016	1117	Benzo (k) Fluoranthène	107	μg/kg
6181210	GLEPE A AVEZE	10/08/2016	1118	Benzo (ghi) Pérylène	172	μg/kg
6181210	GLEPE A AVEZE	10/08/2016	1191	Fluoranthène	1016	μg/kg
6181210	GLEPE A AVEZE	10/08/2016	1204	Indéno (123c) Pyrène	121	μg/kg
6181210	GLEPE A AVEZE	10/08/2016	1453	Acénaphtène	17	μg/kg
6181210	GLEPE A AVEZE	10/08/2016	1458	Anthracène	92	μg/kg
6181210	GLEPE A AVEZE	10/08/2016	1476	Chrysène	255	μg/kg
6181210	GLEPE A AVEZE	10/08/2016	1517	Naphtalène	59	μg/kg
6181210	GLEPE A AVEZE	10/08/2016	1524	Phénanthrène	865	μg/kg
6181210	GLEPE A AVEZE	10/08/2016	1537	Pyrène	642	μg/kg
6181210		10/08/2016	1584	Biphényle	52	
6181210	GLEPE A AVEZE	10/08/2016	1621	Dibenzo (ah) Anthracène	18	μg/kg
6181210	GLEPE A AVEZE	10/08/2016	1622	Acénaphtylène	32	μg/kg
6181210	GLEPE A AVEZE	10/08/2016	1638	Crésol-para	174	μg/kg
6181210	GLEPE A AVEZE	10/08/2016	6616	DEHP	2036	μg/kg
6181210	GLEPE A AVEZE	15/09/2016	1517	Naphtalène	0,006	μg/L
6181210	GLEPE A AVEZE	20/10/2016	1517	Naphtalène	0,007	μg/L
6181210	GLEPE A AVEZE	18/11/2016	1517	Naphtalène	0,007	μg/L

8.5.4. Résultats des analyses physico-chimiques réalisées en 2016 dans le cadre des réseaux de surveillance.

Tableau 40 - Résultats d'analyses physico-chimiques ayant dépassé le seuil de quantification du laboratoire en 2016 (source SIE).

		(0	source SIE	, .				
Code de		Date du	0 - 1 -	Orde	Code	Manada	Résultat	Hadd da
la station de	Nom de la station de mesure	prélèveme	Code Sandre	Code support	fractio	Nom du paramètre	de l'analys	Unité de mesure
mesure		nt	Sallule	Support	n	parametre	e	mesure
6183500	HERAULT A ASPIRAN	21/01/2016	1302	3	23	рН	8,2	unité pH
6183500	HERAULT A ASPIRAN	21/01/2016	1303	3	23	Conductivité à 25°C	426	μS/cm
6183500	HERAULT A ASPIRAN	21/01/2016	1313	3	23	DBO	0,8	mg(O2)/L
6183500	HERAULT A ASPIRAN	21/01/2016	1335	3	3	Ammonium	0,04	mg(NH4)/ L
6183500	HERAULT A ASPIRAN	21/01/2016	1340	3	3	Nitrates	2,3	mg(NO3)/
6183500	HERAULT A ASPIRAN	21/01/2016	1350	3	23	Phosphore total	0,019	mg(P)/L
6183500	HERAULT A ASPIRAN	21/01/2016	1433	3	3	Phosphates	0,05	mg(PO4)/ L
6183500	HERAULT A ASPIRAN	16/03/2016	1302	3	23	рН	8,1	unité pH
6183500	HERAULT A ASPIRAN	16/03/2016	1303	3	23	Conductivité à 25°C	408	μS/cm
6183500	HERAULT A ASPIRAN	16/03/2016	1313	3	23	DBO	1,4	mg(O2)/L
6183500	HERAULT A ASPIRAN	16/03/2016	1335	3	3	Ammonium	0,04	mg(NH4)/ L
6183500	HERAULT A ASPIRAN	16/03/2016	1340	3	3	Nitrates	1,8	mg(NO3)/ L
6183500	HERAULT A ASPIRAN	16/03/2016	1350	3	23	Phosphore total	0,013	mg(P)/L
6183500	HERAULT A ASPIRAN	16/03/2016	1433	3	3	Phosphates	0,03	mg(PO4)/
6183500	HERAULT A ASPIRAN	20/05/2016	1302	3	23	рН	8,2	unité pH
6183500	HERAULT A ASPIRAN	20/05/2016	1303	3	23	Conductivité à 25°C	395	μS/cm
6183500	HERAULT A ASPIRAN	20/05/2016	1313	3	23	DBO	0,5	mg(O2)/L
6183500	HERAULT A ASPIRAN	20/05/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6183500	HERAULT A ASPIRAN	20/05/2016	1340	3	3	Nitrates	1,5	mg(NO3)/
6183500	HERAULT A ASPIRAN	20/05/2016	1350	3	23	Phosphore total	0,015	mg(P)/L
6183500	HERAULT A ASPIRAN	20/05/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6183500	HERAULT A ASPIRAN	20/07/2016	1302	3	23	рН	8,1	unité pH
6183500	HERAULT A ASPIRAN	20/07/2016	1303	3	23	Conductivité à 25°C	468	μS/cm
6183500	HERAULT A ASPIRAN	20/07/2016	1313	3	23	DBO	0,5	mg(O2)/L
6183500	HERAULT A ASPIRAN	20/07/2016	1339	3	3	Nitrites	0,01	mg(NO2)/ L
6183500	HERAULT A ASPIRAN	20/07/2016	1340	3	3	Nitrates	0,7	mg(NO3)/
6183500	HERAULT A ASPIRAN	20/07/2016	1350	3	23	Phosphore total	0,014	mg(P)/L
6183500	HERAULT A ASPIRAN	20/07/2016	1433	3	3	Phosphates	0,02	mg(PO4)/ L
6183500	HERAULT A ASPIRAN	14/09/2016	1302	3	23	рН	8	unité pH
6183500	HERAULT A ASPIRAN	14/09/2016	1303	3	23	Conductivité à 25°C	498	μS/cm

Code de							Résultat	
la station de mesure	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	de l'analys e	Unité de mesure
6183500	HERAULT A ASPIRAN	14/09/2016	1313	3	23	DBO	0,8	mg(O2)/L
6183500	HERAULT A ASPIRAN	14/09/2016	1335	3	3	Ammonium	0,12	mg(NH4)/ L
6183500	HERAULT A ASPIRAN	14/09/2016	1339	3	3	Nitrites	0,02	mg(NO2)/ L
6183500	HERAULT A ASPIRAN	14/09/2016	1340	3	3	Nitrates	1	mg(NO3)/ L
6183500	HERAULT A ASPIRAN	14/09/2016	1350	3	23	Phosphore total	0,029	mg(P)/L
6183500	HERAULT A ASPIRAN	14/09/2016	1433	3	3	Phosphates	0,07	mg(PO4)/ L
6183500	HERAULT A ASPIRAN	17/11/2016	1302	3	23	рН	8,2	unité pH
6183500	HERAULT A ASPIRAN	17/11/2016	1303	3	23	Conductivité à 25°C	495	μS/cm
6183500	HERAULT A ASPIRAN	17/11/2016	1313	3	23	DBO	0,9	mg(O2)/L
6183500	HERAULT A ASPIRAN	17/11/2016	1335	3	3	Ammonium	0,03	mg(NH4)/ L
6183500	HERAULT A ASPIRAN	17/11/2016	1339	3	3	Nitrites	0,01	mg(NO2)/ L
6183500	HERAULT A ASPIRAN	17/11/2016	1340	3	3	Nitrates	3,5	mg(NO3)/ L
6183500	HERAULT A ASPIRAN	17/11/2016	1350	3	23	Phosphore total	0,014	mg(P)/L
6183500	HERAULT A ASPIRAN	17/11/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6183850	THONGUE A ST-THIBERY	21/01/2016	1302	3	23	рН	8,3	unité pH
6183850	THONGUE A ST-THIBERY	21/01/2016	1303	3	23	Conductivité à 25°C	1270	μS/cm
6183850	THONGUE A ST-THIBERY	21/01/2016	1313	3	23	DBO	1	mg(O2)/L
6183850	THONGUE A ST-THIBERY	21/01/2016	1335	3	3	Ammonium	0,1	mg(NH4)/ L
6183850	THONGUE A ST-THIBERY	21/01/2016	1339	3	3	Nitrites	0,02	mg(NO2)/ L
6183850	THONGUE A ST-THIBERY	21/01/2016	1340	3	3	Nitrates	2,6	mg(NO3)/ L
6183850	THONGUE A ST-THIBERY	21/01/2016	1350	3	23	Phosphore total	0,13	mg(P)/L
6183850	THONGUE A ST-THIBERY	21/01/2016	1433	3	3	Phosphates	0,35	mg(PO4)/ L
6183850	THONGUE A ST-THIBERY	12/02/2016	1302	3	23	рН	8,3	unité pH
6183850	THONGUE A ST-THIBERY	12/02/2016	1303	3	23	Conductivité à 25°C	1246	μS/cm
6183850	THONGUE A ST-THIBERY	12/02/2016	1313	3	23	DBO	1,4	mg(O2)/L
6183850	THONGUE A ST-THIBERY	12/02/2016	1335	3	3	Ammonium	0,08	mg(NH4)/ L
6183850	THONGUE A ST-THIBERY	12/02/2016	1339	3	3	Nitrites	0,01	mg(NO2)/ L
6183850	THONGUE A ST-THIBERY	12/02/2016	1340	3	3	Nitrates	0,9	mg(NO3)/ L
6183850	THONGUE A ST-THIBERY	12/02/2016	1350	3	23	Phosphore total	0,13	mg(P)/L
6183850	THONGUE A ST-THIBERY	12/02/2016	1433	3	3	Phosphates	0,29	mg(PO4)/ L
6183850	THONGUE A ST-THIBERY	16/03/2016	1302	3	23	рН	8,1	unité pH
6183850	THONGUE A ST-THIBERY	16/03/2016	1303	3	23	Conductivité à 25°C	1136	μS/cm
6183850	THONGUE A ST-THIBERY	16/03/2016	1313	3	23	DBO	1,8	mg(O2)/L
6183850	THONGUE A ST-THIBERY	16/03/2016	1335	3	3	Ammonium	0,04	mg(NH4)/ L
6183850	THONGUE A ST-THIBERY	16/03/2016	1339	3	3	Nitrites	0,03	mg(NO2)/ L

Code de		Date du			Code		Résultat	
la station de mesure	Nom de la station de mesure	prélèveme nt	Code Sandre	Code support	fractio n	Nom du paramètre	de l'analys e	Unité de mesure
6183850	THONGUE A ST-THIBERY	16/03/2016	1340	3	3	Nitrates	1,6	mg(NO3)/ L
6183850	THONGUE A ST-THIBERY	16/03/2016	1350	3	23	Phosphore total	0,082	mg(P)/L
6183850	THONGUE A ST-THIBERY	16/03/2016	1433	3	3	Phosphates	0,19	mg(PO4)/
6183850	THONGUE A ST-THIBERY	14/04/2016	1302	3	23	рН	8,1	unité pH
6183850	THONGUE A ST-THIBERY	14/04/2016	1303	3	23	Conductivité à 25°C	991	μS/cm
6183850	THONGUE A ST-THIBERY	14/04/2016	1313	3	23	DBO	0,9	mg(O2)/L
6183850	THONGUE A ST-THIBERY	14/04/2016	1335	3	3	Ammonium	0,06	mg(NH4)/
6183850	THONGUE A ST-THIBERY	14/04/2016	1339	3	3	Nitrites	0,02	mg(NO2)/
6183850	THONGUE A ST-THIBERY	14/04/2016	1340	3	3	Nitrates	2,4	mg(NO3)/ L
6183850	THONGUE A ST-THIBERY	14/04/2016	1350	3	23	Phosphore total	0,15	mg(P)/L
6183850	THONGUE A ST-THIBERY	14/04/2016	1433	3	3	Phosphates	0,34	mg(PO4)/
6183850	THONGUE A ST-THIBERY	20/05/2016	1302	3	23	рН	8,2	unité pH
6183850	THONGUE A ST-THIBERY	20/05/2016	1303	3	23	Conductivité à 25°C	935	μS/cm
6183850	THONGUE A ST-THIBERY	20/05/2016	1313	3	23	DBO	0,8	mg(O2)/L
6183850	THONGUE A ST-THIBERY	20/05/2016	1335	3	3	Ammonium	0,02	mg(NH4)/
6183850	THONGUE A ST-THIBERY	20/05/2016	1339	3	3	Nitrites	0,02	mg(NO2)/
6183850	THONGUE A ST-THIBERY	20/05/2016	1340	3	3	Nitrates	2,2	mg(NO3)/
6183850	THONGUE A ST-THIBERY	20/05/2016	1350	3	23	Phosphore total	0,15	mg(P)/L
6183850	THONGUE A ST-THIBERY	20/05/2016	1433	3	3	Phosphates	0,31	mg(PO4)/
6183850	THONGUE A ST-THIBERY	14/06/2016	1302	3	23	pН	8	unité pH
6183850	THONGUE A ST-THIBERY	14/06/2016	1303	3	23	Conductivité à 25°C	1259	μS/cm
6183850	THONGUE A ST-THIBERY	14/06/2016	1313	3	23	DBO	1,4	mg(O2)/L
6183850	THONGUE A ST-THIBERY	14/06/2016	1319	3	23	Azote Kjeldahl	1,1	mg(N)/L
6183850	THONGUE A ST-THIBERY	14/06/2016	1335	3	3	Ammonium	0,14	mg(NH4)/ L
6183850	THONGUE A ST-THIBERY	14/06/2016	1339	3	3	Nitrites	0,03	mg(NO2)/
6183850	THONGUE A ST-THIBERY	14/06/2016	1340	3	3	Nitrates	1,4	mg(NO3)/ L
6183850	THONGUE A ST-THIBERY	14/06/2016	1350	3	23	Phosphore total	0,37	mg(P)/L
6183850	THONGUE A ST-THIBERY	14/06/2016	1433	3	3	Phosphates	0,36	mg(PO4)/
6183850	THONGUE A ST-THIBERY	20/07/2016	1302	3	23	рН	7,6	unité pH
6183850	THONGUE A ST-THIBERY	20/07/2016	1303	3	23	Conductivité à 25°C	1605	μS/cm
6183850	THONGUE A ST-THIBERY	20/07/2016	1313	3	23	DBO	0,5	mg(O2)/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1335	3	3	Ammonium	0,08	mg(NH4)/
6183850	THONGUE A ST-THIBERY	20/07/2016	1339	3	3	Nitrites	0,01	mg(NO2)/ L
6183850	THONGUE A ST-THIBERY	20/07/2016	1350	3	23	Phosphore total	0,21	mg(P)/L
6183850	THONGUE A ST-THIBERY	20/07/2016	1433	3	3	Phosphates	0,26	mg(PO4)/ L

Code de							Résultat	
la station de mesure	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	de l'analys	Unité de mesure
6183850	THONGUE A ST-THIBERY	14/09/2016	1302	3	23	рН	7,7	unité pH
6183850	THONGUE A ST-THIBERY	14/09/2016	1303	3	23	Conductivité à 25°C	1949	μS/cm
6183850	THONGUE A ST-THIBERY	14/09/2016	1313	3	23	DBO	3	mg(O2)/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1314	3	23	DCO	26	mg(O2)/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1319	3	23	Azote Kjeldahl	1,1	mg(N)/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1335	3	3	Ammonium	0,04	mg(NH4)/
6183850	THONGUE A ST-THIBERY	14/09/2016	1339	3	3	Nitrites	0,11	mg(NO2)/ L
6183850	THONGUE A ST-THIBERY	14/09/2016	1340	3	3	Nitrates	3	mg(NO3)/ L
6183850	THONGUE A ST-THIBERY	14/09/2016	1350	3	23	Phosphore total	0,3	mg(P)/L
6183850	THONGUE A ST-THIBERY	14/09/2016	1433	3	3	Phosphates	0,71	mg(PO4)/
6183850	THONGUE A ST-THIBERY	14/10/2016	1302	3	23	рН	8	unité pH
6183850	THONGUE A ST-THIBERY	14/10/2016	1303	3	23	Conductivité à	209	μS/cm
6183850	THONGUE A ST-THIBERY	14/10/2016	1313	3	23	25°C DBO	2	mg(O2)/L
6183850	THONGUE A ST-THIBERY	14/10/2016	1314	3	23	DCO	34	mg(O2)/L
6183850	THONGUE A ST-THIBERY	14/10/2016	1319	3	23	Azote Kjeldahl	2,2	mg(N)/L
6183850	THONGUE A ST-THIBERY	14/10/2016	1335	3	3	Ammonium	0,02	mg(NH4)/
6183850	THONGUE A ST-THIBERY	14/10/2016	1339	3	3	Nitrites	0,03	mg(NO2)/
6183850	THONGUE A ST-THIBERY	14/10/2016	1340	3	3	Nitrates	5,4	mg(NO3)/
6183850	THONGUE A ST-THIBERY	14/10/2016	1350	3	23	Phosphore total	0,69	mg(P)/L
6183850	THONGUE A ST-THIBERY	14/10/2016	1433	3	3	Phosphates	0,42	mg(PO4)/ L
6183850	THONGUE A ST-THIBERY	17/11/2016	1302	3	23	рН	8,2	unité pH
6183850	THONGUE A ST-THIBERY	17/11/2016	1303	3	23	Conductivité à 25°C	1322	μS/cm
6183850	THONGUE A ST-THIBERY	17/11/2016	1313	3	23	DBO	0,9	mg(O2)/L
6183850	THONGUE A ST-THIBERY	17/11/2016	1335	3	3	Ammonium	0,01	mg(NH4)/
6183850	THONGUE A ST-THIBERY	17/11/2016	1339	3	3	Nitrites	0,02	mg(NO2)/ L
6183850	THONGUE A ST-THIBERY	17/11/2016	1340	3	3	Nitrates	6,2	mg(NO3)/ L
6183850	THONGUE A ST-THIBERY	17/11/2016	1350	3	23	Phosphore total	0,095	mg(P)/L
6183850	THONGUE A ST-THIBERY	17/11/2016	1433	3	3	Phosphates	0,31	mg(PO4)/
6183850	THONGUE A ST-THIBERY	13/12/2016	1302	3	23	рН	8,3	unité pH
6183850	THONGUE A ST-THIBERY	13/12/2016	1303	3	23	Conductivité à 25°C	1039	μS/cm
6183850	THONGUE A ST-THIBERY	13/12/2016	1313	3	23	DBO	1,1	mg(O2)/L
6183850	THONGUE A ST-THIBERY	13/12/2016	1335	3	3	Ammonium	0,01	mg(NH4)/
6183850	THONGUE A ST-THIBERY	13/12/2016	1339	3	3	Nitrites	0,02	mg(NO2)/ L
6183850	THONGUE A ST-THIBERY	13/12/2016	1340	3	3	Nitrates	6,6	mg(NO3)/
6183850	THONGUE A ST-THIBERY	13/12/2016	1350	3	23	Phosphore total	0,14	mg(P)/L

Code de		Doto du			Codo		Résultat	
la station de mesure	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	de l'analys e	Unité de mesure
6183850	THONGUE A ST-THIBERY	13/12/2016	1433	3	3	Phosphates	0,41	mg(PO4)/ L
6182050	HERAULT A BRISSAC 1	22/01/2016	1302	3	23	рН	8,2	unité pH
6182050	HERAULT A BRISSAC 1	22/01/2016	1303	3	23	Conductivité à 25°C	356	μS/cm
6182050	HERAULT A BRISSAC 1	22/01/2016	1313	3	23	DBO	0,7	mg(O2)/L
6182050	HERAULT A BRISSAC 1	22/01/2016	1340	3	3	Nitrates	2,4	mg(NO3)/ L
6182050	HERAULT A BRISSAC 1	22/01/2016	1350	3	23	Phosphore total	0,01	mg(P)/L
6182050	HERAULT A BRISSAC 1	22/01/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6182050	HERAULT A BRISSAC 1	18/02/2016	1302	3	23	рН	8	unité pH
6182050	HERAULT A BRISSAC 1	18/02/2016	1303	3	23	Conductivité à 25°C	324	μS/cm
6182050	HERAULT A BRISSAC 1	18/02/2016	1313	3	23	DBO	0,9	mg(O2)/L
6182050	HERAULT A BRISSAC 1	18/02/2016	1340	3	3	Nitrates	2	mg(NO3)/ L
6182050	HERAULT A BRISSAC 1	18/02/2016	1350	3	23	Phosphore total	0,011	mg(P)/L
6182050	HERAULT A BRISSAC 1	18/02/2016	1433	3	3	Phosphates	0,05	mg(PO4)/ L
6182050	HERAULT A BRISSAC 1	17/03/2016	1302	3	23	рН	8	unité pH
6182050	HERAULT A BRISSAC 1	17/03/2016	1303	3	23	Conductivité à 25°C	334	μS/cm
6182050	HERAULT A BRISSAC 1	17/03/2016	1313	3	23	DBO	1,2	mg(O2)/L
6182050	HERAULT A BRISSAC 1	17/03/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6182050	HERAULT A BRISSAC 1	17/03/2016	1340	3	3	Nitrates	2,3	mg(NO3)/ L
6182050	HERAULT A BRISSAC 1	17/03/2016	1350	3	23	Phosphore total	0,011	mg(P)/L
6182050	HERAULT A BRISSAC 1	17/03/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6182050	HERAULT A BRISSAC 1	20/04/2016	1302	3	23	pН	8,1	unité pH
6182050	HERAULT A BRISSAC 1	20/04/2016	1303	3	23	Conductivité à 25°C	328	μS/cm
6182050	HERAULT A BRISSAC 1	20/04/2016	1340	3	3	Nitrates	1,4	mg(NO3)/ L
6182050	HERAULT A BRISSAC 1	20/04/2016	1350	3	23	Phosphore total	0,013	mg(P)/L
6182050	HERAULT A BRISSAC 1	20/04/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6182050	HERAULT A BRISSAC 1	23/05/2016	1302	3	23	рН	8,2	unité pH
6182050	HERAULT A BRISSAC 1	23/05/2016	1303	3	23	Conductivité à 25°C	315	μS/cm
6182050	HERAULT A BRISSAC 1	23/05/2016	1340	3	3	Nitrates	2	mg(NO3)/ L
6182050	HERAULT A BRISSAC 1	23/05/2016	1350	3	23	Phosphore total	0,016	mg(P)/L
6182050	HERAULT A BRISSAC 1	23/05/2016	1433	3	3	Phosphates	0,05	mg(PO4)/ L
6182050	HERAULT A BRISSAC 1	20/06/2016	1302	3	23	рН	8,2	unité pH
6182050	HERAULT A BRISSAC 1	20/06/2016	1303	3	23	Conductivité à 25°C	366	μS/cm
6182050	HERAULT A BRISSAC 1	20/06/2016	1313	3	23	DBO	0,7	mg(O2)/L
6182050	HERAULT A BRISSAC 1	20/06/2016	1335	3	3	Ammonium	0,02	mg(NH4)/ L
6182050	HERAULT A BRISSAC 1	20/06/2016	1339	3	3	Nitrites	0,01	mg(NO2)/ L

		ı						
Code de la station de mesure	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	Résultat de l'analys e	Unité de mesure
6182050	HERAULT A BRISSAC 1	20/06/2016	1340	3	3	Nitrates	1,4	mg(NO3)/ L
6182050	HERAULT A BRISSAC 1	20/06/2016	1350	3	23	Phosphore total	0,011	mg(P)/L
6182050	HERAULT A BRISSAC 1	20/06/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6182050	HERAULT A BRISSAC 1	21/07/2016	1302	3	23	pН	8,2	unité pH
6182050	HERAULT A BRISSAC 1	21/07/2016	1303	3	23	Conductivité à 25°C	387	μS/cm
6182050	HERAULT A BRISSAC 1	21/07/2016	1313	3	23	DBO	0,9	mg(O2)/L
6182050	HERAULT A BRISSAC 1	21/07/2016	1335	3	3	Ammonium	0,02	mg(NH4)/ L
6182050	HERAULT A BRISSAC 1	21/07/2016	1339	3	3	Nitrites	0,02	mg(NO2)/ L
6182050	HERAULT A BRISSAC 1	21/07/2016	1340	3	3	Nitrates	0,7	mg(NO3)/ L
6182050	HERAULT A BRISSAC 1	21/07/2016	1350	3	23	Phosphore total	0,007	mg(P)/L
6182050	HERAULT A BRISSAC 1	21/07/2016	1433	3	3	Phosphates	0,01	mg(PO4)/ L
6182050	HERAULT A BRISSAC 1	19/08/2016	1302	3	23	рН	8,3	unité pH
6182050	HERAULT A BRISSAC 1	19/08/2016	1303	3	23	Conductivité à 25°C	384	μS/cm
6182050	HERAULT A BRISSAC 1	19/08/2016	1313	3	23	DBO	0,7	mg(O2)/L
6182050	HERAULT A BRISSAC 1	19/08/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6182050	HERAULT A BRISSAC 1	19/08/2016	1340	3	3	Nitrates	0,7	mg(NO3)/ L
6182050	HERAULT A BRISSAC 1	19/08/2016	1350	3	23	Phosphore total	0,007	mg(P)/L
6182050	HERAULT A BRISSAC 1	19/08/2016	1433	3	3	Phosphates	0,01	mg(PO4)/ L
6182050	HERAULT A BRISSAC 1	15/09/2016	1302	3	23	pН	8	unité pH
6182050	HERAULT A BRISSAC 1	15/09/2016	1303	3	23	Conductivité à 25°C	352	μS/cm
6182050	HERAULT A BRISSAC 1	15/09/2016	1313	3	23	DBO	1	mg(O2)/L
6182050	HERAULT A BRISSAC 1	15/09/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6182050	HERAULT A BRISSAC 1	15/09/2016	1339	3	3	Nitrites	0,03	mg(NO2)/
6182050	HERAULT A BRISSAC 1	15/09/2016	1340	3	3	Nitrates	5,4	mg(NO3)/
6182050	HERAULT A BRISSAC 1	15/09/2016	1350	3	23	Phosphore total	0,037	mg(P)/L
6182050	HERAULT A BRISSAC 1	15/09/2016	1433	3	3	Phosphates	0,05	mg(PO4)/ L
6182050	HERAULT A BRISSAC 1	20/10/2016	1302	3	23	рН	8	unité pH
6182050	HERAULT A BRISSAC 1	20/10/2016	1303	3	23	Conductivité à 25°C	303	μS/cm
6182050	HERAULT A BRISSAC 1	20/10/2016	1313	3	23	DBO	0,9	mg(O2)/L
6182050	HERAULT A BRISSAC 1	20/10/2016	1340	3	3	Nitrates	2,7	mg(NO3)/ L
6182050	HERAULT A BRISSAC 1	20/10/2016	1350	3	23	Phosphore total	0,014	mg(P)/L
6182050	HERAULT A BRISSAC 1	20/10/2016	1433	3	3	Phosphates	0,04	mg(PO4)/
6182050	HERAULT A BRISSAC 1	18/11/2016	1302	3	23	рН	8	unité pH
6182050	HERAULT A BRISSAC 1	18/11/2016	1303	3	23	Conductivité à 25°C	376	μS/cm
6182050	HERAULT A BRISSAC 1	18/11/2016	1340	3	3	Nitrates	1,9	mg(NO3)/ L

Code de la station de mesure	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	Résultat de l'analys e	Unité de mesure
6182050	HERAULT A BRISSAC 1	18/11/2016	1433	3	3	Phosphates	0,02	mg(PO4)/ L
6182050	HERAULT A BRISSAC 1	15/12/2016	1302	3	23	pН	8,2	unité pH
6182050	HERAULT A BRISSAC 1	15/12/2016	1303	3	23	Conductivité à 25°C	350	μS/cm
6182050	HERAULT A BRISSAC 1	15/12/2016	1313	3	23	DBO	0,6	mg(O2)/L
6182050	HERAULT A BRISSAC 1	15/12/2016	1339	3	3	Nitrites	0,02	mg(NO2)/ L
6182050	HERAULT A BRISSAC 1	15/12/2016	1340	3	3	Nitrates	2,9	mg(NO3)/ L
6182050	HERAULT A BRISSAC 1	15/12/2016	1350	3	23	Phosphore total	0,013	mg(P)/L
6182050	HERAULT A BRISSAC 1	15/12/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	22/01/2016	1302	3	23	рН	7,7	unité pH
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	22/01/2016	1303	3	23	Conductivité à 25°C	485	μS/cm
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	22/01/2016	1313	3	23	DBO	0,9	mg(O2)/L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	22/01/2016	1335	3	3	Ammonium	0,03	mg(NH4)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	22/01/2016	1340	3	3	Nitrates	1,5	mg(NO3)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	22/01/2016	1350	3	23	Phosphore total	0,005	mg(P)/L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	22/01/2016	1433	3	3	Phosphates	0,02	mg(PO4)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	18/02/2016	1302	3	23	рН	7,7	unité pH
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	18/02/2016	1303	3	23	Conductivité à 25°C	467	μS/cm
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	18/02/2016	1313	3	23	DBO	1,2	mg(O2)/L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	18/02/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	18/02/2016	1340	3	3	Nitrates	0,8	mg(NO3)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	18/02/2016	1433	3	3	Phosphates	0,02	mg(PO4)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	17/03/2016	1302	3	23	рН	7,7	unité pH
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	17/03/2016	1303	3	23	Conductivité à 25°C	458	μS/cm
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	17/03/2016	1313	3	23	DBO	1,1	mg(O2)/L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	17/03/2016	1335	3	3	Ammonium	0,03	mg(NH4)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	17/03/2016	1340	3	3	Nitrates	0,7	mg(NO3)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	17/03/2016	1433	3	3	Phosphates	0,01	mg(PO4)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	20/04/2016	1302	3	23	рН	7,8	unité pH
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	20/04/2016	1303	3	23	Conductivité à 25°C	456	μS/cm
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	20/04/2016	1313	3	23	DBO	0,6	mg(O2)/L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	20/04/2016	1335	3	3	Ammonium	0,03	mg(NH4)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	20/04/2016	1340	3	3	Nitrates	1,2	mg(NO3)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	20/04/2016	1433	3	3	Phosphates	0,02	mg(PO4)/ L

Code de		2 ()					Résultat	
la station de mesure	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	de l'analys e	Unité de mesure
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	23/05/2016	1302	3	23	рН	7,8	unité pH
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	23/05/2016	1303	3	23	Conductivité à 25°C	454	μS/cm
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	23/05/2016	1335	3	3	Ammonium	0,02	mg(NH4)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	23/05/2016	1340	3	3	Nitrates	0,6	mg(NO3)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	23/05/2016	1350	3	23	Phosphore total	0,006	mg(P)/L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	23/05/2016	1433	3	3	Phosphates	0,02	mg(PO4)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	20/06/2016	1302	3	23	рН	7,9	unité pH
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	20/06/2016	1303	3	23	Conductivité à 25°C	446	μS/cm
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	20/06/2016	1313	3	23	DBO	0,6	mg(O2)/L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	20/06/2016	1335	3	3	Ammonium	0,04	mg(NH4)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	20/06/2016	1339	3	3	Nitrites	0,02	mg(NO2)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	20/06/2016	1340	3	3	Nitrates	0,7	mg(NO3)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	20/06/2016	1350	3	23	Phosphore total	0,01	mg(P)/L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	20/06/2016	1433	3	3	Phosphates	0,02	mg(PO4)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	21/07/2016	1302	3	23	рН	8	unité pH
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	21/07/2016	1303	3	23	Conductivité à 25°C	435	μS/cm
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	21/07/2016	1313	3	23	DBO	0,7	mg(O2)/L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	21/07/2016	1335	3	3	Ammonium	0,04	mg(NH4)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	21/07/2016	1339	3	3	Nitrites	0,03	mg(NO2)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	21/07/2016	1340	3	3	Nitrates	0,7	mg(NO3)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	21/07/2016	1350	3	23	Phosphore total	0,009	mg(P)/L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	21/07/2016	1433	3	3	Phosphates	0,02	mg(PO4)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	19/08/2016	1302	3	23	рН	7,9	unité pH
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	19/08/2016	1303	3	23	Conductivité à 25°C	430	μS/cm
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	19/08/2016	1313	3	23	DBO	0,6	mg(O2)/L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	19/08/2016	1335	3	3	Ammonium	0,03	mg(NH4)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	19/08/2016	1339	3	3	Nitrites	0,03	mg(NO2)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	19/08/2016	1340	3	3	Nitrates	0,9	mg(NO3)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	19/08/2016	1350	3	23	Phosphore total	0,009	mg(P)/L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	19/08/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	15/09/2016	1302	3	23	рН	7,5	unité pH
6182062	BUEGES A PEGAIROLLES- DE-BUEGES	15/09/2016	1303	3	23	Conductivité à 25°C	387	μS/cm

Second Code Code	Code de							Résultat	
6182062 BUEGES A PEGAIROLLES- 15/09/2016 1313 3 23 DBO 0.5 mg(02)/L	la station de	Nom de la station de mesure						de l'analys	
6182062 BUEGES A PEGAIROLLES- 15/09/2016 1335 3 3 3 3 3 3 3 3 3			15/09/2016	1313	3	23	DBO		mg(O2)/L
6182062 BUEGES A PECAIROLLES- 15/09/2016 1349 3 3 Nitrites 0.07 mg(ROZ)/ L 6182062 BUEGES A PECAIROLLES- 15/09/2016 1340 3 3 Nitrates 3,1 mg(ROZ)/ L 6182062 BUEGES A PECAIROLLES- 15/09/2016 1350 3 23 Phosphore total 0.011 mg(P)/L 6182062 BUEGES A PECAIROLLES- 15/09/2016 1350 3 23 Phosphore total 0.011 mg(P)/L 6182062 BUEGES A PECAIROLLES- 15/09/2016 1330 3 23 Phosphates 0.02 mg(PO4)/ L 6182062 BUEGES A PECAIROLLES- 15/09/2016 1330 3 23 Phosphates 0.02 mg(PO4)/ L 6182062 BUEGES A PECAIROLLES- 20/10/2016 1330 3 22 Conductivité à 25°C 25°C 24°C 25°C 25°C	6182062	BUEGES A PEGAIROLLES-	15/09/2016	1335	3	3	Ammonium	0,01	
DE-BUEGES DE-B	6182062	BUEGES A PEGAIROLLES-	15/09/2016	1339	3	3	Nitrites	0,07	
DE-BUEGES 15/09/2016 1433 3 Phosphates 0.02 mg/PO4/)	6182062	DE-BUEGES	15/09/2016	1340	3	3	Nitrates	3,1	L
DE-BUEGES DE-B		DE-BUEGES						·	
DE-BUEGES PEGAIROLLES- DE-BUEGES DE-BUEGES PEGAIROLLES- DE-BUEGES DE-BUEGES		DE-BUEGES					'		L
DE-BUEGES DE-GRAPOLLES- DE-BUEGES		DE-BUEGES					•		·
DE-BUEGES BUEGES A PEGAIROLLES- 20/10/2016 1335 3		DE-BUEGES					25°C		•
DE-BUEGES BUEGES A PEGAIROLLES- 20/10/2016 1340 3 3 Nitrates 1,6 mg(NO3)/ L		DE-BUEGES						,	J., ,
DE-BUEGES BUEGES A PEGAIROLLES- 20/10/2016 1350 3 23 Phosphore total 0,007 mg(P)/L		DE-BUEGES							L
DE-BUEGES DEGES A PEGAIROLLES- 20/10/2016 1433 3 3 3 3 3 3 3 3 3		DE-BUEGES						,	L
DE-BUEGES DEGES A PEGAIROLLES- 18/11/2016 1302 3 23 pH 7,8 unité pH		DE-BUEGES					•		
DE-BUEGES BUEGES A PEGAIROLLES- 18/11/2016 1303 3 23 Conductivité à 25°C 2		DE-BUEGES					•		L
DE-BUEGES DUEGES A PEGAIROLLES-		DE-BUEGES					•	,	·
DE-BUEGES BUEGES A PEGAIROLLES- 18/11/2016 1340 3 3 Nitrates 1,1 mg(NO3)/ L DE-BUEGES BUEGES A PEGAIROLLES- 18/11/2016 1350 3 23 Phosphore total 0,007 mg(P)/L DE-BUEGES DE-BUEGES 18/11/2016 1433 3 3 Phosphates 0,03 mg(PO4)/ L DE-BUEGES DE-BUEGES 18/11/2016 1302 3 23 Phosphates 0,03 mg(PO4)/ L DE-BUEGES DE-BUEGES 15/12/2016 1302 3 23 Phosphates 25°C DE-BUEGES DE-BUEGES 15/12/2016 1303 3 23 DBO 0,9 mg(O2)/L DE-BUEGES		DE-BUEGES					25°C		·
DE-BUEGES DEUGES DEUGES		DE-BUEGES							L
DE-BUEGES BUEGES A PEGAIROLLES- 18/11/2016 1433 3 3 Phosphates 0,03 mg(PO4)/ L 1430		DE-BUEGES						•	L
DE-BUEGES DE-		DE-BUEGES						Í	
DE-BUEGES DE-		DE-BUEGES	15/12/2016				·		L
DE-BUEGES DE-		DE-BUEGES					•		·
DE-BUEGES BUEGES A PEGAIROLLES- 15/12/2016 1335 3 3 Ammonium 0,01 mg(NH4)/ L		DE-BUEGES					25°C		·
DE-BUEGES BUEGES A PEGAIROLLES- 15/12/2016 1340 3 3 Nitrates 1,1 mg(NO3)/ L		DE-BUEGES							
DE-BUEGES BUEGES A PEGAIROLLES- 15/12/2016 1350 3 23 Phosphore total 0,006 mg(P)/L		DE-BUEGES						Í	L
6182062 BUEGES A PEGAIROLLES- 15/12/2016 1433 3 3 Phosphates 0,03 mg(PO4)/ L	6182062				3	23		0,006	L
6195330 CRENZE A ST-LAURENT-LE-MINIER 22/01/2016 1302 3 23 pH 8,5 unité pH 6195330 CRENZE A ST-LAURENT-LE-MINIER 22/01/2016 1303 3 23 Conductivité à 25°C 598 μS/cm 6195330 CRENZE A ST-LAURENT-LE-MINIER 22/01/2016 1313 3 23 DBO 4 mg(O2)/L 6195330 CRENZE A ST-LAURENT-LE-MINIER 22/01/2016 1340 3 3 Nitrates 0,9 mg(NO3)/L 6195330 CRENZE A ST-LAURENT-LE-MINIER 22/01/2016 1350 3 23 Phosphore total 0,025 mg(P)/L 6195330 CRENZE A ST-LAURENT-LE-MINIER 22/01/2016 1433 3 Phosphates 0,08 mg(PO4)/	6182062	BUEGES A PEGAIROLLES-	15/12/2016	1433	3	3	Phosphates	0,03	
6195330 CRENZE A ST-LAURENT-LE-MINIER 22/01/2016 1303 3 23 Conductivité à 25°C 598 μS/cm 6195330 CRENZE A ST-LAURENT-LE-MINIER 22/01/2016 1313 3 23 DBO 4 mg(O2)/L 6195330 CRENZE A ST-LAURENT-LE-MINIER 22/01/2016 1340 3 3 Nitrates 0,9 mg(NO3)/L 6195330 CRENZE A ST-LAURENT-LE-MINIER 22/01/2016 1350 3 23 Phosphore total 0,025 mg(P)/L 6195330 CRENZE A ST-LAURENT-LE-MINIER 22/01/2016 1433 3 Phosphates 0,08 mg(PO4)/	6195330	CRENZE A ST-LAURENT-LE-	22/01/2016	1302	3	23	рН	8,5	
6195330 CRENZE A ST-LAURENT-LE-MINIER 22/01/2016 1313 3 23 DBO 4 mg(O2)/L 6195330 CRENZE A ST-LAURENT-LE-MINIER 22/01/2016 1340 3 3 Nitrates 0,9 mg(NO3)/L 6195330 CRENZE A ST-LAURENT-LE-MINIER 22/01/2016 1350 3 23 Phosphore total 0,025 mg(P)/L 6195330 CRENZE A ST-LAURENT-LE-CRIVICAL 22/01/2016 1433 3 3 Phosphates 0,08 mg(PO4)/	6195330	CRENZE A ST-LAURENT-LE-	22/01/2016	1303	3	23		598	μS/cm
6195330 CRENZE A ST-LAURENT-LE- MINIER 22/01/2016 1340 3 3 Nitrates 0,9 mg(NO3)/ L 6195330 CRENZE A ST-LAURENT-LE- MINIER 22/01/2016 1350 3 23 Phosphore total 0,025 mg(P)/L 6195330 CRENZE A ST-LAURENT-LE- CRENZE A ST-LAURENT-LE- 22/01/2016 1433 3 3 Phosphates 0,08 mg(PO4)/	6195330	CRENZE A ST-LAURENT-LE-	22/01/2016	1313	3	23		4	mg(O2)/L
6195330 CRENZE A ST-LAURENT-LE- 22/01/2016 1350 3 23 Phosphore total 0,025 mg(P)/L MINIER 6195330 CRENZE A ST-LAURENT-LE- 22/01/2016 1433 3 3 Phosphates 0,08 mg(PO4)/	6195330	CRENZE A ST-LAURENT-LE-	22/01/2016	1340	3	3	Nitrates	0,9	
6195330 CRENZE A ST-LAURENT-LE- 22/01/2016 1433 3 Phosphates 0,08 mg(PO4)/	6195330	CRENZE A ST-LAURENT-LE-	22/01/2016	1350	3	23	Phosphore total	0,025	
	6195330	CRENZE A ST-LAURENT-LE-	22/01/2016	1433	3	3	Phosphates	0,08	mg(PO4)/

Code de							Résultat	
la station de	Nom de la station de mesure	Date du prélèveme	Code Sandre	Code support	Code fractio	Nom du paramètre	de l'analys	Unité de mesure
mesure		nt		опроп	n		e	
6195330	CRENZE A ST-LAURENT-LE- MINIER	18/02/2016	1302	3	23	рН	8,5	unité pH
6195330	CRENZE A ST-LAURENT-LE- MINIER	18/02/2016	1303	3	23	Conductivité à 25°C	512	μS/cm
6195330	CRENZE A ST-LAURENT-LE- MINIER	18/02/2016	1313	3	23	DBO	1,3	mg(O2)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	18/02/2016	1340	3	3	Nitrates	0,8	mg(NO3)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	18/02/2016	1350	3	23	Phosphore total	0,021	mg(P)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	18/02/2016	1433	3	3	Phosphates	0,07	mg(PO4)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	17/03/2016	1302	3	23	рН	8,5	unité pH
6195330	CRENZE A ST-LAURENT-LE- MINIER	17/03/2016	1303	3	23	Conductivité à 25°C	589	μS/cm
6195330	CRENZE A ST-LAURENT-LE- MINIER	17/03/2016	1313	3	23	DBO	1,4	mg(O2)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	17/03/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	17/03/2016	1340	3	3	Nitrates	0,8	mg(NO3)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	17/03/2016	1350	3	23	Phosphore total	0,024	mg(P)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	17/03/2016	1433	3	3	Phosphates	0,08	mg(PO4)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/04/2016	1302	3	23	pН	8,6	unité pH
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/04/2016	1303	3	23	Conductivité à 25°C	587	μS/cm
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/04/2016	1313	3	23	DBO	0,5	mg(O2)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/04/2016	1335	3	3	Ammonium	0,04	mg(NH4)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/04/2016	1340	3	3	Nitrates	0,6	mg(NO3)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/04/2016	1350	3	23	Phosphore total	0,029	mg(P)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/04/2016	1433	3	3	Phosphates	0,09	mg(PO4)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	23/05/2016	1302	3	23	рН	8,6	unité pH
6195330	CRENZE A ST-LAURENT-LE- MINIER	23/05/2016	1303	3		Conductivité à 25°C	558	μS/cm
6195330	CRENZE A ST-LAURENT-LE- MINIER	23/05/2016	1313	3	23	DBO	0,9	mg(O2)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	23/05/2016	1340	3	3	Nitrates	0,7	mg(NO3)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	23/05/2016	1350	3	23	Phosphore total	0,026	mg(P)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	23/05/2016	1433	3	3	Phosphates	0,08	mg(PO4)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/06/2016	1302	3	23	рН	8,6	unité pH
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/06/2016	1303	3	23	Conductivité à 25°C	649	μS/cm
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/06/2016	1340	3	3	Nitrates	0,5	mg(NO3)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/06/2016	1350	3	23	Phosphore total	0,028	mg(P)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/06/2016	1433	3	3	Phosphates	0,09	mg(PO4)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	21/07/2016	1302	3	23	рН	8,4	unité pH

Code de							Résultat	
la station de	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	de l'analys	Unité de mesure
6195330	CRENZE A ST-LAURENT-LE- MINIER	21/07/2016	1303	3	23	Conductivité à 25°C	e 799	μS/cm
6195330	CRENZE A ST-LAURENT-LE- MINIER	21/07/2016	1335	3	3	Ammonium	0,01	mg(NH4)/
6195330	CRENZE A ST-LAURENT-LE- MINIER	21/07/2016	1340	3	3	Nitrates	0,7	mg(NO3)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	21/07/2016	1350	3	23	Phosphore total	0,03	mg(P)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	21/07/2016	1433	3	3	Phosphates	0,09	mg(PO4)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	19/08/2016	1302	3	23	рН	8,4	unité pH
6195330	CRENZE A ST-LAURENT-LE- MINIER	19/08/2016	1303	3	23	Conductivité à 25°C	834	μS/cm
6195330	CRENZE A ST-LAURENT-LE- MINIER	19/08/2016	1313	3	23	DBO	0,6	mg(O2)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	19/08/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	19/08/2016	1350	3	23	Phosphore total	0,027	mg(P)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	19/08/2016	1433	3	3	Phosphates	0,08	mg(PO4)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	15/09/2016	1302	3	23	рН	8	unité pH
6195330	CRENZE A ST-LAURENT-LE- MINIER	15/09/2016	1303	3	23	Conductivité à 25°C	419	μS/cm
6195330	CRENZE A ST-LAURENT-LE- MINIER	15/09/2016	1313	3	23	DBO	0,7	mg(O2)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	15/09/2016	1335	3	3	Ammonium	0,09	mg(NH4)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	15/09/2016	1339	3	3	Nitrites	0,01	mg(NO2)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	15/09/2016	1340	3	3	Nitrates	6,1	mg(NO3)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	15/09/2016	1350	3	23	Phosphore total	0,057	mg(P)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	15/09/2016	1433	3	3	Phosphates	0,18	mg(PO4)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/10/2016	1302	3	23	рН	8,4	unité pH
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/10/2016	1303	3	23	Conductivité à 25°C	445	μS/cm
	CRENZE A ST-LAURENT-LE- MINIER	20/10/2016	1313	3		DBO		mg(O2)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/10/2016	1335	3	3	Ammonium	0,14	mg(NH4)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/10/2016	1340	3	3	Nitrates	1,1	mg(NO3)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/10/2016	1350	3	23	Phosphore total	0,046	mg(P)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	20/10/2016	1433	3	3	Phosphates	0,15	mg(PO4)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	18/11/2016	1302	3	23	рН	8,5	unité pH
6195330	CRENZE A ST-LAURENT-LE- MINIER	18/11/2016	1303	3	23	Conductivité à 25°C	688	μS/cm
6195330	CRENZE A ST-LAURENT-LE- MINIER	18/11/2016	1340	3	3	Nitrates	0,6	mg(NO3)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	18/11/2016	1350	3	23	Phosphore total	0,023	mg(P)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	18/11/2016	1433	3	3	Phosphates	0,07	mg(PO4)/ L
6195330	CRENZE A ST-LAURENT-LE- MINIER	15/12/2016	1302	3	23	рН	8,6	unité pH

Code de							Résultat	
la station	Nom de la station de mesure	Date du prélèveme	Code	Code	Code fractio	Nom du	de	Unité de
de mesure	Nom de la station de mesure	nt	Sandre	support	n	paramètre	l'analys e	mesure
6195330	CRENZE A ST-LAURENT-LE- MINIER	15/12/2016	1303	3	23	Conductivité à 25°C	581	μS/cm
6195330	CRENZE A ST-LAURENT-LE- MINIER	15/12/2016	1313	3	23	DBO	1,1	mg(O2)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	15/12/2016	1350	3	23	Phosphore total	0,026	mg(P)/L
6195330	CRENZE A ST-LAURENT-LE- MINIER	15/12/2016	1433	3	3	Phosphates	0,09	mg(PO4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	22/01/2016	1302	3	23	рН	8,2	unité pH
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	22/01/2016	1303	3	23	Conductivité à 25°C	310	μS/cm
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	22/01/2016	1313	3	23	DBO	1,1	mg(O2)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	22/01/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	22/01/2016	1340	3	3	Nitrates	2	mg(NO3)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	22/01/2016	1350	3	23	Phosphore total	0,013	mg(P)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	22/01/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	18/02/2016	1302	3	23	рН	8,1	unité pH
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	18/02/2016	1303	3	23	Conductivité à 25°C	252	μS/cm
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	18/02/2016	1313	3	23	DBO	1,4	mg(O2)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	18/02/2016	1340	3	3	Nitrates	1,9	mg(NO3)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	18/02/2016	1350	3	23	Phosphore total	0,013	mg(P)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	18/02/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	17/03/2016	1302	3	23	рН	8,1	unité pH
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	17/03/2016	1303	3	23	Conductivité à 25°C	276	μS/cm
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	17/03/2016	1313	3	23	DBO	1,5	mg(O2)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	17/03/2016	1340	3	3	Nitrates	1,7	mg(NO3)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	17/03/2016	1350	3	23	Phosphore total	0,011	mg(P)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	17/03/2016	1433	3	3	Phosphates	0,05	mg(PO4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/04/2016	1302	3	23	рН	8,2	unité pH
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/04/2016	1303	3	23	Conductivité à 25°C	274	μS/cm
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/04/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/04/2016	1340	3	3	Nitrates	1,2	mg(NO3)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/04/2016	1350	3	23	Phosphore total	0,013	mg(P)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/04/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	23/05/2016	1302	3	23	рН	8,3	unité pH
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	23/05/2016	1303	3	23	Conductivité à 25°C	266	μS/cm
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	23/05/2016	1313	3	23	DBO	0,7	mg(O2)/L

Code de							Résultat	
la station de	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	de l'analys	Unité de mesure
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	23/05/2016	1340	3	3	Nitrates	e 1,5	mg(NO3)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	23/05/2016	1350	3	23	Phosphore total	0,02	mg(P)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	23/05/2016	1433	3	3	Phosphates	0,06	mg(PO4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/06/2016	1302	3	23	рН	8,3	unité pH
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/06/2016	1303	3	23	Conductivité à 25°C	341	μS/cm
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/06/2016	1313	3	23	DBO	0,6	mg(O2)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/06/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/06/2016	1340	3	3	Nitrates	1	mg(NO3)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/06/2016	1350	3	23	Phosphore total	0,013	mg(P)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/06/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	21/07/2016	1302	3	23	рН	8,3	unité pH
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	21/07/2016	1303	3	23	Conductivité à 25°C	427	μS/cm
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	21/07/2016	1313	3	23	DBO	0,6	mg(O2)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	21/07/2016	1335	3	3	Ammonium	0,02	mg(NH4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	21/07/2016	1339	3	3	Nitrites	0,02	mg(NO2)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	21/07/2016	1340	3	3	Nitrates	1,2	mg(NO3)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	21/07/2016	1350	3	23	Phosphore total	0,031	mg(P)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	21/07/2016	1433	3	3	Phosphates	0,07	mg(PO4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	19/08/2016	1302	3	23	рН	8,2	unité pH
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	19/08/2016	1303	3	23	Conductivité à 25°C	436	μS/cm
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	19/08/2016	1313	3	23	DBO	1,2	mg(O2)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	19/08/2016	1335	3	3	Ammonium	0,02	L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	19/08/2016	1339	3	3	Nitrites	0,02	mg(NO2)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	19/08/2016	1340	3	3	Nitrates	1,1	mg(NO3)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	19/08/2016	1350	3	23	Phosphore total	0,036	mg(P)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	19/08/2016	1433	3	3	Phosphates	0,08	mg(PO4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	15/09/2016	1302	3	23	рН	8,3	unité pH
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	15/09/2016	1303	3	23	Conductivité à 25°C	334	μS/cm
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	15/09/2016	1313	3	23	DBO	0,9	mg(O2)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	15/09/2016	1335	3	3	Ammonium	0,02	mg(NH4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	15/09/2016	1339	3	3	Nitrites	0,02	mg(NO2)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	15/09/2016	1340	3	3	Nitrates	4,8	mg(NO3)/ L

Code de		Data da			O - d -		Résultat	
la station de	Nom de la station de mesure	Date du prélèveme	Code	Code	Code fractio	Nom du	de	Unité de
mesure		nt	Sandre	support	n	paramètre	l'analys e	mesure
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	15/09/2016	1350	3	23	Phosphore total	0,05	mg(P)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	15/09/2016	1433	3	3	Phosphates	0,08	mg(PO4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/10/2016	1302	3	23	рН	8,2	unité pH
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/10/2016	1303	3	23	Conductivité à 25°C	246	μS/cm
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/10/2016	1313	3	23	DBO	1,2	mg(O2)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/10/2016	1340	3	3	Nitrates	2,5	mg(NO3)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/10/2016	1350	3	23	Phosphore total	0,017	mg(P)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	20/10/2016	1433	3	3	Phosphates	0,06	mg(PO4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	18/11/2016	1302	3	23	рН	8,2	unité pH
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	18/11/2016	1303	3	23	Conductivité à 25°C	338	μS/cm
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	18/11/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	18/11/2016	1340	3	3	Nitrates	1,7	mg(NO3)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	18/11/2016	1350	3	23	Phosphore total	0,024	mg(P)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	18/11/2016	1433	3	3	Phosphates	0,07	mg(PO4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	15/12/2016	1302	3	23	рН	8,3	unité pH
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	15/12/2016	1303	3	23	Conductivité à 25°C	295	μS/cm
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	15/12/2016	1313	3	23	DBO	0,9	mg(O2)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	15/12/2016	1335	3	3	Ammonium	0,04	mg(NH4)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	15/12/2016	1340	3	3	Nitrates	2,2	mg(NO3)/ L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	15/12/2016	1350	3	23	Phosphore total	0,015	mg(P)/L
6181906	ARRE A SAINT-ANDRE-DE- MAJENCOULES	15/12/2016	1433	3	3	Phosphates	0,05	mg(PO4)/ L
6181910	HERAULT A VALLERAUGUE 2	22/01/2016	1302	3	23	рН	7,6	unité pH
6181910	HERAULT A VALLERAUGUE 2	22/01/2016	1303	3	23	Conductivité à 25°C	97	μS/cm
6181910	HERAULT A VALLERAUGUE 2	22/01/2016	1340	3	3	Nitrates	1,6	mg(NO3)/ L
6181910	HERAULT A VALLERAUGUE 2	22/01/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6181910	HERAULT A VALLERAUGUE 2	18/02/2016	1302	3	23	рН	7,4	unité pH
6181910	HERAULT A VALLERAUGUE 2	18/02/2016	1303	3	23	Conductivité à 25°C	89	μS/cm
6181910	HERAULT A VALLERAUGUE 2	18/02/2016	1313	3	23	DBO	1,3	mg(O2)/L
6181910	HERAULT A VALLERAUGUE 2	18/02/2016	1340	3	3	Nitrates	1,6	mg(NO3)/ L
6181910	HERAULT A VALLERAUGUE 2	18/02/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6181910	HERAULT A VALLERAUGUE 2	17/03/2016	1302	3	23	рН	7,5	unité pH
6181910	HERAULT A VALLERAUGUE 2	17/03/2016	1303	3	23	Conductivité à 25°C	97	μS/cm
6181910	HERAULT A VALLERAUGUE 2	17/03/2016	1313	3	23	DBO	2,2	mg(O2)/L

Orde de							Díamitat	
Code de la station de mesure	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	Résultat de l'analys e	Unité de mesure
6181910	HERAULT A VALLERAUGUE 2	17/03/2016	1340	3	3	Nitrates	1,4	mg(NO3)/ L
6181910	HERAULT A VALLERAUGUE 2	17/03/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6181910	HERAULT A VALLERAUGUE 2	20/04/2016	1302	3	23	рН	7,5	unité pH
6181910	HERAULT A VALLERAUGUE 2	20/04/2016	1303	3	23	Conductivité à 25°C	94	μS/cm
6181910	HERAULT A VALLERAUGUE 2	20/04/2016	1313	3	23	DBO	0,8	mg(O2)/L
6181910	HERAULT A VALLERAUGUE 2	20/04/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6181910	HERAULT A VALLERAUGUE 2	20/04/2016	1340	3	3	Nitrates	1,3	mg(NO3)/ L
6181910	HERAULT A VALLERAUGUE 2	20/04/2016	1433	3	3	Phosphates	0,03	mg(PO4)/
6181910	HERAULT A VALLERAUGUE 2	23/05/2016	1302	3	23	рН	7,9	unité pH
6181910	HERAULT A VALLERAUGUE 2	23/05/2016	1303	3	23	Conductivité à 25°C	91,6	μS/cm
6181910	HERAULT A VALLERAUGUE 2	23/05/2016	1340	3	3	Nitrates	1,2	mg(NO3)/
6181910	HERAULT A VALLERAUGUE 2	23/05/2016	1350	3	23	Phosphore total	0,006	mg(P)/L
6181910	HERAULT A VALLERAUGUE 2	23/05/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6181910	HERAULT A VALLERAUGUE 2	20/06/2016	1302	3	23	рH	7,4	unité pH
6181910	HERAULT A VALLERAUGUE 2	20/06/2016	1303	3	23	Conductivité à 25°C	106	μS/cm
6181910	HERAULT A VALLERAUGUE 2	20/06/2016	1313	3	23	DBO	0,7	mg(O2)/L
6181910	HERAULT A VALLERAUGUE 2	20/06/2016	1340	3	3	Nitrates	1,1	mg(NO3)/ L
6181910	HERAULT A VALLERAUGUE 2	20/06/2016	1350	3	23	Phosphore total	0,01	mg(P)/L
6181910	HERAULT A VALLERAUGUE 2	20/06/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6181910	HERAULT A VALLERAUGUE 2	21/07/2016	1302	3	23	рH	7,6	unité pH
6181910	HERAULT A VALLERAUGUE 2	21/07/2016	1303	3	23	Conductivité à 25°C	117	μS/cm
6181910	HERAULT A VALLERAUGUE 2	21/07/2016	1340	3	3	Nitrates	1,2	mg(NO3)/ L
6181910	HERAULT A VALLERAUGUE 2	21/07/2016	1350	3	23	Phosphore total	0,011	mg(P)/L
6181910	HERAULT A VALLERAUGUE 2	21/07/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6181910	HERAULT A VALLERAUGUE 2	19/08/2016	1302	3	23	рН	7,4	unité pH
6181910	HERAULT A VALLERAUGUE 2	19/08/2016	1303	3	23	Conductivité à 25°C	122	μS/cm
6181910	HERAULT A VALLERAUGUE 2	19/08/2016	1340	3	3	Nitrates	1,6	mg(NO3)/ L
6181910	HERAULT A VALLERAUGUE 2	19/08/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6181910	HERAULT A VALLERAUGUE 2	15/09/2016	1302	3	23	рН	7,3	unité pH
6181910	HERAULT A VALLERAUGUE 2	15/09/2016	1303	3	23	Conductivité à 25°C	107	μS/cm
6181910	HERAULT A VALLERAUGUE 2	15/09/2016	1313	3	23	DBO	0,5	mg(O2)/L
6181910	HERAULT A VALLERAUGUE 2	15/09/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6181910	HERAULT A VALLERAUGUE 2	15/09/2016	1340	3	3	Nitrates	4,7	mg(NO3)/ L
6181910	HERAULT A VALLERAUGUE 2	15/09/2016	1350	3	23	Phosphore total	0,011	mg(P)/L
6181910	HERAULT A VALLERAUGUE 2	15/09/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L

Code de la station de mesure	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	Résultat de l'analys e	Unité de mesure
6181910	HERAULT A VALLERAUGUE 2	20/10/2016	1302	3	23	рН	7,4	unité pH
6181910	HERAULT A VALLERAUGUE 2	20/10/2016	1303	3	23	Conductivité à 25°C	66	μS/cm
6181910	HERAULT A VALLERAUGUE 2	20/10/2016	1313	3	23	DBO	0,9	mg(O2)/L
6181910	HERAULT A VALLERAUGUE 2	20/10/2016	1340	3	3	Nitrates	1,4	mg(NO3)/ L
6181910	HERAULT A VALLERAUGUE 2	20/10/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6181910	HERAULT A VALLERAUGUE 2	18/11/2016	1302	3	23	pН	7,7	unité pH
6181910	HERAULT A VALLERAUGUE 2	18/11/2016	1303	3	23	Conductivité à 25°C	107	μS/cm
6181910	HERAULT A VALLERAUGUE 2	18/11/2016	1340	3	3	Nitrates	1,4	mg(NO3)/ L
6181910	HERAULT A VALLERAUGUE 2	18/11/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6181910	HERAULT A VALLERAUGUE 2	15/12/2016	1302	3	23	pН	7,8	unité pH
6181910	HERAULT A VALLERAUGUE 2	15/12/2016	1303	3	23	Conductivité à 25°C	95	μS/cm
6181910	HERAULT A VALLERAUGUE 2	15/12/2016	1313	3	23	DBO	1	mg(O2)/L
6181910	HERAULT A VALLERAUGUE 2	15/12/2016	1340	3	3	Nitrates	1,5	mg(NO3)/ L
6181910	HERAULT A VALLERAUGUE 2	15/12/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6184000	HERAULT A FLORENSAC	21/01/2016	1302	3	23	pН	8,1	unité pH
6184000	HERAULT A FLORENSAC	21/01/2016	1303	3	23	Conductivité à 25°C	427	μS/cm
6184000	HERAULT A FLORENSAC	21/01/2016	1313	3	23	DBO	0,9	mg(O2)/L
6184000	HERAULT A FLORENSAC	21/01/2016	1335	3	3	Ammonium	0,02	mg(NH4)/ L
6184000	HERAULT A FLORENSAC	21/01/2016	1339	3	3	Nitrites	0,01	mg(NO2)/ L
6184000	HERAULT A FLORENSAC	21/01/2016	1340	3	3	Nitrates	2,3	mg(NO3)/ L
6184000	HERAULT A FLORENSAC	21/01/2016	1350	3	23	Phosphore total	0,047	mg(P)/L
6184000	HERAULT A FLORENSAC	21/01/2016	1433	3	3	Phosphates	0,06	mg(PO4)/ L
6184000	HERAULT A FLORENSAC	12/02/2016	1302	3	23	рН	8,2	unité pH
6184000	HERAULT A FLORENSAC	12/02/2016	1303	3	23	Conductivité à 25°C	401	μS/cm
6184000	HERAULT A FLORENSAC	12/02/2016	1313	3	23	DBO	0,6	mg(O2)/L
6184000	HERAULT A FLORENSAC	12/02/2016	1335	3	3	Ammonium	0,03	mg(NH4)/ L
6184000	HERAULT A FLORENSAC	12/02/2016	1340	3	3	Nitrates	2,2	mg(NO3)/ L
6184000	HERAULT A FLORENSAC	12/02/2016	1350	3	23	Phosphore total	0,022	mg(P)/L
6184000	HERAULT A FLORENSAC	12/02/2016	1433	3	3	Phosphates	0,06	mg(PO4)/ L
6184000	HERAULT A FLORENSAC	16/03/2016	1302	3	23	pН	8,2	unité pH
6184000	HERAULT A FLORENSAC	16/03/2016	1303	3	23	Conductivité à 25°C	419	μS/cm
6184000	HERAULT A FLORENSAC	16/03/2016	1313	3	23	DBO	1,2	mg(O2)/L
6184000	HERAULT A FLORENSAC	16/03/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6184000	HERAULT A FLORENSAC	16/03/2016	1340	3	3	Nitrates	2	mg(NO3)/ L
6184000	HERAULT A FLORENSAC	16/03/2016	1350	3	23	Phosphore total	0,015	mg(P)/L

Code de		Data du			Codo		Résultat	
la station de mesure	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	de l'analys e	Unité de mesure
6184000	HERAULT A FLORENSAC	16/03/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6184000	HERAULT A FLORENSAC	14/04/2016	1302	3	23	рН	8,2	unité pH
6184000	HERAULT A FLORENSAC	14/04/2016	1303	3	23	Conductivité à 25°C	409	μS/cm
6184000	HERAULT A FLORENSAC	14/04/2016	1335	3	3	Ammonium	0,01	mg(NH4)/
6184000	HERAULT A FLORENSAC	14/04/2016	1340	3	3	Nitrates	1,7	mg(NO3)/
6184000	HERAULT A FLORENSAC	14/04/2016	1350	3	23	Phosphore total	0,02	mg(P)/L
6184000	HERAULT A FLORENSAC	14/04/2016	1433	3	3	Phosphates	0,04	mg(PO4)/
6184000	HERAULT A FLORENSAC	20/05/2016	1302	3	23	рН	8,2	unité pH
6184000	HERAULT A FLORENSAC	20/05/2016	1303	3	23	Conductivité à 25°C	400	μS/cm
6184000	HERAULT A FLORENSAC	20/05/2016	1313	3	23	DBO	1	mg(O2)/L
6184000	HERAULT A FLORENSAC	20/05/2016	1340	3	3	Nitrates	1,6	mg(NO3)/ L
6184000	HERAULT A FLORENSAC	20/05/2016	1350	3	23	Phosphore total	0,018	mg(P)/L
6184000	HERAULT A FLORENSAC	20/05/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6184000	HERAULT A FLORENSAC	14/06/2016	1302	3	23	рН	8	unité pH
6184000	HERAULT A FLORENSAC	14/06/2016	1303	3	23	Conductivité à 25°C	442	μS/cm
6184000	HERAULT A FLORENSAC	14/06/2016	1335	3	3	Ammonium	0,02	mg(NH4)/
6184000	HERAULT A FLORENSAC	14/06/2016	1340	3	3	Nitrates	1,6	mg(NO3)/
6184000	HERAULT A FLORENSAC	14/06/2016	1350	3	23	Phosphore total	0,019	mg(P)/L
6184000	HERAULT A FLORENSAC	14/06/2016	1433	3	3	Phosphates	0,05	mg(PO4)/
6184000	HERAULT A FLORENSAC	20/07/2016	1302	3	23	рН	8,1	unité pH
6184000	HERAULT A FLORENSAC	20/07/2016	1303	3	23	Conductivité à 25°C	472	μS/cm
6184000	HERAULT A FLORENSAC	20/07/2016	1313	3	23	DBO	0,6	mg(O2)/L
6184000	HERAULT A FLORENSAC	20/07/2016	1339	3	3	Nitrites	0,02	mg(NO2)/ L
6184000	HERAULT A FLORENSAC	20/07/2016	1340	3	3	Nitrates	1,3	mg(NO3)/
6184000	HERAULT A FLORENSAC	20/07/2016	1350	3	23	Phosphore total	0,021	mg(P)/L
6184000	HERAULT A FLORENSAC	20/07/2016	1433	3	3	Phosphates	0,06	mg(PO4)/ L
6184000	HERAULT A FLORENSAC	12/08/2016	1302	3	23	рН	8	unité pH
6184000	HERAULT A FLORENSAC	12/08/2016	1303	3	23	Conductivité à 25°C	471	μS/cm
6184000	HERAULT A FLORENSAC	12/08/2016	1313	3	23	DBO	0,5	mg(O2)/L
6184000	HERAULT A FLORENSAC	12/08/2016	1335	3	3	Ammonium	0,01	mg(NH4)/
6184000	HERAULT A FLORENSAC	12/08/2016	1340	3	3	Nitrates	1,5	mg(NO3)/ L
6184000	HERAULT A FLORENSAC	12/08/2016	1350	3	23	Phosphore total	0,022	mg(P)/L
6184000	HERAULT A FLORENSAC	12/08/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6184000	HERAULT A FLORENSAC	14/09/2016	1302	3	23	рН	7,9	unité pH
6184000	HERAULT A FLORENSAC	14/09/2016	1303	3	23	Conductivité à 25°C	487	μS/cm

							_	
Code de la station de mesure	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	Résultat de l'analys e	Unité de mesure
6184000	HERAULT A FLORENSAC	14/09/2016	1313	3	23	DBO	0,7	mg(O2)/L
6184000	HERAULT A FLORENSAC	14/09/2016	1335	3	3	Ammonium	0,02	mg(NH4)/ L
6184000	HERAULT A FLORENSAC	14/09/2016	1339	3	3	Nitrites	0,02	mg(NO2)/ L
6184000	HERAULT A FLORENSAC	14/09/2016	1340	3	3	Nitrates	0,9	mg(NO3)/ L
6184000	HERAULT A FLORENSAC	14/09/2016	1350	3	23	Phosphore total	0,016	mg(P)/L
6184000	HERAULT A FLORENSAC	14/09/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6184000	HERAULT A FLORENSAC	14/10/2016	1302	3	23	pН	7,9	unité pH
6184000	HERAULT A FLORENSAC	14/10/2016	1303	3	23	Conductivité à 25°C	308	μS/cm
6184000	HERAULT A FLORENSAC	14/10/2016	1313	3	23	DBO	2,5	mg(O2)/L
6184000	HERAULT A FLORENSAC	14/10/2016	1314	3	23	DCO	22	mg(O2)/L
6184000	HERAULT A FLORENSAC	14/10/2016	1335	3	3	Ammonium	0,05	mg(NH4)/ L
6184000	HERAULT A FLORENSAC	14/10/2016	1339	3	3	Nitrites	0,03	mg(NO2)/ L
6184000	HERAULT A FLORENSAC	14/10/2016	1340	3	3	Nitrates	3,7	mg(NO3)/ L
6184000	HERAULT A FLORENSAC	14/10/2016	1350	3	23	Phosphore total	0,29	mg(P)/L
6184000	HERAULT A FLORENSAC	14/10/2016	1433	3	3	Phosphates	0,2	mg(PO4)/ L
6184000	HERAULT A FLORENSAC	17/11/2016	1302	3	23	рН	8,2	unité pH
6184000	HERAULT A FLORENSAC	17/11/2016	1303	3	23	Conductivité à 25°C	505	μS/cm
6184000	HERAULT A FLORENSAC	17/11/2016	1313	3	23	DBO	1,3	mg(O2)/L
6184000	HERAULT A FLORENSAC	17/11/2016	1339	3	3	Nitrites	0,01	mg(NO2)/ L
6184000	HERAULT A FLORENSAC	17/11/2016	1340	3	3	Nitrates	3,4	mg(NO3)/ L
6184000	HERAULT A FLORENSAC	17/11/2016	1350	3	23	Phosphore total	0,016	mg(P)/L
6184000	HERAULT A FLORENSAC	17/11/2016	1433	3	3	Phosphates	0,05	mg(PO4)/ L
6184000	HERAULT A FLORENSAC	13/12/2016	1302	3	23	рН	8,3	unité pH
6184000	HERAULT A FLORENSAC	13/12/2016	1303	3	23	Conductivité à 25°C	461	μS/cm
6184000	HERAULT A FLORENSAC	13/12/2016	1313	3	23	DBO	0,6	mg(O2)/L
6184000	HERAULT A FLORENSAC	13/12/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6184000	HERAULT A FLORENSAC	13/12/2016	1339	3	3	Nitrites	0,01	mg(NO2)/ L
6184000	HERAULT A FLORENSAC	13/12/2016	1340	3	3	Nitrates	3,1	mg(NO3)/ L
6184000	HERAULT A FLORENSAC	13/12/2016	1350	3	23	Phosphore total	0,016	mg(P)/L
6184000	HERAULT A FLORENSAC	13/12/2016	1433	3	3	Phosphates	0,05	mg(PO4)/ L
6183000	LERGUE A BRIGNAC	21/01/2016	1302	3	23	рН	8,4	unité pH
6183000	LERGUE A BRIGNAC	21/01/2016	1303	3	23	Conductivité à 25°C	620	μS/cm
6183000	LERGUE A BRIGNAC	21/01/2016	1313	3	23	DBO	0,7	mg(O2)/L
6183000	LERGUE A BRIGNAC	21/01/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6183000	LERGUE A BRIGNAC	21/01/2016	1340	3	3	Nitrates	2,4	mg(NO3)/ L

Code de		Data du			Codo		Résultat	
la station de mesure	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	de l'analys e	Unité de mesure
6183000	LERGUE A BRIGNAC	21/01/2016	1350	3	23	Phosphore total	0,019	mg(P)/L
6183000	LERGUE A BRIGNAC	21/01/2016	1433	3	3	Phosphates	0,06	mg(PO4)/ L
6183000	LERGUE A BRIGNAC	16/03/2016	1302	3	23	рН	8,3	unité pH
6183000	LERGUE A BRIGNAC	16/03/2016	1303	3	23	Conductivité à 25°C	630	μS/cm
6183000	LERGUE A BRIGNAC	16/03/2016	1313	3	23	DBO	1,5	mg(O2)/L
6183000	LERGUE A BRIGNAC	16/03/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6183000	LERGUE A BRIGNAC	16/03/2016	1339	3	3	Nitrites	0,01	mg(NO2)/ L
6183000	LERGUE A BRIGNAC	16/03/2016	1340	3	3	Nitrates	2,3	mg(NO3)/
6183000	LERGUE A BRIGNAC	16/03/2016	1350	3	23	Phosphore total	0,011	mg(P)/L
6183000	LERGUE A BRIGNAC	16/03/2016	1433	3	3	Phosphates	0,03	mg(PO4)/
6183000	LERGUE A BRIGNAC	20/05/2016	1302	3	23	pН	8,3	L unité pH
6183000	LERGUE A BRIGNAC	20/05/2016	1303	3	23	Conductivité à 25°C	601	μS/cm
6183000	LERGUE A BRIGNAC	20/05/2016	1313	3	23	DBO	0,5	mg(O2)/L
6183000	LERGUE A BRIGNAC	20/05/2016	1339	3	3	Nitrites	0,01	mg(NO2)/ L
6183000	LERGUE A BRIGNAC	20/05/2016	1340	3	3	Nitrates	2,3	mg(NO3)/
6183000	LERGUE A BRIGNAC	20/05/2016	1350	3	23	Phosphore total	0,015	mg(P)/L
6183000	LERGUE A BRIGNAC	20/05/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6183000	LERGUE A BRIGNAC	20/07/2016	1302	3	23	pН	8,2	unité pH
6183000	LERGUE A BRIGNAC	20/07/2016	1303	3	23	Conductivité à 25°C	602	μS/cm
6183000	LERGUE A BRIGNAC	20/07/2016	1313	3	23	DBO	0,6	mg(O2)/L
6183000	LERGUE A BRIGNAC	20/07/2016	1350	3	23	Phosphore total	0,011	mg(P)/L
6183000	LERGUE A BRIGNAC	20/07/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6183000	LERGUE A BRIGNAC	14/09/2016	1302	3	23	рН	8	unité pH
	LERGUE A BRIGNAC	14/09/2016	1303	3	23	Conductivité à 25°C	552	μS/cm
6183000	LERGUE A BRIGNAC	14/09/2016	1313	3	23	DBO	4	mg(O2)/L
6183000	LERGUE A BRIGNAC	14/09/2016	1314	3	23	DCO	31	mg(O2)/L
6183000	LERGUE A BRIGNAC	14/09/2016	1319	3	23	Azote Kjeldahl	3	mg(N)/L
6183000	LERGUE A BRIGNAC	14/09/2016	1335	3	3	Ammonium	0,05	mg(NH4)/ L
6183000	LERGUE A BRIGNAC	14/09/2016	1339	3	3	Nitrites	0,04	mg(NO2)/ L
6183000	LERGUE A BRIGNAC	14/09/2016	1340	3	3	Nitrates	2	mg(NO3)/ L
6183000	LERGUE A BRIGNAC	14/09/2016	1350	3	23	Phosphore total	0,46	mg(P)/L
6183000	LERGUE A BRIGNAC	14/09/2016	1433	3	3	Phosphates	0,12	mg(PO4)/ L
6183000	LERGUE A BRIGNAC	17/11/2016	1302	3	23	рН	8,3	unité pH
6183000	LERGUE A BRIGNAC	17/11/2016	1303	3	23	Conductivité à 25°C	625	μS/cm
6183000	LERGUE A BRIGNAC	17/11/2016	1313	3	23	DBO	1	mg(O2)/L

Code de la station de mesure	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	Résultat de l'analys e	Unité de mesure
6183000	LERGUE A BRIGNAC	17/11/2016	1339	3	3	Nitrites	0,02	mg(NO2)/ L
6183000	LERGUE A BRIGNAC	17/11/2016	1340	3	3	Nitrates	2,9	mg(NO3)/ L
6183000	LERGUE A BRIGNAC	17/11/2016	1350	3	23	Phosphore total	0,013	mg(P)/L
6183000	LERGUE A BRIGNAC	17/11/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6181945	VIS A BLANDAS	18/02/2016	1302	3	23	рН	7,6	unité pH
6181945	VIS A BLANDAS	18/02/2016	1303	3	23	Conductivité à 25°C	377	μS/cm
6181945	VIS A BLANDAS	18/02/2016	1313	3	23	DBO	0,6	mg(O2)/L
6181945	VIS A BLANDAS	18/02/2016	1340	3	3	Nitrates	3,3	mg(NO3)/ L
6181945	VIS A BLANDAS	18/02/2016	1350	3	23	Phosphore total	0,01	mg(P)/L
6181945	VIS A BLANDAS	18/02/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6181945	VIS A BLANDAS	20/04/2016	1302	3	23	рН	7,8	unité pH
6181945	VIS A BLANDAS	20/04/2016	1303	3	23	Conductivité à 25°C	390	μS/cm
6181945	VIS A BLANDAS	20/04/2016	1340	3	3	Nitrates	3	mg(NO3)/ L
6181945	VIS A BLANDAS	20/04/2016	1350	3	23	Phosphore total	0,01	mg(P)/L
6181945	VIS A BLANDAS	20/04/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6181945	VIS A BLANDAS	20/06/2016	1302	3	23	рН	7,9	unité pH
6181945	VIS A BLANDAS	20/06/2016	1303	3	23	Conductivité à 25°C	415	μS/cm
6181945	VIS A BLANDAS	20/06/2016	1340	3	3	Nitrates	2,9	mg(NO3)/ L
6181945	VIS A BLANDAS	20/06/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6181945	VIS A BLANDAS	19/08/2016	1302	3	23	pН	7,9	unité pH
6181945	VIS A BLANDAS	19/08/2016	1303	3	23	Conductivité à 25°C	431	μS/cm
6181945	VIS A BLANDAS	19/08/2016	1340	3	3	Nitrates	3,6	mg(NO3)/ L
6181945	VIS A BLANDAS	19/08/2016	1350	3	23	Phosphore total	0,005	mg(P)/L
6181945	VIS A BLANDAS	19/08/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6181945	VIS A BLANDAS	20/10/2016	1302	3	23	pН	7,8	unité pH
6181945	VIS A BLANDAS	20/10/2016	1303	3	23	Conductivité à 25°C	317	μS/cm
6181945	VIS A BLANDAS	20/10/2016	1340	3	3	Nitrates	3,3	mg(NO3)/ L
6181945	VIS A BLANDAS	20/10/2016	1350	3	23	Phosphore total	0,006	mg(P)/L
6181945	VIS A BLANDAS	20/10/2016	1433	3	3	Phosphates	0,03	mg(PO4)/ L
6181945	VIS A BLANDAS	15/12/2016	1302	3	23	рН	7,9	unité pH
6181945	VIS A BLANDAS	15/12/2016	1303	3	23	Conductivité à 25°C	405	μS/cm
6181945	VIS A BLANDAS	15/12/2016	1340	3	3	Nitrates	3,6	mg(NO3)/ L
6181945	VIS A BLANDAS	15/12/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6182045	LAMALOU A LE-ROUET	22/01/2016	1302	3	23	рН	7,6	unité pH
6182045	LAMALOU A LE-ROUET	22/01/2016	1303	3	23	Conductivité à 25°C	664	μS/cm

Code de la station de mesure	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	Résultat de l'analys e	Unité de mesure
6182045	LAMALOU A LE-ROUET	22/01/2016	1313	3	23	DBO	1	mg(O2)/L
6182045	LAMALOU A LE-ROUET	22/01/2016	1340	3	3	Nitrates	1	mg(NO3)/ L
6182045	LAMALOU A LE-ROUET	22/01/2016	1433	3	3	Phosphates	0,02	mg(PO4)/ L
6182045	LAMALOU A LE-ROUET	17/03/2016	1302	3	23	pН	7,6	unité pH
6182045	LAMALOU A LE-ROUET	17/03/2016	1303	3	23	Conductivité à 25°C	623	μS/cm
6182045	LAMALOU A LE-ROUET	17/03/2016	1313	3	23	DBO	1	mg(O2)/L
6182045	LAMALOU A LE-ROUET	17/03/2016	1339	3	3	Nitrites	0,03	mg(NO2)/ L
6182045	LAMALOU A LE-ROUET	17/03/2016	1340	3	3	Nitrates	0,5	mg(NO3)/
6182045	LAMALOU A LE-ROUET	23/05/2016	1302	3	23	рН	7,6	unité pH
6182045	LAMALOU A LE-ROUET	23/05/2016	1303	3	23	Conductivité à 25°C	613	μS/cm
6182045	LAMALOU A LE-ROUET	23/05/2016	1313	3	23	DBO	0,6	mg(O2)/L
6182045	LAMALOU A LE-ROUET	23/05/2016	1433	3	3	Phosphates	0,01	mg(PO4)/ L
6182045	LAMALOU A LE-ROUET	21/07/2016	1302	3	23	рН	7,6	unité pH
6182045	LAMALOU A LE-ROUET	21/07/2016	1303	3	23	Conductivité à 25°C	593	μS/cm
6182045	LAMALOU A LE-ROUET	21/07/2016	1335	3	3	Ammonium	0,01	mg(NH4)/
6182045	LAMALOU A LE-ROUET	21/07/2016	1433	3	3	Phosphates	0,02	mg(PO4)/ L
6182045	LAMALOU A LE-ROUET	15/09/2016	1302	3	23	рН	7,3	unité pH
6182045	LAMALOU A LE-ROUET	15/09/2016	1303	3	23	Conductivité à 25°C	620	μS/cm
6182045	LAMALOU A LE-ROUET	15/09/2016	1335	3	3	Ammonium	0,01	mg(NH4)/
6182045	LAMALOU A LE-ROUET	15/09/2016	1340	3	3	Nitrates	0,8	mg(NO3)/ L
6182045	LAMALOU A LE-ROUET	15/09/2016	1433	3	3	Phosphates	0,02	mg(PO4)/ L
6182045	LAMALOU A LE-ROUET	18/11/2016	1302	3	23	рН	7,7	unité pH
6182045	LAMALOU A LE-ROUET	18/11/2016	1303	3	23	Conductivité à 25°C	608	μS/cm
6182045	LAMALOU A LE-ROUET	18/11/2016	1340	3	3	Nitrates	1,2	mg(NO3)/
6182045	LAMALOU A LE-ROUET	18/11/2016	1433	3	3	Phosphates	0,02	mg(PO4)/ L
6181210	GLEPE A AVEZE	22/01/2016	1302	3	23	рН	8,5	unité pH
6181210	GLEPE A AVEZE	22/01/2016	1303	3	23	Conductivité à 25°C	622	μS/cm
6181210	GLEPE A AVEZE	22/01/2016	1313	3	23	DBO	0,8	mg(O2)/L
6181210	GLEPE A AVEZE	22/01/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6181210	GLEPE A AVEZE	22/01/2016	1340	3	3	Nitrates	1,2	mg(NO3)/ L
6181210	GLEPE A AVEZE	22/01/2016	1350	3	23	Phosphore total	0,013	mg(P)/L
6181210	GLEPE A AVEZE	22/01/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6181210	GLEPE A AVEZE	18/02/2016	1302	3	23	рН	8,4	unité pH
6181210	GLEPE A AVEZE	18/02/2016	1303	3	23	Conductivité à 25°C	548	μS/cm
6181210	GLEPE A AVEZE	18/02/2016	1313	3	23	DBO	0,9	mg(O2)/L

Code de							Résultat	
la station de mesure	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	de l'analys	Unité de mesure
6181210	GLEPE A AVEZE	18/02/2016	1340	3	3	Nitrates	0,9	mg(NO3)/ L
6181210	GLEPE A AVEZE	18/02/2016	1350	3	23	Phosphore total	0,013	mg(P)/L
6181210	GLEPE A AVEZE	18/02/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6181210	GLEPE A AVEZE	17/03/2016	1302	3	23	pН	8,4	unité pH
6181210	GLEPE A AVEZE	17/03/2016	1303	3	23	Conductivité à 25°C	586	μS/cm
6181210	GLEPE A AVEZE	17/03/2016	1313	3	23	DBO	1,3	mg(O2)/L
6181210	GLEPE A AVEZE	17/03/2016	1340	3	3	Nitrates	0,9	mg(NO3)/ L
6181210	GLEPE A AVEZE	17/03/2016	1350	3	23	Phosphore total	0,013	mg(P)/L
6181210	GLEPE A AVEZE	17/03/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6181210	GLEPE A AVEZE	20/04/2016	1302	3	23	рН	8,5	unité pH
6181210	GLEPE A AVEZE	20/04/2016	1303	3	23	Conductivité à 25°C	586	μS/cm
6181210	GLEPE A AVEZE	20/04/2016	1313	3	23	DBO	0,5	mg(O2)/L
6181210	GLEPE A AVEZE	20/04/2016	1350	3	23	Phosphore total	0,015	mg(P)/L
6181210	GLEPE A AVEZE	20/04/2016	1433	3	3	Phosphates	0,05	mg(PO4)/ L
6181210	GLEPE A AVEZE	23/05/2016	1302	3	23	рН	8,5	unité pH
6181210	GLEPE A AVEZE	23/05/2016	1303	3	23	Conductivité à 25°C	565	μS/cm
6181210	GLEPE A AVEZE	23/05/2016	1340	3	3	Nitrates	0,8	mg(NO3)/ L
6181210	GLEPE A AVEZE	23/05/2016	1350	3	23	Phosphore total	0,021	mg(P)/L
6181210	GLEPE A AVEZE	23/05/2016	1433	3	3	Phosphates	0,06	mg(PO4)/ L
6181210	GLEPE A AVEZE	20/06/2016	1302	3	23	pН	8,5	unité pH
6181210	GLEPE A AVEZE	20/06/2016	1303	3	23	Conductivité à 25°C	667	μS/cm
6181210	GLEPE A AVEZE	20/06/2016	1340	3	3	Nitrates	0,7	mg(NO3)/
6181210	GLEPE A AVEZE	20/06/2016	1350	3	23	Phosphore total	0,014	mg(P)/L
6181210	GLEPE A AVEZE	20/06/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6181210	GLEPE A AVEZE	21/07/2016	1302	3	23	рН	8,2	unité pH
6181210	GLEPE A AVEZE	21/07/2016	1303	3	23	Conductivité à 25°C	668	μS/cm
6181210	GLEPE A AVEZE	21/07/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6181210	GLEPE A AVEZE	21/07/2016	1340	3	3	Nitrates	0,9	mg(NO3)/ L
6181210	GLEPE A AVEZE	21/07/2016	1350	3	23	Phosphore total	0,011	mg(P)/L
6181210	GLEPE A AVEZE	21/07/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6181210	GLEPE A AVEZE	19/08/2016	1302	3	23	рН	8,4	unité pH
6181210	GLEPE A AVEZE	19/08/2016	1303	3	23	Conductivité à 25°C	661	μS/cm
6181210	GLEPE A AVEZE	19/08/2016	1340	3	3	Nitrates	0,7	mg(NO3)/ L
6181210	GLEPE A AVEZE	19/08/2016	1350	3	23	Phosphore total	0,012	mg(P)/L
6181210	GLEPE A AVEZE	19/08/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L

Code de la station de mesure	Nom de la station de mesure	Date du prélèveme nt	Code Sandre	Code support	Code fractio n	Nom du paramètre	Résultat de l'analys e	Unité de mesure
6181210	GLEPE A AVEZE	15/09/2016	1302	3	23	рН	8,4	unité pH
6181210	GLEPE A AVEZE	15/09/2016	1303	3	23	Conductivité à 25°C	526	μS/cm
6181210	GLEPE A AVEZE	15/09/2016	1335	3	3	Ammonium	0,01	mg(NH4)/ L
6181210	GLEPE A AVEZE	15/09/2016	1340	3	3	Nitrates	4,1	mg(NO3)/ L
6181210	GLEPE A AVEZE	15/09/2016	1350	3	23	Phosphore total	0,019	mg(P)/L
6181210	GLEPE A AVEZE	15/09/2016	1433	3	3	Phosphates	0,06	mg(PO4)/ L
6181210	GLEPE A AVEZE	20/10/2016	1302	3	23	рН	8,4	unité pH
6181210	GLEPE A AVEZE	20/10/2016	1303	3	23	Conductivité à 25°C	477	μS/cm
6181210	GLEPE A AVEZE	20/10/2016	1313	3	23	DBO	0,8	mg(O2)/L
6181210	GLEPE A AVEZE	20/10/2016	1340	3	3	Nitrates	1,1	mg(NO3)/ L
6181210	GLEPE A AVEZE	20/10/2016	1350	3	23	Phosphore total	0,013	mg(P)/L
6181210	GLEPE A AVEZE	20/10/2016	1433	3	3	Phosphates	0,06	mg(PO4)/ L
6181210	GLEPE A AVEZE	18/11/2016	1302	3	23	рН	8,5	unité pH
6181210	GLEPE A AVEZE	18/11/2016	1303	3	23	Conductivité à 25°C	660	μS/cm
6181210	GLEPE A AVEZE	18/11/2016	1313	3	23	DBO	1,1	mg(O2)/L
6181210	GLEPE A AVEZE	18/11/2016	1340	3	3	Nitrates	1,6	mg(NO3)/ L
6181210	GLEPE A AVEZE	18/11/2016	1350	3	23	Phosphore total	0,012	mg(P)/L
6181210	GLEPE A AVEZE	18/11/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L
6181210	GLEPE A AVEZE	15/12/2016	1302	3	23	рН	8,5	unité pH
6181210	GLEPE A AVEZE	15/12/2016	1303	3	23	Conductivité à 25°C	591	μS/cm
6181210	GLEPE A AVEZE	15/12/2016	1313	3	23	DBO	0,7	mg(O2)/L
6181210	GLEPE A AVEZE	15/12/2016	1340	3	3	Nitrates	1,2	mg(NO3)/ L
6181210	GLEPE A AVEZE	15/12/2016	1350	3	23	Phosphore total	0,012	mg(P)/L
6181210	GLEPE A AVEZE	15/12/2016	1433	3	3	Phosphates	0,04	mg(PO4)/ L

8.5.5. Résultats des analyses physico-chimiques réalisées en 2016 par le Conseil Départemental du Gard

Tableau 41 - Résultats physico-chimiques ayant dépassé le seuil de quantification du laboratoire en 2016.

Tal	oleau 41 -	Résultats phy	/sico-chir	niques a	ayant d	épassé	le seuil	de quantificati	on du laboratoire en 2016.
Code Station complet	Rivière/ origine	Date	Heure	Sand re	Sup port	Frac tion	Résul Itat	Unité	Nom
06181901	ARRE 1	31/03/2016	09:59	1841	3	003	0.8	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181901	ARRE 1	31/03/2016	09:59	1303	3	023	178.6	μS/cm	Conductivité brute à 25°C sur le terrain
06181901	ARRE 1	31/03/2016	09:59	1313	3	023	1.5	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181901	ARRE 1	31/03/2016	09:59	1449	3	023	2205	NPP/100mL	Escherichia coli (eau de surface)
06181901	ARRE 1	31/03/2016	09:59	6455	3	023	78	NPP/100mL	Entérocoques (eau de surface)
06181901	ARRE 1	31/03/2016	09:59	1335	3	003	0.01	mg(NH4)/L	Ammonium
06181901	ARRE 1	31/03/2016	09:59	1340	3	003	0.6	mg(NO3)/L	Nitrates
06181901	ARRE 1	31/03/2016	09:59	1311	3	023	11.20	mg(O2)/L	Oxygène dissous
06181901	ARRE 1	31/03/2016	09:59	1302	3	023	8.41	unité pH	pH sur le terrain
06181901	ARRE 1	31/03/2016	09:59	1433	3	003	0.03	mg(PO4)/L	Orthophosphates
06181901	ARRE 1	31/03/2016	09:59	1350	3	023	0.010	mg(P)/L	Phosphore total
06181901	ARRE 1	31/03/2016	09:59	1312	3	023	104.1	%	Taux de saturation en oxygène sur le terrain
06181901	ARRE 1	31/03/2016	09:59	1409	02	019	15.7	°C	Température de l'air extérieur
06181901	ARRE 1	31/03/2016	09:59	1301	3	023	9.4	°C	Température de l'eau
06181902	ARRE 2	31/03/2016	10:13	1841	3	003	0.8	mg(C)/L	
06181902	ARRE 2	31/03/2016	10:13	1303	3	023	215.7	µS/cm	Carbone organique dissous (COD) <0.45 µm Conductivité brute à 25°C sur le terrain
06181902	ARRE 2	31/03/2016	10:13	1313	3	023	0.5		
06181902	ARRE 2	31/03/2016	10:13	1449	3	023	163	mg(O2)/L NPP/100mL	Demande Biochimique en Oxygène (DBO5) Escherichia coli (eau de surface)
06181902	ARRE 2	31/03/2016	10:13	6455	3	023	255	NPP/100mL	Entérocoques (eau de surface)
		31/03/2016				023			, , , , ,
06181902 06181902	ARRE 2		10:13	1340	3	003	0.7 11.29	mg(NO3)/L	Nitrates
	ARRE 2	31/03/2016	10:13	1311 1302		023	8.39	mg(O2)/L unité pH	Oxygène dissous
06181902	ARRE 2	31/03/2016	10:13		3				pH sur le terrain
06181902	ARRE 2	31/03/2016	10:13	1433	3	003	0.03	mg(PO4)/L	Orthophosphates
06181902	ARRE 2	31/03/2016	10:13	1350	3	023	0.011	mg(P)/L	Phosphore total
06181902	ARRE 2	31/03/2016	10:13	1312	3	023	0.10	%	Taux de saturation en oxygène sur le terrain
06181902	ARRE 2	31/03/2016	10:13	1409	02	019	18.1	°C	Température de l'air extérieur
06181902	ARRE 2	31/03/2016	10:13	1301	3	023	10.1		Température de l'eau
06181550	ARRE 5	31/03/2016	12:21	1841	3	003	0.8	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181550	ARRE 5	31/03/2016	12:21	1303	3	023	270	μS/cm	Conductivité brute à 25°C sur le terrain
06181550	ARRE 5	31/03/2016	12:21	1313	3	023 023	1.0	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181550 06181550	ARRE 5 ARRE 5	31/03/2016 31/03/2016	12:21 12:21	1449 6455	3	023	1497 163	NPP/100mL NPP/100mL	Escherichia coli (eau de surface)
06181550	ARRE 5	31/03/2016		1340	3	023	1.0	mg(NO3)/L	Entérocoques (eau de surface) Nitrates
06181550	ARRE 5	31/03/2016	12:21 12:21	1311	3	023	11.53	mg(O2)/L	
06181550	ARRE 5	31/03/2016	12:21	1302	3	023	8.43	unité pH	Oxygène dissous pH sur le terrain
06181550	ARRE 5	31/03/2016	12:21	1433	3	003	0.03 0.013	mg(PO4)/L	Orthophosphates Phosphare total
06181550 06181550	ARRE 5	31/03/2016	12:21	1350	3	023		mg(P)/L %	Phosphore total
06181550	ARRE 5 ARRE 5	31/03/2016	12:21 12:21	1312 1409	02	023 019	1115 21.0	°C	Taux de saturation en oxygène sur le terrain
		31/03/2016			3	023		°C	Température de l'air extérieur Température de l'eau
06181550	ARRE 5	31/03/2016	12:21	1301	3	023	11.4		<u>'</u>
06181500	ARRE 4	31/03/2016	12:33	1841	3	003	0.8 281	mg(C)/L	Carbone organique dissous (COD) <0.45 µm Conductivité brute à 25°C sur le terrain
06181500	ARRE 4	31/03/2016	12:33	1303				μS/cm mg(O2)/L	
06181500	ARRE 4	31/03/2016	12:33	1313	3	023 023	1.3		Demande Biochimique en Oxygène (DBO5)
06181500 06181500	ARRE 4 ARRE 4	31/03/2016 31/03/2016	12:33 12:33	1449 6455	3	023	403 293	NPP/100mL NPP/100mL	Escherichia coli (eau de surface) Entérocogues (eau de surface)
									Ammonium
06181500	ARRE 4	31/03/2016	12:33	1335	3	003	0.01	mg(NH4)/L	
06181500 06181500	ARRE 4 ARRE 4	31/03/2016	12:33	1340	3	003	0.8	mg(NO3)/L	Nitrates
		31/03/2016	12:33	1311	3	023	12.50	mg(O2)/L	Oxygène dissous
06181500	ARRE 4	31/03/2016	12:33	1302	3	023	9.91	unité pH	pH sur le terrain
06181500	ARRE 4	31/03/2016	12:33	1433	3	003	0.06	mg(PO4)/L	Orthophosphates Phasphore total
06181500	ARRE 4	31/03/2016	12:33	1350	3	023	0.025	mg(P)/L	Phosphore total
06181500	ARRE 4	31/03/2016	12:33	1312	3	023	119.3	%	Taux de saturation en oxygène sur le terrain
06181500	ARRE 4	31/03/2016	12:33	1301	3	023	11.6	°C	Température de l'eau
06181904	ARRE 3	31/03/2016	10:49	1841	3	003	0.8	mg(C)/L	Carbone organique dissous (COD) <0.45 μm
06181904	ARRE 3	31/03/2016	10:49	1303	3	023	265	μS/cm	Conductivité brute à 25°C sur le terrain
06181904	ARRE 3	31/03/2016	10:49	1313	3	023	1.3	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181904	ARRE 3	31/03/2016	10:49	1449	3	023	38	NPP/100mL	Escherichia coli (eau de surface)
06181904	ARRE 3	31/03/2016	10:49	6455	3	023	38	NPP/100mL	Entérocoques (eau de surface)
06181904	ARRE 3	31/03/2016	10:49	1340	3	003	0.9	mg(NO3)/L	Nitrates

Code	Divisor/			01	0	-	Dími		
Station	Rivière/	Date	Heure	Sand	Sup	Frac	Résul	Unité	Nom
complet	origine			re	port	tion	Itat		
06181904	ARRE 3	31/03/2016	10:49	1311	3	023	11.86	mg(O2)/L	Oxygène dissous
06181904	ARRE 3	31/03/2016	10:49	1302	3	023	8.28	unité pH	pH sur le terrain
06181904	ARRE 3	31/03/2016	10:49	1433	3	003	0.03	mg(PO4)/L	Orthophosphates
06181904	ARRE 3	31/03/2016	10:49	1350	3	023	0.012	mg(P)/L	Phosphore total
06181904	ARRE 3	31/03/2016	10:49	1312	3	023	112.3	%	Taux de saturation en oxygène sur le terrain
06181904	ARRE 3	31/03/2016	10:49	1409	02	019	20.1	°C	Température de l'air extérieur
06181904	ARRE 3	31/03/2016	10:49	1301	3	023	11.6	°C	Température de l'eau
06181850	GLE 1	31/03/2016	10:49	1841	3	003	0.5	mg(C)/L	Carbone organique dissous (COD) <0.45 μm
									Conductivité brute à 25°C sur le terrain
06181850	GLE 1	31/03/2016	10:34 10:34	1303	3	023	705	μS/cm	
06181850	GLE 1	31/03/2016		1313	3	023	0.8	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181850	GLE 1	31/03/2016	10:34	6455	3	023	38	NPP/100mL	Entérocoques (eau de surface)
06181850	GLE 1	31/03/2016	10:34	1340	3	003	0.6	mg(NO3)/L	Nitrates
06181850	GLE 1	31/03/2016	10:34	1311	3	023	9.97	mg(O2)/L	Oxygène dissous
06181850	GLE 1	31/03/2016	10:34	1302	3	023	8.03	unité pH	pH sur le terrain
06181850	GLE 1	31/03/2016	10:34	1433	3	003	0.03	mg(PO4)/L	Orthophosphates
06181850	GLE 1	31/03/2016	10:34	1350	3	023	0.011	mg(P)/L	Phosphore total
06181850	GLE 1	31/03/2016	10:34	1312	3	023	101.1	%	Taux de saturation en oxygène sur le terrain
06181850	GLE 1	31/03/2016	10:34	1409	02	019	21.9	°C	Température de l'air extérieur
06181850	GLE 1	31/03/2016	10:34	1301	3	023	12.9	°C	Température de l'eau
06181925	HER 2	01/04/2016	10:07	1841	3	003	0.6	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181925	HER 2	01/04/2016	10:07	1303	3	023	77.3	μS/cm	Conductivité brute à 25°C sur le terrain
06181925	HER 2	01/04/2016	10:07	1313	3	023	0.7	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181925	HER 2	01/04/2016	10:07	1449	3	023	250	NPP/100mL	Escherichia coli (eau de surface)
06181925	HER 2	01/04/2016	10:07	6455	3	023	38	NPP/100mL	Entérocoques (eau de surface)
06181925	HER 2	01/04/2016	10:07	1340	3	003	1.2	mg(NO3)/L	Nitrates
06181925	HER 2	01/04/2016	10:07	1311	3	023	11.38	mg(O2)/L	Oxygène dissous
06181925	HER 2	01/04/2016	10:07	1302	3	023	7.66	unité pH	pH sur le terrain
06181925	HER 2	01/04/2016	10:07	1433	3	003	0.03	mg(PO4)/L	Orthophosphates
06181925	HER 2	01/04/2016	10:07	1433	3	003	0.04	mg(PO4)/L	Orthophosphates
06181925	HER 2	01/04/2016	10:07	1350	3	023	0.010	mg(P)/L	Phosphore total
06181925	HER 2	01/04/2016	10:07	1312	3	023	104.8	%	Taux de saturation en oxygène sur le terrain
06181925	HER 2	01/04/2016	10:07	1409	02	019	13.0	°C	Température de l'air extérieur
06181925	HER 2	01/04/2016	10:07	1301	3	023	9.0	°C	Température de l'eau
06181800	RIE 1	01/04/2016	11:19	1841	3	003	0.9	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181800	RIE 1	01/04/2016	11:19	1303	3	023	116.8	μS/cm	Conductivité brute à 25°C sur le terrain
06181800	RIE 1	01/04/2016	11:19	1313	3	023	0.6	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181800	RIE 1	01/04/2016	11:19	1311	3	023	11.58	mg(O2)/L	Oxygène dissous
06181800	RIE 1	01/04/2016	11:19	1302	3	023	8.92	unité pH	pH sur le terrain
06181800	RIE 1	01/04/2016	11:19	1433	3	003	0.04	mg(PO4)/L	Orthophosphates
06181800	RIE 1	01/04/2016	11:19	1350	3	023	0.011	mg(P)/L	Phosphore total
06181800	RIE 1	01/04/2016	11:19	1312	3	023	106.9	%	Taux de saturation en oxygène sur le terrain
06181800	RIE 1	01/04/2016	11:19	1409	02	019	14.1	°C	Température de l'air extérieur
06181800	RIE 1	01/04/2016	11:19	1301	3	023	10.4	°C	Température de l'eau
06181930	HER 3	01/04/2016	10:32	1841	3	003	0.7	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181930	HER 3	01/04/2016	10:32	1303	3	023	71.9	μS/cm	Conductivité brute à 25°C sur le terrain
06181930	HER 3	01/04/2016	10:32	1313	3	023	0.9	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181930	HER 3	01/04/2016	10:32	1449	3	023	78	NPP/100mL	Escherichia coli (eau de surface)
06181930	HER 3	01/04/2016	10:32	6455	3	023	38	NPP/100mL	Entérocoques (eau de surface)
06181930	HER 3	01/04/2016	10:32	1340	3	003	1.4	mg(NO3)/L	Nitrates
06181930	HER 3	01/04/2016	10:32	1311	3	023	12.30	mg(O2)/L	Oxygène dissous
06181930	HER 3	01/04/2016	10:32	1302	3	023	8.23	unité pH	pH sur le terrain
06181930	HER 3	01/04/2016	10:32	1433	3	003	0.03	mg(PO4)/L	Orthophosphates
06181930	HER 3	01/04/2016	10:32	1350	3	003	0.03	mg(P)/L	Phosphore total
								U ()	
06181930	HER 3	01/04/2016	10:32	1312	3 02	023 019	111.7	% °C	Taux de saturation en oxygène sur le terrain Température de l'air extérieur
06181930	HER 3	01/04/2016	10:32	1409			12.8	°C	
06181930	HER 3	01/04/2016	10:32	1301	3	023	9.6		Température de l'eau
06300048	HER 4	01/04/2016	10:51	1841	3	003	0.8	mg(C)/L	Carbone organique dissous (COD) <0.45 μm
06300048	HER 4	01/04/2016	10:51	1303	3	023	155.8	μS/cm	Conductivité brute à 25°C sur le terrain
06300048	HER 4	01/04/2016	10:51	1313	3	023	1.1	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
116:300010	HER 4	01/04/2016	10:51	1449	3	023	412	NPP/100mL	Escherichia coli (eau de surface)
06300048	1155			CAEE	3	023	119	NPP/100mL	Entérocoques (eau de surface)
06300048	HER 4	01/04/2016	10:51	6455					
06300048 06300048	HER 4	01/04/2016	10:51	1335	3	003	0.01	mg(NH4)/L	Ammonium
06300048									

Code	Rivière/			Sand	Sup	Frac	Résul		
Station	origine	Date	Heure	re		tion	Itat	Unité	Nom
complet	origine			re	port	uon	Ilal		
06300048	HER 4	01/04/2016	10:51	1302	3	023	8.06	unité pH	pH sur le terrain
06300048	HER 4	01/04/2016	10:51	1433	3	003	0.02	mg(PO4)/L	Orthophosphates
06300048	HER 4	01/04/2016	10:51	1312	3	023	109.9	%	Taux de saturation en oxygène sur le terrain
06300048	HER 4	01/04/2016	10:51	1409	02	019	13.8	°C	Température de l'air extérieur
06300048	HER 4	01/04/2016	10:51	1301	3	023	11.2	°C	Température de l'eau
06300048	HER 4	13/06/2016	14:06	1841	3	003	1.0	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06300048	HER 4	13/06/2016	14:06	1303	3	023	230	μS/cm	Conductivité brute à 25°C sur le terrain
06300048	HER 4	13/06/2016	14:06	1313	3	023	0.5	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06300048	HER 4	13/06/2016	14:06	1449	3	023	163	NPP/100mL	Escherichia coli (eau de surface)
06300048	HER 4	13/06/2016	14:06	1305	3	023	82	mg/L	Matières en suspension totales
06300048	HER 4	13/06/2016	14:06	1335	3	003	0.11	mg(NH4)/L	Ammonium
		13/06/2016			3	023			Nitrites
06300048	HER 4		14:06	1339			0.05	mg(NO2)/L	
06300048	HER 4	13/06/2016	14:06	1340	3	003	2.5	mg(NO3)/L	Nitrates
06300048	HER 4	13/06/2016	14:06	1311	3	023	11.85	mg(O2)/L	Oxygène dissous
06300048	HER 4	13/06/2016	14:06	1302	3	023	8.87	unité pH	pH sur le terrain
06300048	HER 4	13/06/2016	14:06	1433	3	003	0.02	mg(PO4)/L	Orthophosphates
06300048	HER 4	13/06/2016	14:06	1350	3	023	0.014	mg(P)/L	Phosphore total
06300048	HER 4	13/06/2016	14:06	1312	3	023	134.3	%	Taux de saturation en oxygène sur le terrain
06300048	HER 4	13/06/2016	14:06	1409	02	019	28.6	°C	Température de l'air extérieur
06300048	HER 4	13/06/2016	14:06	1301	3	023	19.8	°C	Température de l'eau
06181850	GLE 1	13/06/2016	11:33	1841	3	003	0.5	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181850	GLE 1	13/06/2016	11:33	1303	3	023	620	μS/cm	Conductivité brute à 25°C sur le terrain
06181850	GLE 1	13/06/2016	11:33	1449	3	023	78	NPP/100mL	Escherichia coli (eau de surface)
06181850	GLE 1	13/06/2016	11:33	1305	3	023	4.0	mg/L	Matières en suspension totales
06181850	GLE 1	13/06/2016	11:33	1340	3	003	0.5	mg(NO3)/L	Nitrates
06181850	GLE 1	13/06/2016	11:33	1311	3	023	9.44	mg(O2)/L	Oxygène dissous
06181850	GLE 1	13/06/2016	11:33	1302	3	023	7.75	unité pH	pH sur le terrain
					3	003			
06181850	GLE 1	13/06/2016	11:33	1433			0.03	mg(PO4)/L	Orthophosphates
06181850	GLE 1	13/06/2016	11:33	1433	3	003	0.04	mg(PO4)/L	Orthophosphates
06181850	GLE 1	13/06/2016	11:33	1312	3	023	101.0	%	Taux de saturation en oxygène sur le terrain
06181850	GLE 1	13/06/2016	11:33	1409	02	019	24.2	°C	Température de l'air extérieur
06181850	GLE 1	13/06/2016	11:33	1301	3	023	16.6	°C	Température de l'eau
06181902	ARRE 2	13/06/2016	11:02	1841	3	003	0.8	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181902	ARRE 2	13/06/2016	11:02	1303	3	023	218.8	μS/cm	Conductivité brute à 25°C sur le terrain
06181902	ARRE 2	13/06/2016	11:02	1449	3	023	78	NPP/100mL	Escherichia coli (eau de surface)
06181902	ARRE 2	13/06/2016	11:02	6455	3	023	208	NPP/100mL	Entérocoques (eau de surface)
06181902	ARRE 2	13/06/2016	11:02	1340	3	003	0.7	mg(NO3)/L	Nitrates
06181902	ARRE 2	13/06/2016	11:02	1311	3	023	9.82	mg(O2)/L	Oxygène dissous
06181902	ARRE 2	13/06/2016	11:02	1302	3	023	8.21	unité pH	pH sur le terrain
06181902	ARRE 2	13/06/2016	11:02	1433	3	003	0.05	mg(PO4)/L	Orthophosphates
06181902	ARRE 2	13/06/2016	11:02	1433	3	003	0.07	mg(PO4)/L	Orthophosphates
06181902	ARRE 2	13/06/2016	11:02	1350	3	023	0.018	mg(P)/L	Phosphore total
06181902	ARRE 2	13/06/2016	11:02	1312	3	023	103.8	%	Taux de saturation en oxygène sur le terrain
06181902	ARRE 2	13/06/2016	11:02	1409	02	019	25.10	°C	Température de l'air extérieur
06181902	ARRE 2	13/06/2016	11:02	1301	3	023	15.4	°C	Température de l'eau
06181901	ARRE 1	13/06/2016	10:45	1841	3	003	0.9	mg(C)/L	Carbone organique dissous (COD) <0.45 μm
06181901	ARRE 1	13/06/2016	10:45	1303	3	023	174.3	μS/cm	Conductivité brute à 25°C sur le terrain
06181901	ARRE 1	13/06/2016	10:45	1449	3	023	163	NPP/100mL	Escherichia coli (eau de surface)
	ARRE 1						38		Entérocoques (eau de surface)
06181901		13/06/2016	10:45	6455	3	023		NPP/100mL	,
06181901	ARRE 1	13/06/2016	10:45	1335	3	003	0.01	mg(NH4)/L	Ammonium
06181901	ARRE 1	13/06/2016	10:45	1340	3	003	0.7	mg(NO3)/L	Nitrates
06181901	ARRE 1	13/06/2016	10:45	1311	3	023	10.05	mg(O2)/L	Oxygène dissous
06181901	ARRE 1	13/06/2016	10:45	1302	3	023	8.35	unité pH	pH sur le terrain
06181901	ARRE 1	13/06/2016	10:45	1433	3	003	0.05	mg(PO4)/L	Orthophosphates
06181901	ARRE 1	13/06/2016	10:45	1350	3	023	0.015	mg(P)/L	Phosphore total
06181901	ARRE 1	13/06/2016	10:45	1312	3	023	104.3	%	Taux de saturation en oxygène sur le terrain
06181901	ARRE 1	13/06/2016	10:45	1409	02	019	22.4	°C	Température de l'air extérieur
06181901	ARRE 1	13/06/2016	10:45	1301	3	023	14.3	°C	Température de l'eau
06181500	ARRE 4	13/06/2016	13:40	1841	3	003	1.0	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181500	ARRE 4	13/06/2016	13:40	1303	3	023	297	μS/cm	Conductivité brute à 25°C sur le terrain
06181500	ARRE 4	13/06/2016	13:40	1313	3	023	0.9	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181500	ARRE 4	13/06/2016	13:40	1449	3	023	2930	NPP/100mL	Escherichia coli (eau de surface)
06181500	ARRE 4	13/06/2016	13:40	6455	3	023	208	NPP/100mL	Entérocoques (eau de surface)
06181500	ARRE 4	13/06/2016	13:40	1335	3	003	0.03	mg(NH4)/L	Ammonium
00101300	ANNE 4	13/00/2010	13.40	เงงง	J	UUS	0.03	mg(NH4)/L	AUTHOURIUM

Code	Disting/			01	0	-	Dímil		
Station	Rivière/	Date	Heure	Sand	Sup	Frac	Résul	Unité	Nom
complet	origine			re	port	tion	Itat		
06181500	ARRE 4	13/06/2016	13:40	1340	3	003	0.7	mg(NO3)/L	Nitrates
06181500	ARRE 4	13/06/2016	13:40	1311	3	023	11.38	mg(O2)/L	Oxygène dissous
06181500	ARRE 4	13/06/2016	13:40	1302	3	023	8.69	unité pH	pH sur le terrain
06181500	ARRE 4	13/06/2016	13:40	1433	3	003	0.06	mg(PO4)/L	Orthophosphates
									· · ·
06181500	ARRE 4	13/06/2016	13:40	1350	3	023	0.031	mg(P)/L	Phosphore total
06181500	ARRE 4	13/06/2016	13:40	1312	3	023	125	%	Taux de saturation en oxygène sur le terrain
06181500	ARRE 4	13/06/2016	13:40	1409	02	019	27.6	°C	Température de l'air extérieur
06181500	ARRE 4	13/06/2016	13:40	1301	3	023	17.6	°C	Température de l'eau
06181550	ARRE 5	13/06/2016	13:27	1841	3	003	0.8	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181550	ARRE 5	13/06/2016	13:27	1303	3	023	285	μS/cm	Conductivité brute à 25°C sur le terrain
06181550	ARRE 5	13/06/2016	13:27	1313	3	023	0.8	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181550	ARRE 5	13/06/2016	13:27	1449	3	023	78	NPP/100mL	Escherichia coli (eau de surface)
06181550	ARRE 5	13/06/2016	13:27	6455	3	023	160	NPP/100mL	Entérocoques (eau de surface)
06181550	ARRE 5	13/06/2016	13:27	1305	3	023	2.4	mg/L	Matières en suspension totales
06181550	ARRE 5	13/06/2016	13:27	1335	3	003	0.02	mg(NH4)/L	Ammonium
06181550	ARRE 5	13/06/2016	13:27	1340	3	003	1.1	mg(NO3)/L	Nitrates
06181550	ARRE 5	13/06/2016	13:27	1311	3	023	10.50	mg(O2)/L	Oxygène dissous
06181550	ARRE 5	13/06/2016	13:27	1302	3	023	8.41	unité pH	pH sur le terrain
									Outhor hoom hotos
06181550	ARRE 5	13/06/2016	13:27	1433	3	003	0.03	mg(PO4)/L	Orthophosphates
06181550	ARRE 5	13/06/2016	13:27	1350	3	023	0.013	mg(P)/L	Phosphore total
06181550	ARRE 5	13/06/2016	13:27	1312	3	023	114.0	%	Taux de saturation en oxygène sur le terrain
06181550	ARRE 5	13/06/2016	13:27	1409	02	019	26.4	°C	Température de l'air extérieur
06181550	ARRE 5	13/06/2016	13:27	1301	3	023	17.3	°C	Température de l'eau
06181904	ARRE 3	13/06/2016	11:48	1841	3	003	0.8	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181904	ARRE 3	13/06/2016	11:48	1303	3	023	290	μS/cm	Conductivité brute à 25°C sur le terrain
06181904	ARRE 3	13/06/2016	11:48	1313	3	023	0.8	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181904	ARRE 3	13/06/2016	11:48	1449	3	023	78	NPP/100mL	Escherichia coli (eau de surface)
06181904	ARRE 3	13/06/2016	11:48	1340	3	003	0.7	mg(NO3)/L	Nitrates
06181904	ARRE 3	13/06/2016	11:48	1311	3	023	11.75	mg(O2)/L	Oxygène dissous
06181904	ARRE 3	13/06/2016	11:48	1302	3	023	8.31	unité pH	pH sur le terrain
06181904	ARRE 3	13/06/2016	11:48	1433	3	003	0.02	mg(PO4)/L	Orthophosphates
06181904	ARRE 3	13/06/2016	11:48	1350	3	023	0.02	mg(P)/L	Phosphore total
06181904	ARRE 3	13/06/2016	11:48	1312	3	023	125.4	%	Taux de saturation en oxygène sur le terrain
06181904	ARRE 3	13/06/2016	11:48	1409	02	019	22.2	°C	Température de l'air extérieur
								°C	'
06181904	ARRE 3	13/06/2016	11:48	1301	3	023	17.2		Température de l'eau
06181800	RIE 1	14/06/2016	11:00	1841	3	003	1.0	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181800	RIE 1	14/06/2016	11:00	1303	3	023	113.1	μS/cm	Conductivité brute à 25°C sur le terrain
06181800	RIE 1	14/06/2016	11:00	1313	3	023	0.8	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181800	RIE 1	14/06/2016	11:00	1305	3	023	2.8	mg/L	Matières en suspension totales
06181800	RIE 1	14/06/2016	11:00	1340	3	003	0.8	mg(NO3)/L	Nitrates
06181800	RIE 1	14/06/2016	11:00	1311	3	023	9.51	mg(O2)/L	Oxygène dissous
06181800	RIE 1	14/06/2016	11:00	1302	3	023	8.00	unité pH	pH sur le terrain
06181800	RIE 1	14/06/2016	11:00	1433	3	003	0.05	mg(PO4)/L	Orthophosphates
06181800	RIE 1	14/06/2016	11:00	1350	3	023	0.013	mg(P)/L	Phosphore total
06181800	RIE 1	14/06/2016	11:00	1350	3	023	0.016	mg(P)/L	Phosphore total
06181800	RIE 1	14/06/2016	11:00	1312	3	023	105.6	%	Taux de saturation en oxygène sur le terrain
06181800	RIE 1	14/06/2016	11:00	1409	02	019	25.2	°C	Température de l'air extérieur
06181800	RIE 1	14/06/2016	11:00	1301	3	023	18.6	°C	Température de l'eau
06181925	HER 2	14/06/2016	10:00	1841	3	003	0.8	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181925	HER 2	14/06/2016	10:00	1303	3	023	91.2	μS/cm	Conductivité brute à 25°C sur le terrain
06181925	HER 2	14/06/2016	10:00	1313	3	023	0.7	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181925	HER 2	14/06/2016	10:00	1449	3	023	119	NPP/100mL	Escherichia coli (eau de surface)
06181925	HER 2	14/06/2016	10:00	1335	3	003	0.01	mg(NH4)/L	Ammonium
06181925	HER 2	14/06/2016	10:00	1340	3	003	1.3	mg(NO3)/L	Nitrates
06181925	HER 2	14/06/2016	10:00	1311	3	023	10.07	mg(O2)/L	Oxygène dissous
06181925	HER 2	14/06/2016	10:00	1302	3	023	7.97	unité pH	pH sur le terrain
06181925	HER 2	14/06/2016	10:00	1433	3	003	0.04	mg(PO4)/L	Orthophosphates
06181925	HER 2	14/06/2016	10:00	1350	3	023	0.015	mg(P)/L	Phosphore total
06181925	HER 2	14/06/2016	10:00	1312	3	023	105.8	%	Taux de saturation en oxygène sur le terrain
06181925	HER 2	14/06/2016	10:00	1409	02	019	20.6	°C	Température de l'air extérieur
06181925	HER 2	14/06/2016	10:00	1301	3	023	15.5	°C	Température de l'eau
06181930	HER 3	14/06/2016	10:20	1841	3	003	0.9	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181930	HER 3	14/06/2016	10:20	1303	3	023	95.3	μS/cm	Conductivité brute à 25°C sur le terrain
06181930	HER 3		10:20	1313	3	023	0.8		Demande Biochimique en Oxygène (DBO5)
00101930	IILK 3	14/06/2016	10.20	1313	J	023	0.0	mg(O2)/L	Demande biodilinique en Oxygene (DBO5)

Content	Code	Divière/			Sand	Sun	Eroo	Págul		
Section Sect	Station		Date	Heure					Unité	Nom
Bottlers	complet	origine			re	port	tion	itat		
Bottlers		HFR 3	14/06/2016	10:20	1305	3	023	2.4	ma/l	Matières en suspension totales
Gel 181830 HER 3 14/08/2016 10/20 1311 3 023 10.04 mg(DZ)L Oxygène dissous										
Gel 181930 HER 3 14/00/2016 10/20 13/02 3 023 7,98 unité pH pH sur le terrain 06/18/19/04 HER 3 14/00/2016 10/20 15/05 3 023 0,044 mg/P/4L Phosphore total 06/18/19/04 HER 3 14/00/2016 10/20 13/19 3 023 0,014 mg/P/4L Phosphore total 14/00/2016 10/20 13/19 3 023 0,014 mg/P/4L Phosphore total 14/00/2016 10/20 14/00 02 10/19 0.0 10/19										
Gelfer G										
Gelf81930 HER 3 14/06/2016 10/20 1390 3 023 108.6 % Taxu de saturation en oxygéne sur le terrain 06/181930 HER 3 14/06/2016 10/20 14/09 02 019 20.0 °C Température de l'air exértéreur 06/181930 HER 3 14/06/2016 10/20 14/09 02 019 20.0 °C Température de l'air exértéreur 06/181930 HER 3 14/06/2016 10/20 14/09 02 019 20.0 °C Température de l'air exértéreur 06/181930 HER 3 14/06/2016 10/20 14/09 02 019 20.0 °C Température de l'air exértéreur 06/181950 ARRE 5 29/08/2016 12/34 13/33 3 023 16.1 °C Température de l'air exértéreur 06/181950 ARRE 5 29/08/2016 12/34 13/33 3 023 0.5 mg/CVL Carbone organique dissous (COD) <0.45 µm 06/181950 ARRE 5 29/08/2016 12/34 13/33 3 0.33 0.01 mg/CVL Demande Biochimique en Oxygène (DBOS) 06/181950 ARRE 5 29/08/2016 12/34 13/35 3 0.03 0.01 mg/CVL Maltines on suspension totales 06/181950 ARRE 5 29/08/2016 12/34 13/35 3 0.03 0.01 mg/CVL Maltines on suspension totales 06/181950 ARRE 5 29/08/2016 12/34 13/30 3 0.03 0.01 mg/CVL Maltines on suspension totales 06/181950 ARRE 5 29/08/2016 12/34 13/30 3 0.03 0.01 mg/CVL Corporation 06/181950 ARRE 5 29/08/2016 12/34 13/30 3 0.03 0.01 mg/CVL Corporation 06/181950 ARRE 5 29/08/2016 12/34 13/30 3 0.03 0.01 mg/CVL Corporation 06/181950 ARRE 5 29/08/2016 12/34 13/30 3 0.03 0.01 mg/CVL Corporation 06/181950 ARRE 5 29/08/2016 12/34 13/30 3 0.03 0.01 mg/CVL Corporation 06/181950 ARRE 5 29/08/2016 12/34 13/30 3 0.03 0.01 mg/CVL Corporation 06/181950 ARRE 5 29/08/2016 12/34 13/30 3 0.03 0.01 mg/CVL Corporation 06/181950 ARRE 5 29/08/2016 12/34 13/30 3 0.03 0.01 mg/CVL Corporation 06/181950 ARRE 5 29/08/2016 12/34 13/30 3 0.03 0.01 mg/CVL Corporation 06/181950 A										
G6181930 HER 3 14/06/2016 10/20 1312 3 023 106.6 % Taux de saturation en oxygène sur le terrain 06181930 HER 3 14/06/2016 10/20 1301 3 023 16.1 °C Température de l'eau 06181930 HER 3 14/06/2016 10/20 1301 3 023 16.1 °C Température de l'eau 06181950 ARRE 5 29/08/2016 12/34 1303 3 023 03 0.6 mg(C)L Carchene organique dissous (COD) <0.45 µm 06181950 ARRE 5 29/08/2016 12/34 1303 3 023 0.5 mg(C)L Carchene organique dissous (COD) <0.45 µm 06181950 ARRE 5 29/08/2016 12/34 1305 3 023 0.5 mg(C)L Carchene organique en Oxygène (DBOS) 06181950 ARRE 5 29/08/2016 12/34 1305 3 023 0.5 mg(C)L Carchene organique en Oxygène (DBOS) 06181950 ARRE 5 29/08/2016 12/34 1305 3 030 0.01 mg(NH4)L Ammonium 06181950 ARRE 5 29/08/2016 12/34 13/95 3 030 0.01 mg(NH4)L Ammonium 06181950 ARRE 5 29/08/2016 12/34 13/95 3 030 1.6 mg(C)L Coxygène deservis 06181950 ARRE 5 29/08/2016 12/34 13/95 3 030 1.6 mg(C)L Coxygène deservis 06181950 ARRE 5 29/08/2016 12/34 13/95 3 03/95 0.015 mg(C)L Coxygène deservis 06181950 ARRE 6 29/08/2016 12/34 13/95 3 03/95 0.015 mg(C)L Coxygène deservis 06181950 ARRE 6 29/08/2016 12/34 13/95 3 03/95 0.015 mg(C)L Coxygène deservis 06181950 ARRE 6 29/08/2016 12/34 13/95 3 03/95 0.015 mg(C)L Coxygène deservis 06181950 ARRE 6 29/08/2016 12/34 13/95 3 03/95 0.015 mg(C)L Coxygène deservis 06181950 ARRE 6 29/08/2016 12/34 13/95 3 03/95 0.015 mg(C)L Carbone organique dissous (COD) 0.045 mg										`
68181930 HER 3 14/06/2016 10/20 14/09 02 019 20.0 °C Température de l'air extérieur dolf8181930 HER 3 14/06/2016 10/20 13/01 30 30 30 16.1 °C Température de l'air extérieur dolf818150 ARRE 5 29/08/2016 12/34 18/11 3 003 0.6 mg/CVL Carbone organique dissous (COD) -0.45 µm 60181550 ARRE 5 29/08/2016 12/34 13/13 3 023 0.5 mg/CVL Carbone organique dissous (COD) -0.45 µm 60181550 ARRE 5 29/08/2016 12/34 13/13 3 023 0.5 mg/CVL Demande Blochimique en Oxygène (DBOS) 60181550 ARRE 5 29/08/2016 12/34 13/13 3 023 0.5 mg/CVL Demande Blochimique en Oxygène (DBOS) 60181550 ARRE 5 29/08/2016 12/34 13/13 3 0.03 0.01 mg/L Matiéres en suspension toteles 60181550 ARRE 5 29/08/2016 12/34 13/13 3 0.03 1.6 mg/NO3/L Nitrates 60181550 ARRE 5 29/08/2016 12/34 13/10 3 0.03 1.6 mg/NO3/L Nitrates 60181550 ARRE 5 29/08/2016 12/34 13/10 3 0.03 1.03 10/35 10/										
D6181550 ARRE 5 2908/2016 12:34 1303 3 023 16:1 °C Température de l'au D6181550 ARRE 5 2908/2016 12:34 1303 3 023 403 µS/cm Conductivité brute à 25°C sur le terrain D6181550 ARRE 5 2908/2016 12:34 1303 3 023 403 µS/cm Conductivité brute à 25°C sur le terrain me d6181550 ARRE 5 2908/2016 12:34 1305 3 023 0.5 mg/C/2\(\text{L}\) Demande Biochimier Dwygène (D8O5) D6181550 ARRE 5 2908/2016 12:34 1305 3 023 38 NPP100mL Entérocopuse (sau de surface) D6181550 ARRE 5 2908/2016 12:34 1305 3 023 0.5 mg/L Mitteres misurpersion totales D6181550 ARRE 5 2908/2016 12:34 1335 3 003 0.01 mg/L Mitteres misurpersion totales D6181550 ARRE 5 2908/2016 12:34 1336 3 003 0.01 mg/L Mitteres misurpersion totales D6181550 ARRE 5 2908/2016 12:34 1336 3 003 0.01 mg/L Mitteres misurpersion totales D6181550 ARRE 5 2908/2016 12:34 1330 03 0.03 1.6 mg/CO2/L Oxygène dissous D6181550 ARRE 5 2908/2016 12:34 1330 03 0.03 1.6 mg/CO2/L Oxygène dissous D6181550 ARRE 5 2908/2016 12:34 1330 03 0.03 0.05 mg/CO2/L Oxygène dissous D6181550 ARRE 5 2908/2016 12:34 14:30 03 03 0.05 mg/CO2/L Oxygène dissous D6181550 ARRE 5 2908/2016 12:34 14:30 03 03 0.05 mg/CO2/L Oxygène dissous D6181550 ARRE 6 2908/2016 12:34 14:30 03 03 0.05 mg/CO2/L Oxygène dissous D6181550 ARRE 6 2908/2016 12:34 14:39 03 03 0.05 mg/CO2/L Oxygène dissous D6181550 ARRE 6 2908/2016 12:34 14:39 03 03 0.05 mg/CO2/L Oxygène dissous D6181550 ARRE 6 2908/2016 12:34 14:39 03 03 0.07 mg/CD/L Oxygène dissous D6181550 ARRE 6 2908/2016 12:34 14:39 03 03 0.07 mg/CD/L Oxygène dissous D6181550 ARRE 6 2908/2016 12:34 14:39 03 03 0.07 mg/CD/L Oxygène dissous B6181550 ARRE 6 2908/2016 12:34 14:39 03 03 0.07 mg/CD/L Oxygène dissous B6181550 ARRE 6 2908/2016 12:32 13:31 3 0.03 0.7 mg/CD/L Carbone oxygène sur le terrain D6181550 ARRE 6 2908/2016 12:32 13:31 3 0.03 0.7 mg/CD/L Carbone oxygène dissous B6181550 ARRE 6 2908/2016 12:32 13:33 3 0.03 0.07 mg/CD/L Carbone oxygène dissous B6181550 ARRE 6 2908/2016 12:32 13:33 0.03 0.07 mg/CD/L Carbone oxygène dissous B6181550 ARRE 6 2908/2016 12:32 13:33 0.03 0.07 mg	06181930	HER 3	14/06/2016	10:20	1312	3	023	106.6		Taux de saturation en oxygène sur le terrain
D6181550 ARRE 5 2908/2016 1234 1303 3 023 16.1 C Température de l'eau D6181550 ARRE 5 2908/2016 1234 1303 3 023 403 µS/cm Conductivité brute à 25°C sur le terrain D6181550 ARRE 5 2908/2016 1234 1431 3 023 0.5 mg/C2/L Demande Bischmitte Druge à 25°C sur le terrain D6181550 ARRE 5 2908/2016 1234 4655 3 023 0.5 mg/C2/L Demande Bischmitte Druge à 25°C sur le terrain D6181550 ARRE 5 2908/2016 1234 4655 3 023 3.5 mg/L Mitriers en suspension totales D6181550 ARRE 5 2908/2016 1234 1305 3 023 0.5 mg/L Mitriers en suspension totales D6181550 ARRE 5 2908/2016 1234 1310 3 023 10.5 mg/L Mitriers en suspension totales D6181550 ARRE 5 2908/2016 1234 1311 3 023 10.35 mg/LO2/L D79/2016 D79/201	06181930	HER 3	14/06/2016	10:20	1409	02	019	20.0	°C	Température de l'air extérieur
Bolfst559						3			°C	
D6F181550 ARRE 5 2908/2016 12:34 1313 3 023 30 303 024 Members Entrocoques de surface) D6F181550 ARRE 5 2908/2016 12:34 1305 3 023 38 MPP/100mL Entrocoques de surface) D6F181550 ARRE 5 2908/2016 12:34 1304 3 003 0.01 mg/NH4/L Ammonium D6F181550 ARRE 5 2908/2016 12:34 1340 3 003 0.01 mg/NH4/L Ammonium D6F181550 ARRE 5 2908/2016 12:34 1302 3 023 0.35 mg/C2/L Nitrates D6F181550 ARRE 5 2908/2016 12:34 1302 3 023 0.35 mg/C2/L Orthophosphates D6F181550 ARRE 5 2908/2016 12:34 1302 3 023 0.35 mg/C2/L Orthophosphates D6F181550 ARRE 5 2908/2016 12:34 1302 3 023 0.35 mg/C2/L Phosphore total D6F181550 ARRE 5 2908/2016 12:34 1302 3 023 0.25 mg/C2/L Phosphore total D6F181550 ARRE 5 2908/2016 12:34 1302 3 023 0.25 mg/C2/L Phosphore total D6F181550 ARRE 5 2908/2016 12:34 1309 0.23 10:35 mg/C2/L Phosphore total D6F181550 ARRE 5 2908/2016 12:34 1309 0.23 10:35 mg/C2/L Emperature de l'air extérieur D6F181550 ARRE 5 2908/2016 12:34 1301 3 023 023 0.55 °C Température de l'air extérieur D6F181550 ARRE 5 2908/2016 12:52 1341 3 003 0.7 mg/C2/L Carbone organique dissous (COD) <0.45 mg/C2/L D6F181500 ARRE 4 2908/2016 12:52 1341 3 003 0.7 mg/C2/L Demande Biochimique en Oxygène (DBOS) D6F181500 ARRE 4 2908/2016 12:52 1335 3 023 0.9 mg/C2/L Demande Biochimique en Oxygène (DBOS) D6F181500 ARRE 4 2908/2016 12:52 1335 3 023 0.35 mg/C2/L Demande Biochimique en Oxygène (DBOS) D6F181500 ARRE 4 2908/2016 12:52 1335 3 0.23 0.35 mg/C2/L D6F181500 ARRE 4 2908/2016 12:52 1335 3 0.33 0.33 mg/C2/L Oxygène dissous (COD) <0.45 mg/C2/L Oxygène dissous (COD) <										
G6181550 ARRE 5 2908/2016 12:34 6455 3 023 38 NPP100mL Enterocoques (eau de surface)										
Gel181550 ARRE 5 29/08/2016 12:34 13:35 3 0.03 0.01 mg(NH4) L Ammonium 0.0181550 ARRE 5 29/08/2016 12:34 13:11 3 0.23 10:35 mg(OZ) L Oxygène dissous 0.0181550 ARRE 5 29/08/2016 12:34 13:13 3 0.23 10:35 mg(OZ) L Oxygène dissous 0.0181550 ARRE 5 29/08/2016 12:34 13:04 33 0.03 0.05 mg(PO4) L Ortophosphates 0.0181550 ARRE 5 29/08/2016 12:34 13:05 3 0.023 0.015 mg(PO4) L Ortophosphates 0.0181550 ARRE 5 29/08/2016 12:34 13:05 3 0.023 0.015 mg(PO4) L Ortophosphates 0.0181550 ARRE 5 29/08/2016 12:34 13:12 3 0.023 10:15 mg(PO4) L Ortophosphates 0.0181550 ARRE 5 29/08/2016 12:34 13:10 3 0.023 10:15 mg(PO4) L Ortophosphates 0.0181550 ARRE 4 29/08/2016 12:52 13:13 3 0.03 0.7 mg(CD4) C Carbone orginale dissous (COD) < 0.45 µm 0.0181550 ARRE 4 29/08/2016 12:52 13:13 3 0.03 0.7 mg(CD4) C Carbone orginale dissous (COD) < 0.45 µm 0.0181550 ARRE 4 29/08/2016 12:52 13:13 3 0.23 0.9 mg(OZ) L Oberande livite à 25°C sur le terrain 0.0181550 ARRE 4 29/08/2016 12:52 13:13 3 0.23 0.9 mg(OZ) L Oberande livite à 25°C sur le terrain 0.0181550 ARRE 4 29/08/2016 12:52 13:13 3 0.23 0.9 mg(OZ) L Oberande livite à 25°C sur le terrain 0.0181550 ARRE 4 29/08/2016 12:52 13:13 3 0.23 0.9 mg(OZ) L Oberande livite à 25°C sur le terrain 0.0181550 ARRE 4 29/08/2016 12:52 13:13 3 0.23 0.9 mg(OZ) L Oberande livite a 25°C sur le terrain 0.0181550 ARRE 4 29/08/2016 12:52 13:35 3 0.23 0.9 mg(OZ) L Oberande livite a 25°C sur le terrain 0.0181550 ARRE 4 29/08/2016 12:52 13:35 3 0.23 0.9 mg(OZ) L Oberande livite a 25°C sur le terrain 0.0181550 ARRE 4 29/08/2016 12:52 13:35 3 0.23 0.9 mg(OZ) L Oberande livite a 25°C sur le terrain 0.0181550 ARRE 4 29/08/2016 12:52 13:35 3 0.23 0.9 mg(OZ)										
BoBB1550 ARRE 5 2908/2016 12:34 1311 3 023 10.35 mg C2)/L Dxygène dissous										
Content										
D6181550 ARRE 5 2908/2016 12:34 1330 3 003 0.05 mg[PV]L Phosphore total 06181550 ARRE 5 2908/2016 12:34 1350 3 023 0.015 mg[PV]L Phosphore total 06181550 ARRE 5 2908/2016 12:34 1312 3 023 116.2 % Taux de saturation en oxygène sur le terrain 06181550 ARRE 5 2908/2016 12:34 1310 3 023 0.915 mg[PV]L Phosphore total 06181550 ARRE 5 2908/2016 12:34 1301 3 023 19:5 °C Température de l'air extérieur 06181500 ARRE 5 2908/2016 12:52 1313 3 023 0.7 mg[CV]L Carbone organique dissous (COD) <0.45 μm 06181500 ARRE 4 2908/2016 12:52 1303 3 023 0.9 mg[C2V]L Demande Biochimique en Oxygène (DBO5) 06181500 ARRE 4 2908/2016 12:52 1303 3 023 0.9 mg[C2V]L Demande Biochimique en Oxygène (DBO5) 06181500 ARRE 4 2908/2016 12:52 1449 3 023 412 MPP/100mL Escherichia cotil (eau de surface) 06181500 ARRE 4 2908/2016 12:52 1305 3 023 38 NPP/100mL Entercoques (eau de surface) 06181500 ARRE 4 2908/2016 12:52 1335 3 023 033									mg(O2)/L	
ORTHOGO ARRE 5 2908/2016 12:34 1350 3 023 0.015 mg/PC4/JL Orthophosphates ORTHOGO ARRE 5 2908/2016 12:34 1350 3 023 0.15 mg/PV1L Phosphore total ORTHOGO ARRE 5 2908/2016 12:34 1301 3 023 116.2 % Taux de saturation en oxygène sur le terrain ORTHOGO ARRE 5 2908/2016 12:34 1409 02 019 29.2 °C Température de l'air extérieur ORTHOGO ARRE 4 2908/2016 12:52 1841 3 003 0.7 mg/C/L Carbone organique dissous (COD) -0.45 μm ORTHOGO ARRE 4 2908/2016 12:52 1303 3 023 396 μS/CM Carbone organique dissous (COD) -0.45 μm ORTHOGO ARRE 4 2908/2016 12:52 1303 3 023 396 μS/CM Carbone organique dissous (COD) -0.45 μm ORTHOGO ARRE 4 2908/2016 12:52 1449 3 023 412 NPP/100mL ORTHOGO ARRE 4 2908/2016 12:52 1449 3 023 412 NPP/100mL ORTHOGO ARRE 4 2908/2016 12:52 1449 3 023 412 NPP/100mL ORTHOGO ARRE 4 2908/2016 12:52 1449 3 023 412 NPP/100mL ORTHOGO ARRE 4 2908/2016 12:52 1449 3 023 412 NPP/100mL ORTHOGO ARRE 4 2908/2016 12:52 1449 3 023 412 NPP/100mL ORTHOGO ARRE 4 2908/2016 12:52 1303 3 023 8.6 mg/L ORTHOGO ARRE 4 2908/2016 12:52 1305 3 023 8.6 mg/L ORTHOGO ARRE 4 2908/2016 12:52 1305 3 023 8.6 mg/L ORTHOGO ARRE 4 2908/2016 12:52 1305 3 023 10.91 mg/CVL ORTHOGO ARRE 4 2908/2016 12:52 1305 3 023 030 0.01 mg/RH4/JL ORTHOGO ARRE 4 2908/2016 12:52 1305 3 023 0.03 0.01 mg/RH4/JL ORTHOGO ARRE 4 2908/2016 12:52 1305 3 023 0.03 0.07 mg/PC4/JL ORTHOGO ARRE 4 2908/2016 12:52 1305 3 023 0.03 0.07 mg/PC4/JL ORTHOGO ARRE 4 2908/2016 12:52 1305 3 023 023 0.03 0.07 mg/PC4/JL ORTHOGO ARRE 4 2908/2016 12:52 1305 3 023 0.03 0.07 mg/PC4/JL ORTHOGO ARRE 4 2908/2016 12:52 1305 3 023 0.03 0.07 mg/PC4/JL	06181550	ARRE 5	29/08/2016	12:34	1302	3	023	8.34		
Delta1550 ARRE 5 2908/2016 12:34 1312 3 023 0.015 mg(P)/L Phosphore total										
D6181500 ARRE 4 29/08/2016 12:52 1303 3 023 19.5 °C Température de l'eau D6181500 ARRE 4 29/08/2016 12:52 1303 3 023 396 µS/cm Conductivité brute à 25°C sur le terrain D6181500 ARRE 4 29/08/2016 12:52 1303 3 023 396 µS/cm Conductivité brute à 25°C sur le terrain D6181500 ARRE 4 29/08/2016 12:52 1449 3 023 3412 NPP100mL Demande Biochmique en Oxygène (DBO5) D6181500 ARRE 4 29/08/2016 12:52 1449 3 023 38 NPP1100mL Entérocques (eau de surface) D6181500 ARRE 4 29/08/2016 12:52 1303 3 003 0.01 mg(NH4)/L Armonium Armonium Armonium Armonium Armonium D6181500 ARRE 4 29/08/2016 12:52 1335 3 003 0.01 mg(NH4)/L Armonium D6181500 ARRE 4 29/08/2016 12:52 1335 3 003 1.03 mg(NH4)/L Armonium D6181500 ARRE 4 29/08/2016 12:52 1311 3 023 10.91 mg(O2)/L Oxygène dissous D6181500 ARRE 4 29/08/2016 12:52 1331 3 023 10.91 mg(O2)/L Oxygène dissous D6181500 ARRE 4 29/08/2016 12:52 1313 3 003 0.07 mg(PO4)/L Orthophosphates D6181500 ARRE 4 29/08/2016 12:52 1335 3 003 0.03 mg(PO4)/L Orthophosphates D6181500 ARRE 4 29/08/2016 12:52 1350 3 023 0.037 mg(PO4)/L Phosphore total D6181500 ARRE 4 29/08/2016 12:52 1313 3 023 0.037 mg(PO4)/L Phosphore total D6181500 ARRE 4 29/08/2016 12:52 1313 023 124 4 % Taux de saturation en oxygène sur le terrain D6181500 ARRE 4 29/08/2016 12:52 1313 023 023 037 mg(PO4)/L Carbone organique dissous D6181500 ARRE 4 29/08/2016 12:52 1313 023 0										
06181500 ARRE 4 29/08/2016 12:52 1303 3 023 396 μS/cm Conductivité brute 25°C sur le terrain 06181500 ARRE 4 29/08/2016 12:52 1313 3 023 396 μS/cm Conductivité brute 25°C sur le terrain 06181500 ARRE 4 29/08/2016 12:52 1449 3 023 412 NPP/100mL Escherichia coli (eau de surface) 06181500 ARRE 4 29/08/2016 12:52 1449 3 023 412 NPP/100mL Escherichia coli (eau de surface) 06181500 ARRE 4 29/08/2016 12:52 1305 3 023 8.6 mg/L Matières en suspension totales 06181500 ARRE 4 29/08/2016 12:52 1305 3 023 8.6 mg/L Matières en suspension totales 06181500 ARRE 4 29/08/2016 12:52 1305 3 033 0.01 mg/(Na)/L Matières en suspension totales 06181500 ARRE 4 29/08/2016 12:52 1302 3 0.23 10.91 mg/(O2)/L Chygène dissous 06181500 ARRE 4 29/08/2016 12:52 1310 3 023 10.91 mg/(O2)/L Chygène dissous 06181500 ARRE 4 29/08/2016 12:52 1302 3 023 8.49 unité pH pH sur le terrain 06181500 ARRE 4 29/08/2016 12:52 1302 3 023 0.037 mg/(O2)/L Chryphosphates 06181500 ARRE 4 29/08/2016 12:52 1312 3 023 0.037 mg/(P)/L Phosphore total 06181500 ARRE 4 29/08/2016 12:52 1312 3 023 124.4 % Taux de saturation en oxygène sur le terrain 06181500 ARRE 4 29/08/2016 12:52 1312 3 023 124.4 % Taux de saturation en oxygène sur le terrain 06181500 ARRE 4 29/08/2016 12:52 1301 3 023 124.4 % Taux de saturation en oxygène sur le terrain 06181500 ARRE 4 29/08/2016 12:52 1301 3 023 124.4 % Taux de saturation en oxygène sur le terrain 06181500 ARRE 4 29/08/2016 12:17 1313 3 023 12.0 °C Température de l'eau 06181500 ARRE 3 29/08/2016 12:17 1343 3 033 0.73 7 NPP/100mL Escherichia coli (eau de surface) 06181904 ARRE 3 29/08/2016 12:17 1343 3 033 0.73 7 NPP/100mL Escherichia coli (eau de surface) 0										
06181500 ARRE 4 29/08/2016 12:52 1303 3 023 396 µS/cm Conductivite brute à 25°C sur le terrain 06181500 ARRE 4 29/08/2016 12:52 1449 3 023 412 NPP/100mL Escherichia coli (eau de surface) 06181500 ARRE 4 29/08/2016 12:52 1305 3 023 8.6 mg/L Mattères en suspension totales 06181500 ARRE 4 29/08/2016 12:52 1305 3 023 8.6 mg/L Mattères en suspension totales 06181500 ARRE 4 29/08/2016 12:52 1305 3 033 0.01 mg(NH4)/L Ammonium 06181500 ARRE 4 29/08/2016 12:52 1311 3 023 10.91 mg(N2)/L Ammonium 06181500 ARRE 4 29/08/2016 12:52 1311 3 023 10.91 mg(N2)/L Oxygène dissous 06181500 ARRE 4 29/08/2016 12:52 1311 3 023 10.91 mg(N2)/L Oxygène dissous 06181500 ARRE 4 29/08/2016 12:52 1433 3 003 0.07 mg(P0/4)/L Orhophosphates 06181500 ARRE 4 29/08/2016 12:52 1433 3 003 0.07 mg(P0/4)/L Orhophosphates 06181500 ARRE 4 29/08/2016 12:52 1312 3 023 0.037 mg(P)/L Orhophosphates 06181500 ARRE 4 29/08/2016 12:52 1312 3 023 0.037 mg(P)/L Orhophosphates 06181500 ARRE 4 29/08/2016 12:52 1312 3 023 124.4 % Taux de saturation en oxygène sur le terrain 06181500 ARRE 4 29/08/2016 12:52 1312 3 023 124.4 % Taux de saturation en oxygène sur le terrain 06181500 ARRE 4 29/08/2016 12:52 1311 3 023 21.0 °C Température de l'air extérieur 06181904 ARRE 3 29/08/2016 12:17 1341 3 023 21.0 °C Température de l'air extérieur 06181904 ARRE 3 29/08/2016 12:17 1335 3 033 0.01 mg(NH4)/L Ammonium ARRE 3 29/08/2016 12:17 1335 3 033 0.01 mg(NH4)/L Ammonium 06181904 ARRE 3 29/08/2016 12:17 1335 3 033 0.01 mg(NH4)/L Ammonium 06181904 ARRE 3 29/08/2016 12:17 1335 3 033 0.01 mg(NH4)/L Ammonium 06181904 ARRE 3 29/08/2016 12:17 1335 3 033 0.01 mg(NH4)/L Ammonium										Temperature de l'eau
06181500 ARRE 4 29/08/2016 12:52 1313 3 023 0.9 mg/O2/L Demande Biochimique en Oxygène (DBOS)										
								396		
	06181500	ARRE 4	29/08/2016	12:52	1313	3	023	0.9	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
	06181500	ARRE 4	29/08/2016	12:52	1449	3	023	412	NPP/100mL	Escherichia coli (eau de surface)
Delia Deli						3		38		Entérocogues (eau de surface)
Del181500 ARRE 4 29/08/2016 12:52 1335 3 003 0.01 mg(NH4)/L Ammonium										, , , ,
Del 181500 ARRE 4 29/08/2016 12:52 1340 3 0.03 1.3 mg(NO3)/L Nitrates										
ORIBISOO ARRE 4 29/08/2016 12:52 1311 3 023 10.91 mg(02)/L Coxygène dissous										
Defial Defaal Defial Defial Defial Defial Defial Defial Defaal Defial Defaal D										
O6181500 ARRE 4 29/08/2016 12:52 1433 3 003 0.07 mg(PO4)/L Orthophosphates										
06181500 ARRE 4 29/08/2016 12:52 1350 3 023 0.037 mg(P)/L Phosphore total 06181500 ARRE 4 29/08/2016 12:52 1312 3 023 124.4 % Taux de saturation en oxygène sur le terrain 06181500 ARRE 4 29/08/2016 12:52 1301 3 023 21.0 °C Température de l'air extérieur 06181500 ARRE 4 29/08/2016 12:52 1301 3 023 21.0 °C Température de l'eau 06181904 ARRE 3 29/08/2016 12:17 1301 3 023 21.0 °C Température de l'eau 06181904 ARRE 3 29/08/2016 12:17 1303 3 023 482 μS/cm Conductivité brute à 25°C sur le terrain 06181904 ARRE 3 29/08/2016 12:17 1449 3 023 77 NPP/100mL Escherichia coli (eau de surface) 06181904 ARRE 3 29/08/2016 12:17 1345 3 003 0.01 mg(NH4)/L Ammonium Ammonium 06181904 ARRE 3 29/08/2016 12:17 1335 3 003 0.01 mg(NH4)/L Ammonium 06181904 ARRE 3 29/08/2016 12:17 1340 3 003 0.9 mg(NO3)/L Nitrates 06181904 ARRE 3 29/08/2016 12:17 1302 3 023 10.71 mg(O2)/L Oxygène dissous 06181904 ARRE 3 29/08/2016 12:17 1302 3 023 8.26 unité pH pH sur le terrain 06181904 ARRE 3 29/08/2016 12:17 1311 3 023 10.71 mg(PO4)/L Orthophosphates 06181904 ARRE 3 29/08/2016 12:17 1312 3 003 0.04 mg(PO4)/L Orthophosphates 06181904 ARRE 3 29/08/2016 12:17 1312 3 023 120.9 % Taux de saturation en oxygène sur le terrain 06181904 ARRE 3 29/08/2016 12:17 1302 3 023 120.9 % Taux de saturation en oxygène sur le terrain 06181904 ARRE 3 29/08/2016 12:17 1301 3 023 19.5 °C Température de l'eiau 06181901 ARRE 1 29/08/2016 10:48 1341 3 003 0.7 mg(PO4)/L Orthophosphates 06181901 ARRE 1 29/08/2016 10:48 1340 3 003 0.01 mg(NH4)/L Ammonium 06181901 ARRE 1 29/08/2016 10:48 1340 3 003 0.01 mg(NH4)/L Ammonium 06181901 ARRE 1 29/08/2016 10:48 1340 3 003 0.02 mg(PO4)/L										
O6181500									mg(PO4)/L	
06181500 ARRE 4 29/08/2016 12:52 1409 02 019 29.2 °C Température de l'air extérieur 06181500 ARRE 4 29/08/2016 12:52 1301 3 023 21.0 °C Température de l'air extérieur 06181904 ARRE 3 29/08/2016 12:17 1841 3 003 0.5 mg(C)/L Carbone organique dissous (COD) <0.45 μm	06181500	ARRE 4	29/08/2016	12:52	1350			0.037	mg(P)/L	Phosphore total
06181500 ARRE 4 29/08/2016 12:52 1409 02 019 29.2 °C Température de l'air extérieur 06181500 ARRE 4 29/08/2016 12:52 1301 3 023 21.0 °C Température de l'air extérieur 06181904 ARRE 3 29/08/2016 12:17 1841 3 003 0.5 mg(C)/L Carbone organique dissous (COD) <0.45 μm	06181500	ARRE 4	29/08/2016	12:52	1312	3	023	124.4	%	Taux de saturation en oxygène sur le terrain
06181500 ARRE 4 29/08/2016 12:52 1301 3 023 21.0 °C Température de l'eau 06181904 ARRE 3 29/08/2016 12:17 1841 3 003 0.5 mg(C)/L Carbone organique dissous (COD) <0.45 μm	06181500	ARRE 4	29/08/2016	12:52	1409	02	019	29.2	°C	Température de l'air extérieur
O6181904 ARRE 3 29/08/2016 12:17 1841 3 003 0.5 mg(C)/L Carbone organique dissous (COD) < 0.45 μm O6181904 ARRE 3 29/08/2016 12:17 1303 3 023 482 μS/cm Conductivité brute à 25°C sur le terrain O6181904 ARRE 3 29/08/2016 12:17 1449 3 023 77 NPP/100mL Escherichia coli (eau de surface) O6181904 ARRE 3 29/08/2016 12:17 1335 3 023 77 NPP/100mL Escherichia coli (eau de surface) O6181904 ARRE 3 29/08/2016 12:17 1335 3 003 0.01 mg(NH4)/L Ammonium Ammonium Ammonium O6181904 ARRE 3 29/08/2016 12:17 1311 3 023 10.71 mg(O2)/L Oxygène dissous O6181904 ARRE 3 29/08/2016 12:17 1302 3 023 10.71 mg(O2)/L Oxthophosphates O6181904 ARRE 3 29/08/2016 12:17 1433 3 003 0.04 mg(PO4)/L Orthophosphates O6181904 ARRE 3 29/08/2016 12:17 1433 3 003 0.03 0.09 mg(PO4)/L Orthophosphates O6181904 ARRE 3 29/08/2016 12:17 1433 3 023 12.09 % Taux de saturation en oxygène sur le terrain O6181904 ARRE 3 29/08/2016 12:17 1409 02 019 30.7 °C Température de l'air extérieur O6181904 ARRE 3 29/08/2016 12:17 1301 3 023 19.5 °C Température de l'air extérieur O6181901 ARRE 1 29/08/2016 10:48 1341 3 003 0.7 mg(C)/L Carbone organique dissous (COD) < 0.45 μm O6181901 ARRE 1 29/08/2016 10:48 1335 3 003 0.3						3				
O6181904 ARRE 3 29/08/2016 12:17 1303 3 023 482 μS/cm Conductivité brute à 25°C sur le terrain O6181904 ARRE 3 29/08/2016 12:17 1449 3 023 77 NPP/100mL Escherichia coli (eau de surface) O6181904 ARRE 3 29/08/2016 12:17 1335 3 003 0.01 mg(NH4)/L Ammonium O6181904 ARRE 3 29/08/2016 12:17 1335 3 003 0.01 mg(NH4)/L Ammonium O6181904 ARRE 3 29/08/2016 12:17 1340 3 003 0.9 mg(NO3)/L Nitrates O6181904 ARRE 3 29/08/2016 12:17 1311 3 023 10.71 mg(O2)/L Oxygène dissous O6181904 ARRE 3 29/08/2016 12:17 1302 3 023 8.26 unité pH pH sur le terrain O6181904 ARRE 3 29/08/2016 12:17 1433 3 003 0.03 mg(PO4)/L Orthophosphates O6181904 ARRE 3 29/08/2016 12:17 1433 3 003 0.03 mg(PO4)/L Orthophosphates O6181904 ARRE 3 29/08/2016 12:17 1433 3 003 0.03 mg(PO4)/L Orthophosphates O6181904 ARRE 3 29/08/2016 12:17 1409 02 019 3.7 °C Température de l'air extérieur O6181904 ARRE 3 29/08/2016 12:17 1301 3 023 19.5 °C Température de l'eau O6181901 ARRE 1 29/08/2016 10:48 1841 3 003 0.7 mg(C)/L Carbone organique dissous (COD) <0.45 μm O6181901 ARRE 1 29/08/2016 10:48 1303 3 023 337 μS/cm Conductivité brute à 25°C sur le terrain O6181901 ARRE 1 29/08/2016 10:48 1335 3 003 0.01 mg(NH4)/L Ammonium O6181901 ARRE 1 29/08/2016 10:48 1340 3 003 0.1 mg(NH4)/L Ammonium O6181901 ARRE 1 29/08/2016 10:48 1340 3 003 0.1 mg(ND4)/L Orthophosphates O6181901 ARRE 1 29/08/2016 10:48 1340 3 003 0.1 mg(ND4)/L Orthophosphates O6181901 ARRE 1 29/08/2016 10:48 1340 3 003 0.1 mg(ND4)/L Orthophosphates O6181901 ARRE 1 29/08/2016 10:48 1343 3 003 0.12 mg(PO4)/L Orthophosphates O6181901 ARRE 1 29/08/2016 10:48 1343 3 003 0.02 mg(PO4)/L Orthophosphates O618190										
O6181904 ARRE 3 29/08/2016 12:17 1449 3 023 77 NPP/100mL Escherichia coli (eau de surface)										Conductivité brute à 25°C sur le terrain
O6181904 ARRE 3 29/08/2016 12:17 6455 3 023 77 NPP/100mL Entérocoques (eau de surface) O6181904 ARRE 3 29/08/2016 12:17 1335 3 003 0.01 mg(NH4)/L Ammonium O6181904 ARRE 3 29/08/2016 12:17 1311 3 023 10.71 mg(O2)/L Oxygène dissous O6181904 ARRE 3 29/08/2016 12:17 1311 3 023 10.71 mg(O2)/L Oxygène dissous O6181904 ARRE 3 29/08/2016 12:17 1302 3 023 8.26 unité pH pH sur le terrain O6181904 ARRE 3 29/08/2016 12:17 1433 3 003 0.04 mg(PO4)/L Orthophosphates O6181904 ARRE 3 29/08/2016 12:17 1433 3 003 0.03 mg(PO4)/L Orthophosphates O6181904 ARRE 3 29/08/2016 12:17 1312 3 023 120.9 % Taux de saturation en oxygène sur le terrain O6181904 ARRE 3 29/08/2016 12:17 1409 02 019 30.7 °C Température de l'air extérieur O6181904 ARRE 3 29/08/2016 12:17 1301 3 023 19.5 °C Température de l'eau O6181901 ARRE 1 29/08/2016 10:48 1303 3 023 337 μS/cm Conductivité brute à 25°C sur le terrain O6181901 ARRE 1 29/08/2016 10:48 1303 3 023 337 μS/cm Conductivité brute à 25°C sur le terrain O6181901 ARRE 1 29/08/2016 10:48 1335 3 003 0.01 mg(NH4)/L Ammonium O6181901 ARRE 1 29/08/2016 10:48 1335 3 003 0.01 mg(NH4)/L Ammonium O6181901 ARRE 1 29/08/2016 10:48 1335 3 003 0.01 mg(NH4)/L Ammonium O6181901 ARRE 1 29/08/2016 10:48 1330 3 023 9.51 mg(O2)/L Oxygène dissous O6181901 ARRE 1 29/08/2016 10:48 1331 3 023 9.51 mg(O2)/L Oxygène dissous O6181901 ARRE 1 29/08/2016 10:48 1330 3 023 0.02 mg(PO4)/L Orthophosphates O6181901 ARRE 1 29/08/2016 10:48 1332 3 003 0.02 mg(PO4)/L Orthophosphates O6181901 ARRE 1 29/08/2016 10:48 1332 3 023 0.027 mg(PO4)/L Orthophosphates O6181901 ARRE 1 29/08/2016 10:48 1312 3 023 0.027 mg(PO4)/L Orthophospha										
O6181904 ARRE 3 29/08/2016 12:17 1335 3 003 0.01 mg(NH4)/L Ammonium										
O6181904 ARRE 3 29/08/2016 12:17 1340 3 003 0.9 mg(NO3)/L Nitrates										
O6181904 ARRE 3 29/08/2016 12:17 1311 3 023 10.71 mg(O2)/L Oxygène dissous										
O6181904 ARRE 3 29/08/2016 12:17 1302 3 023 8.26 unité pH pH sur le terrain									O ()	
06181904 ARRE 3 29/08/2016 12:17 1433 3 003 0.04 mg(PO4)/L Orthophosphates 06181904 ARRE 3 29/08/2016 12:17 1433 3 003 0.03 mg(PO4)/L Orthophosphates 06181904 ARRE 3 29/08/2016 12:17 1312 3 023 120.9 % Taux de saturation en oxygène sur le terrain 06181904 ARRE 3 29/08/2016 12:17 1409 02 019 30.7 °C Température de l'air extérieur 06181904 ARRE 3 29/08/2016 12:17 1301 3 023 19.5 °C Température de l'air extérieur 06181901 ARRE 1 29/08/2016 10:48 1841 3 003 0.7 mg(C)/L Carbone organique dissous (COD) <0.45 μm										
06181904 ARRE 3 29/08/2016 12:17 1433 3 003 0.04 mg(PO4)/L Orthophosphates 06181904 ARRE 3 29/08/2016 12:17 1433 3 003 0.03 mg(PO4)/L Orthophosphates 06181904 ARRE 3 29/08/2016 12:17 1312 3 023 120.9 % Taux de saturation en oxygène sur le terrain 06181904 ARRE 3 29/08/2016 12:17 1409 02 019 30.7 °C Température de l'air extérieur 06181904 ARRE 3 29/08/2016 12:17 1301 3 023 19.5 °C Température de l'air extérieur 06181901 ARRE 1 29/08/2016 10:48 1841 3 003 0.7 mg(C)/L Carbone organique dissous (COD) <0.45 μm	06181904	ARRE 3	29/08/2016	12:17	1302	3	023	8.26	unité pH	pH sur le terrain
O6181904 ARRE 3 29/08/2016 12:17 1433 3 003 0.03 mg(PO4)/L Orthophosphates										
O6181904 ARRE 3 29/08/2016 12:17 1312 3 023 120.9 % Taux de saturation en oxygène sur le terrain										
O6181904 ARRE 3 29/08/2016 12:17 1409 02 019 30.7 °C Température de l'air extérieur O6181904 ARRE 3 29/08/2016 12:17 1301 3 023 19.5 °C Température de l'eau O6181901 ARRE 1 29/08/2016 10:48 1841 3 003 0.7 mg(C)/L Carbone organique dissous (COD) <0.45 μm O6181901 ARRE 1 29/08/2016 10:48 1303 3 023 337 μS/cm Conductivité brute à 25°C sur le terrain O6181901 ARRE 1 29/08/2016 10:48 1335 3 003 0.01 mg(NH4)/L Ammonium ARRE 1 29/08/2016 10:48 1340 3 003 1.8 mg(NO3)/L Nitrates O6181901 ARRE 1 29/08/2016 10:48 1311 3 023 9.51 mg(O2)/L Oxygène dissous O6181901 ARRE 1 29/08/2016 10:48 1302 3 023 8.34 unité pH pH sur le terrain O6181901 ARRE 1 29/08/2016 10:48 1433 3 003 0.12 mg(PO4)/L Orthophosphates O6181901 ARRE 1 29/08/2016 10:48 1433 3 003 0.12 mg(PO4)/L Orthophosphates O6181901 ARRE 1 29/08/2016 10:48 1433 3 003 0.12 mg(PO4)/L Orthophosphates O6181901 ARRE 1 29/08/2016 10:48 1433 3 003 0.027 mg(P)/L Phosphore total O6181901 ARRE 1 29/08/2016 10:48 1312 3 023 103.4 % Taux de saturation en oxygène sur le terrain O6181901 ARRE 1 29/08/2016 10:48 1312 3 023 103.4 % Taux de saturation en oxygène sur le terrain O6181901 ARRE 1 29/08/2016 10:48 1312 3 023 103.4 % Taux de saturation en oxygène sur le terrain O6181901 ARRE 1 29/08/2016 10:48 1312 3 023 103.4 % Taux de saturation en oxygène sur le terrain O6181901 ARRE 1 29/08/2016 10:48 1409 02 019 27.3 °C Température de l'air extérieur O6181901 ARRE 1 29/08/2016 10:48 1409 02 019 27.3 °C Température de l'air extérieur O6181901 ARRE 1 29/08/2016 10:48 1409 02 019 27.3 °C Température de l'air extérieur O6181901 ARRE 1 29/08/2016 10:48 1409 02 019 27.3 °C Température de l'air extérieur		ARRF 3							J ()	
O6181904 ARRE 3 29/08/2016 12:17 1301 3 023 19.5 °C Température de l'eau										
O6181901 ARRE 1 29/08/2016 10:48 1841 3 003 0.7 mg(C)/L Carbone organique dissous (COD) <0.45 μm										I
O6181901 ARRE 1 29/08/2016 10:48 1303 3 023 337 μS/cm Conductivité brute à 25°C sur le terrain										
06181901 ARRE 1 29/08/2016 10:48 6455 3 023 163 NPP/100mL Entérocoques (eau de surface) 06181901 ARRE 1 29/08/2016 10:48 1335 3 003 0.01 mg(NH4)/L Ammonium 06181901 ARRE 1 29/08/2016 10:48 1340 3 003 1.8 mg(NO3)/L Nitrates 06181901 ARRE 1 29/08/2016 10:48 1311 3 023 9.51 mg(O2)/L Oxygène dissous 06181901 ARRE 1 29/08/2016 10:48 1302 3 023 8.34 unité pH pH sur le terrain 06181901 ARRE 1 29/08/2016 10:48 1433 3 003 0.09 mg(PO4)/L Orthophosphates 06181901 ARRE 1 29/08/2016 10:48 1350 3 023 0.027 mg(PO4)/L Orthophosphates 06181901 ARRE 1 29/08/2016 10:48 1350 3 023 0.027										Carbone organique dissous (COD) <0.45 µm
06181901 ARRE 1 29/08/2016 10:48 1335 3 003 0.01 mg(NH4)/L Ammonium 06181901 ARRE 1 29/08/2016 10:48 1340 3 003 1.8 mg(NO3)/L Nitrates 06181901 ARRE 1 29/08/2016 10:48 1311 3 023 9.51 mg(O2)/L Oxygène dissous 06181901 ARRE 1 29/08/2016 10:48 1302 3 023 8.34 unité pH pH sur le terrain 06181901 ARRE 1 29/08/2016 10:48 1433 3 003 0.09 mg(PO4)/L Orthophosphates 06181901 ARRE 1 29/08/2016 10:48 1350 3 023 0.027 mg(PO4)/L Orthophosphates 06181901 ARRE 1 29/08/2016 10:48 1350 3 023 0.027 mg(P)/L Phosphore total 06181901 ARRE 1 29/08/2016 10:48 1312 3 023 103.4 % <td></td>										
06181901 ARRE 1 29/08/2016 10:48 1340 3 003 1.8 mg(NO3)/L Nitrates 06181901 ARRE 1 29/08/2016 10:48 1311 3 023 9.51 mg(O2)/L Oxygène dissous 06181901 ARRE 1 29/08/2016 10:48 1302 3 023 8.34 unité pH pH sur le terrain 06181901 ARRE 1 29/08/2016 10:48 1433 3 003 0.09 mg(PO4)/L Orthophosphates 06181901 ARRE 1 29/08/2016 10:48 1350 3 023 0.027 mg(PO4)/L Orthophosphates 06181901 ARRE 1 29/08/2016 10:48 1350 3 023 0.027 mg(P)/L Phosphore total 06181901 ARRE 1 29/08/2016 10:48 1312 3 023 103.4 % Taux de saturation en oxygène sur le terrain 06181901 ARRE 1 29/08/2016 10:48 1312 3 023 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
06181901 ARRE 1 29/08/2016 10:48 1340 3 003 1.8 mg(NO3)/L Nitrates 06181901 ARRE 1 29/08/2016 10:48 1311 3 023 9.51 mg(O2)/L Oxygène dissous 06181901 ARRE 1 29/08/2016 10:48 1302 3 023 8.34 unité pH pH sur le terrain 06181901 ARRE 1 29/08/2016 10:48 1433 3 003 0.09 mg(PO4)/L Orthophosphates 06181901 ARRE 1 29/08/2016 10:48 1350 3 023 0.027 mg(PO4)/L Orthophosphates 06181901 ARRE 1 29/08/2016 10:48 1350 3 023 0.027 mg(P)/L Phosphore total 06181901 ARRE 1 29/08/2016 10:48 1312 3 023 103.4 % Taux de saturation en oxygène sur le terrain 06181901 ARRE 1 29/08/2016 10:48 1312 3 023 <t< td=""><td>06181901</td><td></td><td>29/08/2016</td><td>10:48</td><td>1335</td><td>3</td><td>003</td><td>0.01</td><td>mg(NH4)/L</td><td>Ammonium</td></t<>	06181901		29/08/2016	10:48	1335	3	003	0.01	mg(NH4)/L	Ammonium
06181901 ARRE 1 29/08/2016 10:48 1311 3 023 9.51 mg(O2)/L Oxygène dissous 06181901 ARRE 1 29/08/2016 10:48 1302 3 023 8.34 unité pH pH sur le terrain 06181901 ARRE 1 29/08/2016 10:48 1433 3 003 0.09 mg(PO4)/L Orthophosphates 06181901 ARRE 1 29/08/2016 10:48 1350 3 023 0.027 mg(PO4)/L Orthophosphates 06181901 ARRE 1 29/08/2016 10:48 1350 3 023 0.027 mg(P)/L Phosphore total 06181901 ARRE 1 29/08/2016 10:48 1312 3 023 103.4 % Taux de saturation en oxygène sur le terrain 06181901 ARRE 1 29/08/2016 10:48 1409 02 019 27.3 °C Température de l'air extérieur		ARRE 1	29/08/2016	10:48	1340	3	003	1.8	mg(NO3)/L	Nitrates
06181901 ARRE 1 29/08/2016 10:48 1302 3 023 8.34 unité pH pH sur le terrain 06181901 ARRE 1 29/08/2016 10:48 1433 3 003 0.09 mg(PO4)/L Orthophosphates 06181901 ARRE 1 29/08/2016 10:48 1433 3 003 0.12 mg(PO4)/L Orthophosphates 06181901 ARRE 1 29/08/2016 10:48 1350 3 023 0.027 mg(P)/L Phosphore total 06181901 ARRE 1 29/08/2016 10:48 1312 3 023 103.4 % Taux de saturation en oxygène sur le terrain 06181901 ARRE 1 29/08/2016 10:48 1409 02 019 27.3 °C Température de l'air extérieur										
06181901 ARRE 1 29/08/2016 10:48 1433 3 003 0.09 mg(PO4)/L Orthophosphates 06181901 ARRE 1 29/08/2016 10:48 1433 3 003 0.12 mg(PO4)/L Orthophosphates 06181901 ARRE 1 29/08/2016 10:48 1350 3 023 0.027 mg(P)/L Phosphore total 06181901 ARRE 1 29/08/2016 10:48 1312 3 023 103.4 % Taux de saturation en oxygène sur le terrain 06181901 ARRE 1 29/08/2016 10:48 1409 02 019 27.3 °C Température de l'air extérieur										
06181901 ARRE 1 29/08/2016 10:48 1433 3 003 0.12 mg(PO4)/L Orthophosphates 06181901 ARRE 1 29/08/2016 10:48 1350 3 023 0.027 mg(P)/L Phosphore total 06181901 ARRE 1 29/08/2016 10:48 1312 3 023 103.4 % Taux de saturation en oxygène sur le terrain 06181901 ARRE 1 29/08/2016 10:48 1409 02 019 27.3 °C Température de l'air extérieur										
06181901 ARRE 1 29/08/2016 10:48 1350 3 023 0.027 mg(P)/L Phosphore total 06181901 ARRE 1 29/08/2016 10:48 1312 3 023 103.4 % Taux de saturation en oxygène sur le terrain 06181901 ARRE 1 29/08/2016 10:48 1409 02 019 27.3 °C Température de l'air extérieur										
06181901 ARRE 1 29/08/2016 10:48 1312 3 023 103.4 % Taux de saturation en oxygène sur le terrain 06181901 ARRE 1 29/08/2016 10:48 1409 02 019 27.3 °C Température de l'air extérieur										
06181901 ARRE 1 29/08/2016 10:48 1409 02 019 27.3 °C Température de l'air extérieur										
06181901 ARRE 1 29/08/2016 10:48 1301 3 023 17.5 °C Température de l'eau										-
	06181901	ARRE 1	29/08/2016	10:48	1301	3	023	17.5	°C	Température de l'eau

Solition										
Scheme Control Football Football Football Football No. No. 06181850 GEL 1 29082016 11.41 1303 3 023 699 µScorn Conductivité bruta à 25°C sur le terrain 06181850 GEL 1 29082016 11.41 1311 3 023 699 µScorn Conductivité bruta à 25°C sur le terrain 06181850 GEL 1 29082016 11.41 1311 3 03 0.75 Neur le le le l'andion de l'antion de l'anti	Code	Rivière/			Sand	Sun	Frac	Rásul		
Section Color Co	Station		Date	Heure					Unité	Nom
Gel 1 2009/2016 1144 1303 3 023 569 µS/cm Conductivité brule à 25°C sur le terrain	complet	origine			re	port	uon	Ilal		
Gel 1 2009/2016 1144 1303 3 023 569 µS/cm Conductivité brule à 25°C sur le terrain	06181850	GLE 1	29/08/2016	11:41	1841	3	003	0.3	ma(C)/L	Carbone organique dissous (COD) <0.45 µm
Gel 181650 GLE 29092/016 1144 1340 3 003 0.8 mg NO3/L							023			
Bottlesson GLE 2009/2016 1144 1311 3 023 8.72 mgl(C2)L Oxygène dissous										
Gef18150 GLE 1 290902016 1144 1302 3 023 7.58 unité pH pH sur le terrain 06181550 GLE 1 290902016 1144 1433 3 003 0.02 mg PC4JL Orthophosphates 06181550 GLE 1 290902016 1144 1433 3 003 0.04 mg PC4JL Orthophosphates 06181550 GLE 1 290902016 1144 1405 02 019 29.3 °C Température de fair extérieur 06181550 GLE 1 290902016 1144 1405 02 019 29.3 °C Température de fair extérieur 06181550 GLE 1 290902016 1144 1405 02 019 29.3 °C Température de fair extérieur 06181550 GLE 1 290902016 1146 1405 03 03 03 0.04 mg PC4JL Carbone organique de fair extérieur 06181550 GLE 1 290902016 1108 1641 3 003 0.6 mg CDL Carbone organique de fair extérieur 06181550 ARRE 2 290902016 1108 1645 3 023 2505 NPP1/00mL Escherichia coli deus de surface) 06181502 ARRE 2 290902016 1108 1449 3 023 2505 NPP1/00mL Escherichia coli deus de surface) 06181502 ARRE 2 290902016 1108 1305 3 023 12 mg L Maitères en supernsion totales 06181502 ARRE 2 290902016 1108 1305 3 023 12 mg L Maitères en supernsion totales 06181502 ARRE 2 290902016 1108 1303 3 023 023 mg CQJL Oxygéne dissous 06181502 ARRE 2 290902016 1108 1311 3 023 1023 mg CQJL Oxygéne dissous 06181502 ARRE 2 290902016 1108 1315 3 023 023 mg CQJL Oxygéne dissous 06181502 ARRE 2 290902016 1108 1315 3 023 023 023 mg CQJL Oxygéne dissous 06181502 ARRE 2 290902016 1108 1315 3 023 023 023 023 mg CQJL Oxygéne dissous 06181502 ARRE 2 290902016 1108 1315 3 02										
D6181850										
Gef181850 GLE 29/08/2016 11:41 14:33 3 003 0.04 mg/PO4/L Orthophosphates Gef181850 GLE 29/08/2016 11:41 14:09 02 019 29.3 *C Température de l'air extérieur Gef181850 GLE 29/08/2016 11:41 14:09 02 019 29.3 *C Température de l'air extérieur Gef181850 GLE 29/08/2016 11:41 14:09 02 019 29.3 *C Température de l'air extérieur Gef181802 ARRE 2 29/08/2016 11:08 18:01 30.03 0.6 mg/C)L Carbone organique dissous (COD) <0.45 µm Gef181902 ARRE 2 29/08/2016 11:08 13:03 3 023 12.0 mg/C)L Carbone organique dissous (COD) <0.45 µm Gef181902 ARRE 2 29/08/2016 11:08 13:03 3 023 12.0 mg/C)L Demande Biochimique en Oxygène (DBC) Gef181902 ARRE 2 29/08/2016 11:08 13:05 3 023 25:05 MPP/100mL Excéncibia coi (leau de surface) Gef181902 ARRE 2 29/08/2016 11:08 13:05 3 023 12.0 mg/C)L Demande Biochimique en Oxygène (DBC) Gef181902 ARRE 2 29/08/2016 11:08 13:05 3 023 12.0 mg/C)L Mittales Gef181902 ARRE 2 29/08/2016 11:08 13:05 3 023 12.0 mg/C)L Nitrales Gef181902 ARRE 2 29/08/2016 11:08 13:05 3 023 12.0 mg/C)L Nitrales Gef181902 ARRE 2 29/08/2016 11:08 13:03 3 033										
G6181850										
Gelf81850 GLE 1 2908/2016 11:41 14:09 02 019 29:3 °C Température de l'air extérieur Gelf81850 GLE 1 2908/2016 11:08 18:141 30:03 17:17 °C Température de l'air extérieur Gelf81892 ARRE 2 2908/2016 11:08 18:141 3 003 0.6 mg/CVL Carbone organique dissous (CDD) <0.45 µm Gelf81892 ARRE 2 2908/2016 11:08 13:03 3 023 12:0 mg/CVL Carbone organique dissous (CDD) <0.45 µm Gelf81892 ARRE 2 2908/2016 11:08 14:19 3 023 1:0 mg/CVL Demande Biochimique en Oxygène (DBC5) Gelf81892 ARRE 2 2908/2016 11:08 64:55 3 023 25:05 MPP100mL Entérocoques (eau de surface) Gelf81892 ARRE 2 2908/2016 11:08 13:05 3 023 12:0 mg/L Midrese en suspension totales Gelf81892 ARRE 2 2908/2016 11:08 13:05 3 023 12:3 mg/L Midrese en suspension totales Gelf81892 ARRE 2 2908/2016 11:08 13:10 3 023 12:3 mg/CVL Oxygène dissous Gelf81892 ARRE 2 2908/2016 11:08 13:04 3 023 12:3 mg/CVL Oxygène dissous Gelf81892 ARRE 2 2908/2016 11:08 13:05 3 023 12:3 mg/CVL Oxygène dissous Gelf81892 ARRE 2 2908/2016 11:08 13:05 3 023 024 6:19 024	06181850	GLE 1	29/08/2016	11:41	1433	3	003	0.04		Orthophosphates
Gef181800 CLE 29/08/2016 11:41 14:09 02 019 29:3 °C Température de l'air extérieur	06181850	GLE 1	29/08/2016	11:41	1312	3	023	94.3	%	Taux de saturation en oxygène sur le terrain
Gelf81902 ARRE 2 2908/2016 11:08 13:01 3 023 17.1 C Température de leau Gelf81902 ARRE 2 2908/2016 11:08 13:03 3 023 42.6 µS/cm Conductivité brute à 25°C sur le terrain Gelf81902 ARRE 2 2908/2016 11:08 13:03 3 023 1.0 mg/CVL Conductivité brute à 25°C sur le terrain Gelf81902 ARRE 2 2908/2016 11:08 14:49 3 023 1.0 mg/CVL Genarde Biochmique en Oxygène (DROS) Gelf81902 ARRE 2 2908/2016 11:08 14:49 3 023 25:05 NPP/100mL Escherichia coli (eau de surface) Gelf81902 ARRE 2 2908/2016 11:08 13:05 3 023 12 mg/L Matiéres en suspension totales Gelf81902 ARRE 2 2908/2016 11:08 13:05 3 023 12 mg/L Matiéres en suspension totales Gelf81902 ARRE 2 2908/2016 11:08 13:04 3 03 1.7 mg/CV2/L Oxygène dissous Gelf81902 ARRE 2 2908/2016 11:08 13:02 3 023 623 823 mine PH Ps ur le terrain Gelf81902 ARRE 2 2908/2016 11:08 13:02 3 023 623 823 mine PH Ps ur le terrain Gelf81902 ARRE 2 2908/2016 11:08 13:02 3 023 023 623 02	06181850	GLE 1	29/08/2016	11:41	1409	02	019	29.3	°C	Température de l'air extérieur
68181902 ARRE 2 2908/2016 11:08 13:08 3:03 0.23 426 15:08 15:08 15:08 10:08						3	023	17.1		
G6181902 ARRE 2 2908/2016 11:08 13:03 3 023 426 µS/cm Conductivité brute à 25°C sur le terrain G6181902 ARRE 2 2908/2016 11:08 14:49 3 023 25:05 NPP/100mL Eschericique en Oxygène (DGO) G6181902 ARRE 2 2908/2016 11:08 13:05 3 023 625 NPP/100mL Eschericique en Oxygène (DGO) G6181902 ARRE 2 2908/2016 11:08 13:05 3 023 625 NPP/100mL Eschericique (eau de surface) G6181902 ARRE 2 2908/2016 11:08 13:01 3 023 12.2 mg/L Maltières en suspension totales G6181902 ARRE 2 2908/2016 11:08 13:01 3 023 10.23 mg/C2/L Oxygène dissosus G6181902 ARRE 2 2908/2016 11:08 13:02 3 023 0.23 mg/C2/L Oxygène dissosus G6181902 ARRE 2 2908/2016 11:08 13:02 3 023 0.23 mg/C2/L Oxygène dissosus G6181902 ARRE 2 2908/2016 11:08 13:02 3 023 0.24 mg/C2/L Oxygène dissosus G6181902 ARRE 2 2908/2016 11:08 13:02 3 023 0.24 mg/C2/L Oxygène dissosus G6181902 ARRE 2 2908/2016 11:08 13:02 3 023 0.24 mg/C2/L Oxygène dissosus G6181902 ARRE 2 2908/2016 11:08 13:02 3 023 0.24 mg/C2/L Température de l'air extérieur G6181902 ARRE 2 2908/2016 11:08 13:01 3 023 11:51 mg/C2/L Carbone organique dissous (COD) <0.45 µm G6300048 HER 4 3008/2016 12:20 13:03 0.23 0.23 0.23 0.24 mg/C2/L Carbone organique dissous (COD) <0.6500048 HER 4 3008/2016 12:20 13:05 3 0.23 0.23 0.23 mg/C2/L Carbone organique dissous (COD) <0.6500048 HER 4 3008/2016 12:20 13:05 3 0.23 0.23 mg/C2/L Carbone organique dissous (COD) <0.6500048 HER 4 3008/2016 12:20 13:05 3 0.23 0.23 mg/C2/L Carbone organique dissous (COD) <0.6500048 HER 4 3008/2016 12:20 13:05 3 0.23 0.23 mg/C2/L Carbone organique dissous (COD) <0.6500048 HER 4 3008/2016 12:20 13:05 3 0.23 0.23 mg/C2/L Carbone organique dissous (COD) <0.6500048 HER 4 3008/2016 12:										
B6181902 ARRE 2 2906/2016 11:08 1313 3 023 1:0 mg C2/L Escherichia of use surface)										
BORTRIED ARRE 2 2908/2016 11:08 1449 3 023 625 NPP1/00mL Escherichia coli (eau de surface)										
Boffst1902 ARRE 2 2908/2016 11:08 6455 3 023 652 NPP/100mL										
BORTH DOCK ARRE 2908/2016 11:08 13:06 3 023 12 mg/L Maières en suspension totales										· · · · · · · · · · · · · · · · · · ·
Boils1902 ARRE 2 29/08/2016 11:08 1340 3 023 10.23 mg(CDyL) Oxygéne dissous										
				11:08				12		Matières en suspension totales
GoR181902 ARRE 2 2908/2016 11:08 1311 3 023 10:23 mg(OZ)L	06181902			11:08	1340	3		1.7		Nitrates
Got191902 ARRE 2 2908/2016 11:08 1302 3 023 8.23 unite pH pH sur le terrain	06181902	ARRE 2	29/08/2016	11:08	1311	3	023	10.23		Oxygène dissous
Gelfsigoz ARRE 2 2908/2016 11:08 1433 3 003 0.11 mg/PC4/JL Orthophosphates										
Delfal 1902 ARRE 2 29/08/2016 11.08 1350 3 0.23 0.045 mg(P)/L Phosphore total Delfal 1902 ARRE 2 29/08/2016 11.08 14.09 0.2 0.19 28.0 °C Température de l'air extérieur Delfal 1902 ARRE 2 29/08/2016 11.08 14.09 0.2 0.19 28.0 °C Température de l'air extérieur Delfal 1902 ARRE 2 29/08/2016 12.20 18.11 3 0.03 1.0 mg(C)/L Carbone organique dissous (COD) <0.45 µm Delfal 1902 ARRE 2 29/08/2016 12.20 18.11 3 0.03 1.0 mg(C)/L Carbone organique dissous (COD) <0.45 µm Delfal 1902 ARRE 2 29/08/2016 12.20 13.03 3 0.03 1.0 mg(C)/L Carbone organique dissous (COD) <0.45 µm Delfal 1903 ARRE 2 29/08/2016 12.20 13.03 3 0.23 0.7 mg(C)/L Delfal 1904 ARRE 2 29/08/2016 12.20 13.03 3 0.23 0.7 mg(C)/L Delfal 1906 Delfal 1908 Delfal 1908										1
Bottle Continue										
Defit 1902 ARRE 2 29/08/2016 11.08 14.09 02 019 28.0 °C Température de l'air extérieur										
06181902 ARBE 2 29/08/2016 11:08 13:01 3 023 19.7 °C Température de l'eau 06300048 HER 4 30/08/2016 12:20 13:03 3 0.23 3.7 µS/cm Conductivité brute à 25°C sur le terrain 06300048 HER 4 30/08/2016 12:20 13:03 3 0.23 3.7 µS/cm Conductivité brute à 25°C sur le terrain 06300048 HER 4 30/08/2016 12:20 13:03 3 0.23 3.7 µS/cm Conductivité brute à 25°C sur le terrain 06300048 HER 4 30/08/2016 12:20 13:05 3 0.23 78 NPP/100mL Beriarde Biochimique en Oxygène (DBO5) 06300048 HER 4 30/08/2016 12:20 13:05 3 0.23 5.2 mg/L Matières en suspension totales 06300048 HER 4 30/08/2016 12:20 13:11 3 0.23 13:19 mg/C2/L Oxygène dissous 06300048 HER 4 30/08/2016 12:20 13:13 3 0.23 13:19 mg/C2/L Oxygène dissous 06300048 HER 4 30/08/2016 12:20 14:33 3 0.03 0.04 mg/PO4/L Orthophosphates 06300048 HER 4 30/08/2016 12:20 14:33 3 0.23 0.23 0.24 mg/P)L Phosphore total 06300048 HER 4 30/08/2016 12:20 14:09 0.2 0.19 30.0 °C Température de l'air extérieur 06300048 HER 4 30/08/2016 12:20 14:09 0.2 0.19 30.0 °C Température de l'air extérieur 06300048 HER 4 30/08/2016 12:20 14:09 0.2 0.19 30.0 °C Température de l'air extérieur 06300048 HER 4 30/08/2016 12:20 13:03 3 23 21.6 °C Température de l'air extérieur 06300048 HER 4 30/08/2016 12:20 13:03 3 0.23 21.6 °C Température de l'air extérieur 06300048 HER 4 30/08/2016 12:20 13:03 3 0.23 21.6 °C Température de l'air extérieur 06300048 HER 4 30/08/2016 11:28 13:03 3 0.23 3:04 0.024 0.0										
06300048 HER 4 30/08/2016 12:20 1303 3 023 3.7 μS/cm Conductivité brute 2 5°C sur le terrain										
D6300048 HER 4 30/08/2016 12:20 1303 3 023 337 µS/cm Conductivité brute à 25°C sur le terrain										
De500048 HER 4 30/08/2016 12:20 1313 3 023 0.7 mg(C2)/L Demande Biochimique en Oxygène (DBO5)									mg(C)/L	
D6300048 HER 4 30/08/2016 12:20 1349 3 023 78 NPP/100mL Escherichia coli (eau de surface)	06300048	HER 4	30/08/2016	12:20	1303	3	023	337	μS/cm	Conductivité brute à 25°C sur le terrain
D6300048 HER 4 30/08/2016 12:20 1349 3 023 78 NPP/100mL Escherichia coli (eau de surface)	06300048	HER 4	30/08/2016	12:20	1313	3	023	0.7	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
De300048 HER 4 30/08/2016 12:20 1305 3 023 5.2 mg/L Matières en suspension totales	06300048					3		78		
D6300048 HER 4 30/08/2016 12:20 1335 3 003 0.01 mg(NH4)/L Ammonium										
D6300048 HER 4 30/08/2016 12:20 1311 3 023 3.19 mg/O2/JL Dxygène dissous										
D6300048 HER 4 30/08/2016 12:20 1302 3 023 8.75 unité pH pH sur le terrain										
06300048 HER 4 30/08/2016 12:20 1433 3 003 0.04 mg(PO4)/L Orthophosphates 06300048 HER 4 30/08/2016 12:20 1350 3 023 152.4 mg(P)/L Phosphore total 06300048 HER 4 30/08/2016 12:20 1409 02 019 30.0 °C Température de l'air extérieur 0630048 HER 4 30/08/2016 12:20 1409 02 019 30.0 °C Température de l'air extérieur 0630048 HER 4 30/08/2016 11:28 1841 3 003 0.8 mg(C)/L Carbone organique dissous (COD) <0.45 μm										
06300048 HER 4 30/08/2016 12:20 1310 3 023 152.4 mg(P)/L Phosphore total 06300048 HER 4 30/08/2016 12:20 1409 02 019 30.0 °C Température de l'air extérieur 06300048 HER 4 30/08/2016 12:20 1409 02 019 30.0 °C Température de l'air extérieur 06300048 HER 4 30/08/2016 12:20 1301 3 023 21.6 °C Température de l'air extérieur 06181925 HER 2 30/08/2016 11:28 1303 023 131.0 µS/cm Conductivité brute à 25°C sur le terrain 06181925 HER 2 30/08/2016 11:28 1434 3 023 38 NPP/100mL Escherichia coli (eau de surface) 06181925 HER 2 30/08/2016 11:28 1340 3 023 38 NPP/100mL Escherichia coli (eau de surface) 06181925 HER 2 30/08/2016 11:28 1340 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td></t<>										•
O6300048 HER 4 30/08/2016 12:20 1312 3 023 152.4 % Taux de saturation en oxygène sur le terrain O6300048 HER 4 30/08/2016 12:20 1301 3 023 21.6 °C Température de l'air extérieur O6300048 HER 4 30/08/2016 12:20 1301 3 023 21.6 °C Température de l'air extérieur O6300048 HER 2 30/08/2016 11:28 1841 3 003 0.8 mg(C)/L Carbone organique dissous (COD) <0.45 μm O6181925 HER 2 30/08/2016 11:28 1449 3 023 38 NPP/100mL Escherichia coli (eau de surface) O6181925 HER 2 30/08/2016 11:28 4449 3 023 38 NPP/100mL Escherichia coli (eau de surface) O6181925 HER 2 30/08/2016 11:28 1340 3 003 1.6 mg(NO3)/L Nitrates O6181925 HER 2 30/08/2016 11:28 1311 3 023 9.36 mg(O2)/L Oxygène dissous O6181925 HER 2 30/08/2016 11:28 1311 3 023 9.36 mg(O2)/L Oxygène dissous O6181925 HER 2 30/08/2016 11:28 1313 3 023 0.14 mg(PO4)/L Orthophosphates O6181925 HER 2 30/08/2016 11:28 1312 3 023 0.043 mg(P)/L Phosphore total O6181925 HER 2 30/08/2016 11:28 1312 3 023 111.1 % Taux de saturation en oxygène sur le terrain O6181925 HER 2 30/08/2016 11:28 1312 3 023 111.1 % Taux de saturation en oxygène sur le terrain O6181925 HER 2 30/08/2016 11:28 1310 3 023 0.44 mg(PO4)/L Orthophosphates O6181925 HER 2 30/08/2016 11:28 1310 3 023 0.44 mg(PO4)/L Orthophosphates O6181930 HER 3 30/08/2016 11:28 1301 3 023 20.6 °C Température de l'air extérieur O6181930 HER 3 30/08/2016 11:51 1449 3 023 520 NPP/100mL Escherichia coli (eau de surface) O6181930 HER 3 30/08/2016 11:51 1340 3 003 0.3 3 0.3										
06300048 HER 4 30/08/2016 12:20 1409 02 019 30.0 °C Température de l'air extérieur										
O6300048	06300048		30/08/2016	12:20	1312			152.4		Taux de saturation en oxygène sur le terrain
O6181925 HER 2 30/08/2016 11:28 1303 3 023 131.0 μS/cm Conductivité brute à 25°C sur le terrain O6181925 HER 2 30/08/2016 11:28 1449 3 023 38 NPP/100mL Escherichia coli (eau de surface) O6181925 HER 2 30/08/2016 11:28 1340 3 003 1.6 mg(NO3)/L Nitrates O6181925 HER 2 30/08/2016 11:28 1340 3 003 1.6 mg(NO3)/L Nitrates O6181925 HER 2 30/08/2016 11:28 1311 3 023 9.36 mg(O2)/L Oxygène dissous O6181925 HER 2 30/08/2016 11:28 1311 3 023 9.36 mg(O2)/L Oxygène dissous O6181925 HER 2 30/08/2016 11:28 1312 3 003 0.14 mg(PO4)/L Orthophosphates O6181925 HER 2 30/08/2016 11:28 1350 3 023 0.043 mg(P)/L Phosphore total O6181925 HER 2 30/08/2016 11:28 1312 3 023 111.1 % Taux de saturation en oxygène sur le terrain O6181925 HER 2 30/08/2016 11:28 1312 3 023 111.1 % Taux de saturation en oxygène sur le terrain O6181925 HER 2 30/08/2016 11:28 1310 3 023 0.043 mg(P)/L Carbone organique dissous (COD) <0.45 μm O6181930 HER 3 30/08/2016 11:51 1301 3 023 134.0 μS/cm Conductivité brute à 25°C sur le terrain O6181930 HER 3 30/08/2016 11:51 1349 3 023 134.0 μS/cm Conductivité brute à 25°C sur le terrain O6181930 HER 3 30/08/2016 11:51 1305 3 023 32.0 Mg/Cm Conductivité brute à 25°C sur le terrain O6181930 HER 3 30/08/2016 11:51 1305 3 023 32.0 Mg/Cm Conductivité brute à 25°C sur le terrain O6181930 HER 3 30/08/2016 11:51 1305 3 023 38.0 NPP/100mL Escherichia coli (eau de surface) O6181930 HER 3 30/08/2016 11:51 1305 3 023 2.0 mg/L Matières en suspension totales O6181930 HER 3 30/08/2016 11:51 1305 3 023 2.0 mg/L Matières en suspension totales O6181930 HER 3 30/08/2016 11:51 1310 3 023 2.0 mg/C Mg/Col/L Oxygène dissous O6181930 HER 3 30/08/2016 11:51 130	06300048	HER 4	30/08/2016	12:20	1409	02	019	30.0	°C	Température de l'air extérieur
O6181925 HER 2 30/08/2016 11:28 13:03 3 023 3:04 3:05 3:05 0.8 Mg(C)/L Carbone organique dissous (COD) < 0.45 μm O6181925 HER 2 30/08/2016 11:28 14:49 3 023 38 NPP/100mL Escherichia coli (eau de surface) O6181925 HER 2 30/08/2016 11:28 13:40 3 023 38 NPP/100mL Escherichia coli (eau de surface) O6181925 HER 2 30/08/2016 11:28 13:40 3 003 1.6 Mg(NO3)/L Nitrates O6181925 HER 2 30/08/2016 11:28 13:40 3 003 1.6 Mg(NO3)/L Oxygène dissous O6181925 HER 2 30/08/2016 11:28 13:10 3 023 3:60 Mg(C2)/L Oxygène dissous O6181925 HER 2 30/08/2016 11:28 13:10 3 023 0.14 Mg(PO4)/L Orthophosphates O6181925 HER 2 30/08/2016 11:28 13:50 3 023 0.043 mg(P)/L Phosphore total O6181925 HER 2 30/08/2016 11:28 13:12 3 023 11:1.1 % Taux de saturation en oxygène sur le terrain O6181925 HER 2 30/08/2016 11:28 13:12 3 023 11:1.1 % Taux de saturation en oxygène sur le terrain O6181925 HER 2 30/08/2016 11:28 13:01 3 023 02:0.6 °C Température de l'air extérieur O6181930 HER 3 30/08/2016 11:51 13:01 3 023	06300048	HER 4	30/08/2016	12:20	1301	3	023	21.6	°C	Température de l'eau
O6181925 HER 2 30/08/2016 11:28 1303 3 023 131.0 μS/cm Conductivité brute à 25°C sur le terrain	06181925								mg(C)/L	Carbone organique dissous (COD) <0.45 µm
O6181925 HER 2 30/08/2016 11:28 1449 3 023 38 NPP/100mL Escherichia coli (eau de surface) O6181925 HER 2 30/08/2016 11:28 1340 3 003 1.6 mg(NO3)/L Nitrates O6181925 HER 2 30/08/2016 11:28 1340 3 003 1.6 mg(NO3)/L Nitrates O6181925 HER 2 30/08/2016 11:28 1311 3 023 9.36 mg(O2)/L Oxygène dissous O6181925 HER 2 30/08/2016 11:28 1302 3 023 8.04 unité pH pH sur le terrain O6181925 HER 2 30/08/2016 11:28 1330 3 023 0.043 mg(P)/L Orthophosphates O6181925 HER 2 30/08/2016 11:28 1350 3 023 0.043 mg(P)/L Phosphore total O6181925 HER 2 30/08/2016 11:28 1312 3 023 11.11 % Taux de saturation en oxygène sur le terrain O6181925 HER 2 30/08/2016 11:28 1310 3 023 11.11 % Taux de saturation en oxygène sur le terrain O6181925 HER 2 30/08/2016 11:28 1301 3 023 20.6 °C Température de l'air extérieur O6181925 HER 2 30/08/2016 11:28 1301 3 023 20.6 °C Température de l'eau O6181930 HER 3 30/08/2016 11:51 1303 3 023 134.0 μS/cm Conductivité brute à 25°C sur le terrain O6181930 HER 3 30/08/2016 11:51 1449 3 023 520 NPP/100mL Escherichia coli (eau de surface) O6181930 HER 3 30/08/2016 11:51 1340 3 023 22.0 Mg/L Matières en suspension totales O6181930 HER 3 30/08/2016 11:51 1340 3 003 0.3										
Defilition										
O6181925 HER 2 30/08/2016 11:28 1340 3 003 1.6 mg(NO3)/L Nitrates										,
O6181925 HER 2 30/08/2016 11:28 1311 3 023 9.36 mg(O2)/L Oxygène dissous										
O6181925 HER 2 30/08/2016 11:28 1302 3 023 8.04 unité pH pH sur le terrain O6181925 HER 2 30/08/2016 11:28 1433 3 003 0.14 mg(PO4)/L Orthophosphates O6181925 HER 2 30/08/2016 11:28 1350 3 023 0.043 mg(P)/L Phosphore total O6181925 HER 2 30/08/2016 11:28 1312 3 023 111.1 % Taux de saturation en oxygène sur le terrain O6181925 HER 2 30/08/2016 11:28 1409 02 019 27.6 °C Température de l'air extérieur O6181925 HER 2 30/08/2016 11:28 1301 3 023 20.6 °C Température de l'air extérieur O6181930 HER 3 30/08/2016 11:51 1841 3 003 0.9 mg(C)/L Carbone organique dissous (COD) <0.45 μm O6181930 HER 3 30/08/2016 11:51 1303 3 023 134.0 μS/cm Conductivité brute à 25°C sur le terrain O6181930 HER 3 30/08/2016 11:51 1449 3 023 520 NPP/100mL Escherichia coli (eau de surface) O6181930 HER 3 30/08/2016 11:51 1305 3 023 38 NPP/100mL Entérocques (eau de surface) O6181930 HER 3 30/08/2016 11:51 1305 3 023 2.0 mg/L Matières en suspension totales O6181930 HER 3 30/08/2016 11:51 1311 3 023 10.36 mg(O2)/L Oxygène dissous O6181930 HER 3 30/08/2016 11:51 1311 3 023 10.36 mg(O2)/L Oxygène dissous O6181930 HER 3 30/08/2016 11:51 1302 3 023 8.21 unité pH pH sur le terrain O6181930 HER 3 30/08/2016 11:51 1302 3 023 0.016 mg(P)/L Phosphore total O6181930 HER 3 30/08/2016 11:51 1312 3 023 117.5 % Taux de saturation en oxygène sur le terrain O6181930 HER 3 30/08/2016 11:51 1312 3 023 117.5 % Taux de saturation en oxygène sur le terrain O6181930 HER 3 30/08/2016 11:51 1300 3 023 023 027 °C Température de l'air extérieur O6181930 HER 3 30/08/2016 11:51 1301 3 023 027 °C Température de l'air extérieur O6181930 HER 3 30/08/2016 11:51 1301 3 023 027 °C Tempé									() (
06181925 HER 2 30/08/2016 11:28 1433 3 003 0.14 mg(PO4)/L Orthophosphates 06181925 HER 2 30/08/2016 11:28 1350 3 023 0.043 mg(P)/L Phosphore total 06181925 HER 2 30/08/2016 11:28 1312 3 023 111.1 % Taux de saturation en oxygène sur le terrain 06181925 HER 2 30/08/2016 11:28 1409 02 019 27.6 °C Température de l'air extérieur 06181930 HER 3 30/08/2016 11:51 1841 3 003 0.9 mg(C)/L Carbone organique dissous (COD) <0.45 μm									- '	
06181925 HER 2 30/08/2016 11:28 1350 3 023 0.043 mg(P)/L Phosphore total 06181925 HER 2 30/08/2016 11:28 1312 3 023 111.1 % Taux de saturation en oxygène sur le terrain 06181925 HER 2 30/08/2016 11:28 1301 3 023 20.6 °C Température de l'eix extérieur 06181925 HER 3 30/08/2016 11:28 1301 3 023 20.6 °C Température de l'eix extérieur 06181930 HER 3 30/08/2016 11:51 1841 3 003 0.9 mg(C)/L Carbone organique dissous (COD) <0.45 μm										•
O6181925 HER 2 30/08/2016 11:28 1312 3 023 111.1 % Taux de saturation en oxygène sur le terrain O6181925 HER 2 30/08/2016 11:28 1409 02 019 27.6 °C Température de l'air extérieur O6181925 HER 2 30/08/2016 11:28 1301 3 023 20.6 °C Température de l'eau O6181930 HER 3 30/08/2016 11:51 1841 3 003 0.9 mg(C)/L Carbone organique dissous (COD) <0.45 μm O6181930 HER 3 30/08/2016 11:51 1303 3 023 134.0 μS/cm Conductivité brute à 25°C sur le terrain O6181930 HER 3 30/08/2016 11:51 1449 3 023 520 NPP/100mL Escherichia coli (eau de surface) O6181930 HER 3 30/08/2016 11:51 6455 3 023 38 NPP/100mL Entérocoques (eau de surface) O6181930 HER 3 30/08/2016 11:51 1305 3 023 2.0 mg/L Matières en suspension totales O6181930 HER 3 30/08/2016 11:51 1340 3 003 1.3 mg(NO3)/L Nitrates O6181930 HER 3 30/08/2016 11:51 1311 3 023 10.36 mg(O2)/L Oxygène dissous O6181930 HER 3 30/08/2016 11:51 1311 3 023 10.36 mg(O2)/L Oxygène dissous O6181930 HER 3 30/08/2016 11:51 1312 3 023 0.016 mg(PO4)/L Orthophosphates O6181930 HER 3 30/08/2016 11:51 1312 3 023 0.016 mg(P)/L Phosphore total O6181930 HER 3 30/08/2016 11:51 1312 3 023 023 0.016 mg(P)/L Phosphore total O6181930 HER 3 30/08/2016 11:51 1312 3 023 023 027 °C Température de l'air extérieur O6181930 HER 3 30/08/2016 11:51 1301 3 023 20.7 °C Température de l'air extérieur O6181930 HER 3 30/08/2016 11:51 1301 3 023 20.7 °C Température de l'air extérieur O6181930 HER 3 30/08/2016 11:51 1301 3 023 20.7 °C Température de l'air extérieur O6181930 HER 3 30/08/2016 11:51 1301 3 023 20.7 °C Température de l'air extérieur O6181904 ARRE 3 10/10/2016 12:04 1841 3 003 0.7 mg(C)/L Carbone organique dissous (COD										
O6181925 HER 2 30/08/2016 11:28 1312 3 023 111.1 % Taux de saturation en oxygène sur le terrain O6181925 HER 2 30/08/2016 11:28 1409 02 019 27.6 °C Température de l'air extérieur O6181925 HER 2 30/08/2016 11:28 1301 3 023 20.6 °C Température de l'eau O6181930 HER 3 30/08/2016 11:51 1841 3 003 0.9 mg(C)/L Carbone organique dissous (COD) <0.45 μm O6181930 HER 3 30/08/2016 11:51 1303 3 023 134.0 μS/cm Conductivité brute à 25°C sur le terrain O6181930 HER 3 30/08/2016 11:51 1449 3 023 520 NPP/100mL Escherichia coli (eau de surface) O6181930 HER 3 30/08/2016 11:51 6455 3 023 38 NPP/100mL Entérocoques (eau de surface) O6181930 HER 3 30/08/2016 11:51 1305 3 023 2.0 mg/L Matières en suspension totales O6181930 HER 3 30/08/2016 11:51 1340 3 003 1.3 mg(NO3)/L Nitrates O6181930 HER 3 30/08/2016 11:51 1311 3 023 10.36 mg(O2)/L Oxygène dissous O6181930 HER 3 30/08/2016 11:51 1311 3 023 10.36 mg(O2)/L Oxygène dissous O6181930 HER 3 30/08/2016 11:51 1312 3 023 0.016 mg(PO4)/L Orthophosphates O6181930 HER 3 30/08/2016 11:51 1312 3 023 0.016 mg(P)/L Phosphore total O6181930 HER 3 30/08/2016 11:51 1312 3 023 023 0.016 mg(P)/L Phosphore total O6181930 HER 3 30/08/2016 11:51 1312 3 023 023 027 °C Température de l'air extérieur O6181930 HER 3 30/08/2016 11:51 1301 3 023 20.7 °C Température de l'air extérieur O6181930 HER 3 30/08/2016 11:51 1301 3 023 20.7 °C Température de l'air extérieur O6181930 HER 3 30/08/2016 11:51 1301 3 023 20.7 °C Température de l'air extérieur O6181930 HER 3 30/08/2016 11:51 1301 3 023 20.7 °C Température de l'air extérieur O6181904 ARRE 3 10/10/2016 12:04 1841 3 003 0.7 mg(C)/L Carbone organique dissous (COD		HER 2	30/08/2016	11:28	1350		023	0.043	mg(P)/L	Phosphore total
O6181925 HER 2 30/08/2016 11:28 1409 02 019 27.6 °C Température de l'air extérieur			30/08/2016							
O6181925 HER 2 30/08/2016 11:28 1301 3 023 20.6 °C Température de l'eau										
O6181930 HER 3 30/08/2016 11:51 1841 3 003 0.9 mg(C)/L Carbone organique dissous (COD) <0.45 μm										
O6181930 HER 3 30/08/2016 11:51 1303 3 023 134.0 μS/cm Conductivité brute à 25°C sur le terrain										
06181930 HER 3 30/08/2016 11:51 1449 3 023 520 NPP/100mL Escherichia coli (eau de surface) 06181930 HER 3 30/08/2016 11:51 1305 3 023 38 NPP/100mL Entérocoques (eau de surface) 06181930 HER 3 30/08/2016 11:51 1305 3 023 2.0 mg/L Matières en suspension totales 06181930 HER 3 30/08/2016 11:51 1311 3 003 1.3 mg(NO3)/L Nitrates 06181930 HER 3 30/08/2016 11:51 1311 3 023 10.36 mg(O2)/L Oxygène dissous 06181930 HER 3 30/08/2016 11:51 1302 3 023 8.21 unité pH pH sur le terrain 06181930 HER 3 30/08/2016 11:51 1433 3 003 0.07 mg(PO4)/L Orthophosphates 06181930 HER 3 30/08/2016 11:51 1312 3 023										Conductivité bruto à 25°C ave la tarraire
06181930 HER 3 30/08/2016 11:51 6455 3 023 38 NPP/100mL Entérocoques (eau de surface) 06181930 HER 3 30/08/2016 11:51 1305 3 023 2.0 mg/L Matières en suspension totales 06181930 HER 3 30/08/2016 11:51 1340 3 003 1.3 mg(NO3)/L Nitrates 06181930 HER 3 30/08/2016 11:51 1311 3 023 10.36 mg(O2)/L Oxygène dissous 06181930 HER 3 30/08/2016 11:51 1302 3 023 8.21 unité pH pH sur le terrain 06181930 HER 3 30/08/2016 11:51 1433 3 003 0.07 mg(PO4)/L Orthophosphates 06181930 HER 3 30/08/2016 11:51 1312 3 023 117.5 % Taux de saturation en oxygène sur le terrain 06181930 HER 3 30/08/2016 11:51 1409 02 019										Conductivite prute a 25°C sur le terrain
06181930 HER 3 30/08/2016 11:51 1305 3 023 2.0 mg/L Matières en suspension totales 06181930 HER 3 30/08/2016 11:51 1340 3 003 1.3 mg(NO3)/L Nitrates 06181930 HER 3 30/08/2016 11:51 1311 3 023 10.36 mg(O2)/L Oxygène dissous 06181930 HER 3 30/08/2016 11:51 1302 3 023 8.21 unité pH pH sur le terrain 06181930 HER 3 30/08/2016 11:51 1433 3 003 0.07 mg(PO4)/L Orthophosphates 06181930 HER 3 30/08/2016 11:51 1312 3 023 0.016 mg(P)/L Phosphore total 06181930 HER 3 30/08/2016 11:51 1312 3 023 117.5 % Taux de saturation en oxygène sur le terrain 06181930 HER 3 30/08/2016 11:51 1409 02 019										
06181930 HER 3 30/08/2016 11:51 1340 3 003 1.3 mg(NO3)/L Nitrates 06181930 HER 3 30/08/2016 11:51 1311 3 023 10.36 mg(O2)/L Oxygène dissous 06181930 HER 3 30/08/2016 11:51 1302 3 023 8.21 unité pH pH sur le terrain 06181930 HER 3 30/08/2016 11:51 1433 3 003 0.07 mg(PO4)/L Orthophosphates 06181930 HER 3 30/08/2016 11:51 1312 3 023 0.016 mg(P)/L Phosphore total 06181930 HER 3 30/08/2016 11:51 1312 3 023 117.5 % Taux de saturation en oxygène sur le terrain 06181930 HER 3 30/08/2016 11:51 1409 02 019 29.1 °C Température de l'air extérieur 06181930 HER 3 30/08/2016 11:51 1301 3 023										, ,
06181930 HER 3 30/08/2016 11:51 1340 3 003 1.3 mg(NO3)/L Nitrates 06181930 HER 3 30/08/2016 11:51 1311 3 023 10.36 mg(O2)/L Oxygène dissous 06181930 HER 3 30/08/2016 11:51 1302 3 023 8.21 unité pH pH sur le terrain 06181930 HER 3 30/08/2016 11:51 1433 3 003 0.07 mg(PO4)/L Orthophosphates 06181930 HER 3 30/08/2016 11:51 1312 3 023 0.016 mg(P)/L Phosphore total 06181930 HER 3 30/08/2016 11:51 1312 3 023 117.5 % Taux de saturation en oxygène sur le terrain 06181930 HER 3 30/08/2016 11:51 1409 02 019 29.1 °C Température de l'air extérieur 06181930 HER 3 30/08/2016 11:51 1301 3 023			30/08/2016	11:51	1305		023	2.0		Matières en suspension totales
06181930 HER 3 30/08/2016 11:51 1311 3 023 10.36 mg(O2)/L Oxygène dissous 06181930 HER 3 30/08/2016 11:51 1302 3 023 8.21 unité pH pH sur le terrain 06181930 HER 3 30/08/2016 11:51 1433 3 003 0.07 mg(PO4)/L Orthophosphates 06181930 HER 3 30/08/2016 11:51 1312 3 023 0.016 mg(P)/L Phosphore total 06181930 HER 3 30/08/2016 11:51 1312 3 023 117.5 % Taux de saturation en oxygène sur le terrain 06181930 HER 3 30/08/2016 11:51 1409 02 019 29.1 °C Température de l'air extérieur 06181930 HER 3 30/08/2016 11:51 1301 3 023 20.7 °C Température de l'eau 06181930 ARRE 3 10/10/2016 12:04 1841 3 003	06181930	HER 3	30/08/2016	11:51	1340	3	003	1.3	mg(NO3)/L	Nitrates
06181930 HER 3 30/08/2016 11:51 1302 3 023 8.21 unité pH pH sur le terrain 06181930 HER 3 30/08/2016 11:51 1433 3 003 0.07 mg(PO4)/L Orthophosphates 06181930 HER 3 30/08/2016 11:51 1350 3 023 0.016 mg(P)/L Phosphore total 06181930 HER 3 30/08/2016 11:51 1312 3 023 117.5 % Taux de saturation en oxygène sur le terrain 06181930 HER 3 30/08/2016 11:51 1409 02 019 29.1 °C Température de l'air extérieur 06181930 HER 3 30/08/2016 11:51 1301 3 023 20.7 °C Température de l'eau 06181904 ARRE 3 10/10/2016 12:04 1841 3 003 0.7 mg(C)/L Carbone organique dissous (COD) <0.45 μm	06181930									Oxygène dissous
06181930 HER 3 30/08/2016 11:51 1433 3 003 0.07 mg(PO4)/L Orthophosphates 06181930 HER 3 30/08/2016 11:51 1350 3 023 0.016 mg(P)/L Phosphore total 06181930 HER 3 30/08/2016 11:51 1312 3 023 117.5 % Taux de saturation en oxygène sur le terrain 06181930 HER 3 30/08/2016 11:51 1409 02 019 29.1 °C Température de l'air extérieur 06181930 HER 3 30/08/2016 11:51 1301 3 023 20.7 °C Température de l'eau 06181904 ARRE 3 10/10/2016 12:04 1841 3 003 0.7 mg(C)/L Carbone organique dissous (COD) <0.45 μm										
06181930 HER 3 30/08/2016 11:51 1350 3 023 0.016 mg(P)/L Phosphore total 06181930 HER 3 30/08/2016 11:51 1312 3 023 117.5 % Taux de saturation en oxygène sur le terrain 06181930 HER 3 30/08/2016 11:51 1409 02 019 29.1 °C Température de l'air extérieur 06181930 HER 3 30/08/2016 11:51 1301 3 023 20.7 °C Température de l'eau 06181904 ARRE 3 10/10/2016 12:04 1841 3 003 0.7 mg(C)/L Carbone organique dissous (COD) <0.45 μm										
06181930 HER 3 30/08/2016 11:51 1312 3 023 117.5 % Taux de saturation en oxygène sur le terrain 06181930 HER 3 30/08/2016 11:51 1409 02 019 29.1 °C Température de l'air extérieur 06181930 HER 3 30/08/2016 11:51 1301 3 023 20.7 °C Température de l'eau 06181904 ARRE 3 10/10/2016 12:04 1841 3 003 0.7 mg(C)/L Carbone organique dissous (COD) <0.45 μm										
06181930 HER 3 30/08/2016 11:51 1409 02 019 29.1 °C Température de l'air extérieur 06181930 HER 3 30/08/2016 11:51 1301 3 023 20.7 °C Température de l'eau 06181904 ARRE 3 10/10/2016 12:04 1841 3 003 0.7 mg(C)/L Carbone organique dissous (COD) <0.45 μm	00101930									
06181930 HER 3 30/08/2016 11:51 1301 3 023 20.7 °C Température de l'eau 06181904 ARRE 3 10/10/2016 12:04 1841 3 003 0.7 mg(C)/L Carbone organique dissous (COD) <0.45 μm										
06181904 ARRE 3 10/10/2016 12:04 1841 3 003 0.7 mg(C)/L Carbone organique dissous (COD) <0.45 μm										
				11:51		3	023	20.7		
	06181904	ARRE 3	10/10/2016	12:04	1841	3	003	0.7	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
	06181904	ARRE 3	10/10/2016	12:04	1303	3	023	412	μS/cm	Conductivité brute à 25°C sur le terrain

Code	Rivière/			Sand	Sup	Frac	Résul		
Station	origine	Date	Heure	re	port	tion	Itat	Unité	Nom
complet				16	port	lion	itat		
06181904	ARRE 3	10/10/2016	12:04	1449	3	023	78	NPP/100mL	Escherichia coli (eau de surface)
06181904	ARRE 3	10/10/2016	12:04	6455	3	023	119	NPP/100mL	Entérocoques (eau de surface)
06181904	ARRE 3	10/10/2016	12:04	1335	3	003	0.01	mg(NH4)/L	Ammonium
06181904	ARRE 3	10/10/2016	12:04	1340	3	003	1.6	mg(NO3)/L	Nitrates
06181904	ARRE 3	10/10/2016	12:04	1311	3	023	9.79	mg(O2)/L	Oxygène dissous
06181904	ARRE 3	10/10/2016		1302	3	023	8.09	unité pH	pH sur le terrain
06181904		10/10/2016	12:04	1433	3	003	0.03		
	ARRE 3		12:04					mg(PO4)/L	Orthophosphates
06181904	ARRE 3	10/10/2016	12:04	1433	3	003	0.05	mg(PO4)/L	Orthophosphates
06181904	ARRE 3	10/10/2016	12:04	1312	3	023	93.2	%	Taux de saturation en oxygène sur le terrain
06181904	ARRE 3	10/10/2016	12:04	1409	02	019	14.2	°C	Température de l'air extérieur
06181904	ARRE 3	10/10/2016	12:04	1301	3	023	12.2	°C	Température de l'eau
06181904	ARRE 3	10/10/2016	12:04	1303	3	023	412	μS/cm	Conductivité brute à 25°C sur le terrain
06181904	ARRE 3	10/10/2016	12:04	1311	3	023	9.79	mg(O2)/L	Oxygène dissous
06181904	ARRE 3	10/10/2016	12:04	1302	3	023	8.09	unité pH	pH sur le terrain
06181904	ARRE 3	10/10/2016	12:04	1312	3	023	93.2	%	Taux de saturation en oxygène sur le terrain
06181904	ARRE 3	10/10/2016	12:04	1409	02	019	14.2	°C	Température de l'air extérieur
06181904	ARRE 3	10/10/2016	12:04	1301	3	023	12.2	°C	Température de l'eau
06181550	ARRE 5	10/10/2016	13:36	1841	3	003	0.7	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181550	ARRE 5	10/10/2016	13:36	1303	3	023	347	μS/cm	Conductivité brute à 25°C sur le terrain
06181550	ARRE 5	10/10/2016	13:36	1313	3	023	0.8	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181550	ARRE 5	10/10/2016	13:36	1449	3	023	350	NPP/100mL	Escherichia coli (eau de surface)
06181550	ARRE 5	10/10/2016	13:36	6455	3	023	38	NPP/100mL	Entérocoques (eau de surface)
06181550	ARRE 5	10/10/2016	13:36	1335	3	003	0.01	mg(NH4)/L	Ammonium
06181550	ARRE 5	10/10/2016	13:36	1340	3	003	1.8	mg(NO3)/L	Nitrates
06181550	ARRE 5	10/10/2016	13:36	1311	3	023	15.12	mg(O2)/L	
06181550			13:36	1302	3	023	8.81		Oxygène dissous pH sur le terrain
	ARRE 5	10/10/2016						unité pH	
06181550	ARRE 5	10/10/2016	13:36	1433	3	003	0.06	mg(PO4)/L	Orthophosphates
06181550	ARRE 5	10/10/2016	13:36	1350	3	023	0.019	mg(P)/L	Phosphore total
06181550	ARRE 5	10/10/2016	13:36	1312	3	023	144.1	%	Taux de saturation en oxygène sur le terrain
06181550	ARRE 5	10/10/2016	13:36	1409	02	019	19.5	°C	Température de l'air extérieur
06181550	ARRE 5	10/10/2016	13:36	1301	3	023	14.4	°C	Température de l'eau
06181500	ARRE 4	10/10/2016	13:18	1841	3	003	0.6	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181500	ARRE 4	10/10/2016	13:18	1303	3	023	346	μS/cm	Conductivité brute à 25°C sur le terrain
06181500	ARRE 4	10/10/2016	13:18	1313	3	023	0.6	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181500	ARRE 4	10/10/2016	13:18	1305	3	023	3.8	mg/L	Matières en suspension totales
06181500	ARRE 4	10/10/2016	13:18	1335	3	003	0.01	mg(NH4)/L	Ammonium
06181500	ARRE 4	10/10/2016	13:18	1340	3	003	1.9	mg(NO3)/L	Nitrates
06181500	ARRE 4	10/10/2016	13:18	1311	3	023	10.10	mg(O2)/L	Oxygène dissous
06181500	ARRE 4	10/10/2016	13:18	1302	3	023	8.32	unité pH	pH sur le terrain
06181500	ARRE 4	10/10/2016	13:18	1433	3	003	0.05	mg(PO4)/L	Orthophosphates
06181500	ARRE 4	10/10/2016	13:18	1350	3	023	0.021	mg(P)/L	Phosphore total
06181500	ARRE 4	10/10/2016	13:18	1312	3	023	99.8	%	Taux de saturation en oxygène sur le terrain
06181500	ARRE 4	10/10/2016	13:18	1409	02	019	19.5	°C	Température de l'air extérieur
06181500	ARRE 4	10/10/2016	13:18	1301	3	023	13	°C	Température de l'eau
06181500	ARRE 4	10/10/2016	13:18	1303	3	023	346	μS/cm	Conductivité brute à 25°C sur le terrain
06181500	ARRE 4	10/10/2016	13:18	1311	3	023	10.10	mg(O2)/L	Oxygène dissous
06181500	ARRE 4	10/10/2016	13:18	1302	3	023	8.32	unité pH	pH sur le terrain
	ARRE 4			1312	3	023	99.8	%	Taux de saturation en oxygène sur le terrain
06181500		10/10/2016	13:18					°C	
06181500	ARRE 4	10/10/2016	13:18	1409	02	019	19.5		Température de l'air extérieur
06181500	ARRE 4	10/10/2016	13:18	1301	3	023	13	°C	Température de l'eau
06181850	GLE 1	10/10/2016	11:27	1841	3	003	0.2	mg(C)/L	Carbone organique dissous (COD) <0.45 μm
06181850	GLE 1	10/10/2016	11:27	1303	3	023	536	μS/cm	Conductivité brute à 25°C sur le terrain
06181850	GLE 1	10/10/2016	11:27	1313	3	023	1.2	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181850	GLE 1	10/10/2016	11:27	1335	3	003	0.01	mg(NH4)/L	Ammonium
06181850	GLE 1	10/10/2016	11:27	1340	3	003	1.0	mg(NO3)/L	Nitrates
06181850	GLE 1	10/10/2016	11:27	1311	3	023	8.95	mg(O2)/L	Oxygène dissous
06181850	GLE 1	10/10/2016	11:27	1302	3	023	7.63	unité pH	pH sur le terrain
06181850	GLE 1	10/10/2016	11:27	1433	3	003	0.02	mg(PO4)/L	Orthophosphates
06181850	GLE 1	10/10/2016	11:27	1433	3	003	0.05	mg(PO4)/L	Orthophosphates
06181850	GLE 1	10/10/2016	11:27	1350	3	023	0.011	mg(P)/L	Phosphore total
06181850	GLE 1	10/10/2016	11:27	1312	3	023	90	%	Taux de saturation en oxygène sur le terrain
06181850	GLE 1	10/10/2016	11:27	1409	02	019	11.3	°C	Température de l'air extérieur
06181850	GLE 1	10/10/2016	11:27	1301	3	023	14.5	°C	Température de l'eau
06181902	ARRE 2	10/10/2016	11:01	1841	3	003	0.6	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
00101002	/ II II I L	10, 10, 2010	11.01	1071		- 555	0.0	g(=//=	Talletio organique dicodus (OOD) (O.70 pili

Code	Rivière/			Sand	Sup	Frac	Résul		
Station		Date	Heure	re	port	tion	Itat	Unité	Nom
complet	origine			16	port	lion	itat		
06181902	ARRE 2	10/10/2016	11:01	1303	3	023	343	μS/cm	Conductivité brute à 25°C sur le terrain
06181902	ARRE 2	10/10/2016	11:01	1313	3	023	1.7	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181902	ARRE 2	10/10/2016	11:01	1449	3	023	208	NPP/100mL	Escherichia coli (eau de surface)
06181902	ARRE 2	10/10/2016	11:01	6455	3	023	208	NPP/100mL	Entérocoques (eau de surface)
									, , , , ,
06181902	ARRE 2	10/10/2016	11:01	1335	3	003	0.01	mg(NH4)/L	Ammonium
06181902	ARRE 2	10/10/2016	11:01	1340	3	003	1.1	mg(NO3)/L	Nitrates
06181902	ARRE 2	10/10/2016	11:01	1311	3	023	10.47	mg(O2)/L	Oxygène dissous
06181902	ARRE 2	10/10/2016	11:01	1302	3	023	8.03	unité pH	pH sur le terrain
06181902	ARRE 2	10/10/2016	11:01	1433	3	003	0.07	mg(PO4)/L	Orthophosphates
06181902	ARRE 2	10/10/2016	11:01	1433	3	003	0.09	mg(PO4)/L	Orthophosphates
06181902	ARRE 2	10/10/2016	11:01	1350	3	023	0.022	mg(P)/L	Phosphore total
06181902	ARRE 2	10/10/2016	11:01	1312	3	023	100.7	%	Taux de saturation en oxygène sur le terrain
	ARRE 2			1409	02	019	100.7	°C	
06181902		10/10/2016	11:01						Température de l'air extérieur
06181902	ARRE 2	10/10/2016	11:01	1301	3	023	12.5	°C	Température de l'eau
06181901	ARRE 1	10/10/2016	10:44	1841	3	003	0.7	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181901	ARRE 1	10/10/2016	10:44	1303	3	023	253	μS/cm	Conductivité brute à 25°C sur le terrain
06181901	ARRE 1	10/10/2016	10:44	1449	3	023	160	NPP/100mL	Escherichia coli (eau de surface)
06181901	ARRE 1	10/10/2016	10:44	1340	3	003	1.3	mg(NO3)/L	Nitrates
06181901	ARRE 1	10/10/2016	10:44	1311	3	023	10.79	mg(O2)/L	Oxygène dissous
06181901	ARRE 1	10/10/2016	10:44	1302	3	023	8.28	unité pH	pH sur le terrain
06181901	ARRE 1	10/10/2016	10:44	1433	3	003	0.09	mg(PO4)/L	Orthophosphates
									· · · · · · · · · · · · · · · · · · ·
06181901	ARRE 1	10/10/2016	10:44	1433	3	003	0.12	mg(PO4)/L	Orthophosphates
06181901	ARRE 1	10/10/2016	10:44	1350	3	023	0.028	mg(P)/L	Phosphore total
06181901	ARRE 1	10/10/2016	10:44	1312	3	023	97.7	%	Taux de saturation en oxygène sur le terrain
06181901	ARRE 1	10/10/2016	10:44	1409	02	019	13.5	°C	Température de l'air extérieur
06181901	ARRE 1	10/10/2016	10:44	1301	3	023	9.5	°C	Température de l'eau
06181800	RIE 1	10/10/2016	13:40	1303	3	023	124.2	μS/cm	Conductivité brute à 25°C sur le terrain
06181800	RIE 1	10/10/2016	13:40	1311	3	023	11.82	mg(O2)/L	Oxygène dissous
06181800	RIE 1	10/10/2016	13:40	1302	3	023	7.69	unité pH	pH sur le terrain
06181800	RIE 1	10/10/2016	13:40	1312	3	023	113.8	%	
								°C	Taux de saturation en oxygène sur le terrain
06181800	RIE 1	10/10/2016	13:40	1409	02	019	17.9		Température de l'air extérieur
06181800	RIE 1	10/10/2016	13:40	1301	3	023	12.6	°C	Température de l'eau
06181925	HER 2	11/10/2016	11:24	1841	3	003	0.8	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181925	HER 2	11/10/2016	11:24	1303	3	023	103.1	μS/cm	Conductivité brute à 25°C sur le terrain
06181925	HER 2	11/10/2016	11:24	1313	3	023	0.9	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181925	HER 2	11/10/2016	11:24	1449	3	023	38	NPP/100mL	Escherichia coli (eau de surface)
06181925	HER 2	11/10/2016	11:24	6455	3	023	38	NPP/100mL	Entérocoques (eau de surface)
06181925	HER 2	11/10/2016	11:24	1335	3	003	0.01	mg(NH4)/L	Ammonium
06181925	HER 2	11/10/2016	11:24	1340	3	003	0.6	mg(NO3)/L	Nitrates
06181925	HER 2	11/10/2016	11:24	1311	3	023	11.50	mg(O2)/L	Oxygène dissous
								0. /	7.0
06181925	HER 2	11/10/2016	11:24	1302	3	023	8.42	unité pH	pH sur le terrain
06181925	HER 2	11/10/2016	11:24	1433	3	003	0.05	mg(PO4)/L	Orthophosphates
06181925	HER 2	11/10/2016	11:24	1433	3	003	0.08	mg(PO4)/L	Orthophosphates
06181925	HER 2	11/10/2016	11:24	1350	3	023	0.017	mg(P)/L	Phosphore total
06181925	HER 2	11/10/2016	11:24	1312	3	023	108.3	%	Taux de saturation en oxygène sur le terrain
06181925	HER 2	11/10/2016	11:24	1409	02	019	13.3	°C	Température de l'air extérieur
06181925	HER 2	11/10/2016	11:24	1301	3	023	11.2	°C	Température de l'eau
06181930	HER 3	10/10/2016	11:05	1841	3	003	1.0	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181930	HER 3	10/10/2016	11:05	1303	3	023	106.8	μS/cm	Conductivité brute à 25°C sur le terrain
06181930	HER 3		11:05	1313		023	0.9		Demande Biochimique en Oxygène (DBO5)
		10/10/2016			3			mg(O2)/L	
06181930	HER 3	10/10/2016	11:05	1449	3	023	163	NPP/100mL	Escherichia coli (eau de surface)
06181930	HER 3	10/10/2016	11:05	6455	3	023	38	NPP/100mL	Entérocoques (eau de surface)
06181930	HER 3	10/10/2016	11:05	1340	3	003	0.7	mg(NO3)/L	Nitrates
06181930	HER 3	10/10/2016	11:05	1311	3	023	10.85	mg(O2)/L	Oxygène dissous
06181930	HER 3	10/10/2016	11:05	1302	3	023	8.70	unité pH	pH sur le terrain
06181930	HER 3	10/10/2016	11:05	1433	3	003	0.02	mg(PO4)/L	Orthophosphates
06181930	HER 3	10/10/2016	11:05	1433	3	003	0.04	mg(PO4)/L	Orthophosphates
06181930	HER 3	10/10/2016	11:05	1312	3	023	101.5	%	Taux de saturation en oxygène sur le terrain
06181930	HER 3	10/10/2016	11:05	1409	02	019	13.6	°C	Température de l'air extérieur
06181930	HER 3	10/10/2016	11:05	1301	3	023	11.1	°C	Température de l'eau
06300048	HER 4	11/10/2016	10:37	1841	3	003	0.9	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06300048	HER 4	11/10/2016	10:37	1303	3	023	266	μS/cm	Conductivité brute à 25°C sur le terrain
06300048	HER 4	11/10/2016	10:37	1313	3	023	0.9	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06300048	HER 4	11/10/2016	10:37	1449	3	023	250	NPP/100mL	Escherichia coli (eau de surface)
						– 🧸			,

Code Station	Rivière/ origine	Date	Heure	Sand re	Sup port	Frac tion	Résul Itat	Unité	Nom
complet 06300048	HER 4	11/10/2016	10:37	6455	3	023	38	NPP/100mL	Entérocoques (eau de surface)
06300048	HER 4	11/10/2016	10:37	1335	3	003	0.01	mg(NH4)/L	Ammonium
06300048	HER 4	11/10/2016	10:37	1340	3	003	1.1	mg(NO3)/L	Nitrates
06300048	HER 4	11/10/2016	10:37	1311	3	023	10.71	mg(O2)/L	Oxygène dissous
06300048	HER 4	11/10/2016	10:37	1302	3	023	8.09	unité pH	pH sur le terrain
06300048	HER 4	11/10/2016	10:37	1433	3	003	0.03	mg(PO4)/L	Orthophosphates
06300048	HER 4	11/10/2016	10:37	1433	3	003	0.05	mg(PO4)/L	Orthophosphates
06300048	HER 4	11/10/2016	10:37	1350	3	023	0.014	mg(P)/L	Phosphore total
06300048	HER 4	11/10/2016	10:37	1312	3	023	102.1	%	Taux de saturation en oxygène sur le terrain
06300048	HER 4	11/10/2016	10:37	1409	02	019	13	°C	Température de l'air extérieur
06300048	HER 4	11/10/2016	10:37	1301	3	023	11.9	°C	Température de l'eau
06181800	RIE 1	10/10/2016	13:40	1841	3	003	1.0	mg(C)/L	Carbone organique dissous (COD) <0.45 µm
06181800	RIE 1	10/10/2016	13:40	1303	3	023	124.2	μS/cm	Conductivité brute à 25°C sur le terrain
06181800	RIE 1	10/10/2016	13:40	1313	3	023	0.5	mg(O2)/L	Demande Biochimique en Oxygène (DBO5)
06181800	RIE 1	10/10/2016	13:40	1335	3	003	0.01	mg(NH4)/L	Ammonium
06181800	RIE 1	10/10/2016	13:40	1311	3	023	11.82	mg(O2)/L	Oxygène dissous
06181800	RIE 1	10/10/2016	13:40	1302	3	023	7.69	unité pH	pH sur le terrain
06181800	RIE 1	10/10/2016	13:40	1433	3	003	0.02	mg(PO4)/L	Orthophosphates
06181800	RIE 1	10/10/2016	13:40	1433	3	003	0.04	mg(PO4)/L	Orthophosphates
06181800	RIE 1	10/10/2016	13:40	1312	3	023	113.8	%	Taux de saturation en oxygène sur le terrain
06181800	RIE 1	10/10/2016	13:40	1409	02	019	17.9	°C	Température de l'air extérieur
06181800	RIE 1	10/10/2016	13:40	1301	3	023	12.6	°C	Température de l'eau
06300048	HER 4	11/10/2016	10:37	1303	3	023	266	μS/cm	Conductivité brute à 25°C sur le terrain
06300048	HER 4	11/10/2016	10:37	1311	3	023	10.71	mg(O2)/L	Oxygène dissous
06300048	HER 4	11/10/2016	10:37	1302	3	023	8.09	unité pH	pH sur le terrain
06300048	HER 4	11/10/2016	10:37	1312	3	023	102.1	%	Taux de saturation en oxygène sur le terrain
06300048	HER 4	11/10/2016	10:37	1409	02	019	13	°C	Température de l'air extérieur
06300048	HER 4	11/10/2016	10:37	1301	3	023	11.9	°C	Température de l'eau

8.5.6. Résultats des analyses de pesticides réalisées en 2016 par le Conseil Départemental du Gard

Tableau 42 - Pesticides sur eau brute ayant dépassé le seuil de quantification du laboratoire CARSO en 2016.

Commune	Lieu dit complément	Date	Heure	Sandre	Résulltat	Unité	Nom
LE VIGAN	ARRE	31/03/2016	12:33	1907	0.028	μg/L	AMPA
LE VIGAN	ARRE	29/08/2016	12:52	1907	0.134	μg/L	AMPA
LE VIGAN	ARRE	13/06/2016	13:40	1907	0.055	μg/L	AMPA
LE VIGAN	ARRE	10/10/2016	13:18	1235	0.023	μg/L	Pentachlorophénol
LE VIGAN	ARRE	10/10/2016	13:18	1847	0.005	μg/L	Phosphate de tributyle
SUMENE	HERAULT	30/08/2016	12:20	1907	0.158	μg/L	AMPA
SUMENE	HERAULT	30/08/2016	12:20	1506	0.025	μg/L	Glyphosate (incluant le sulfosate)
SUMENE	HERAULT	30/08/2016	12:20	1847	0.006	μg/L	Phosphate de tributyle
SUMENE	HERAULT	13/06/2016	14:06	1907	0.020	μg/L	AMPA
SUMENE	HERAULT	11/10/2016	10:37	1907	0.160	μg/L	AMPA
AVEZE	L'ARRE	13/06/2016	11:48	1141	0.006	μg/L	2,4-D
AVEZE	L'ARRE	10/10/2016	12:04	1847	0.006	μg/L	Phosphate de tributyle
SUMENE	LE RIEUTORD	14/06/2016	11:00	1702	12	μg/L	Formaldéhyde
SUMENE	LE RIEUTORD	10/10/2016	13:40	1584	0.006	μg/L	Biphényle
SUMENE	LE RIEUTORD	10/10/2016	13:40	1847	0.006	μg/L	Phosphate de tributyle

8.5.7. Résultats des analyses de métaux réalisées en 2016 par le Conseil Départemental du Gard

Tableau 43 - Métaux sur bryophytes ayant dépassé le seuil de quantification du laboratoire CARSO en 2016.

Code Station complet	Rivière/ origine	Commune	Lieu dit complément	Date	Heure	Résulltat	Unité	Nom
06181902	ARRE 2	ARRE	ARRE	13/06/2016	11:02	0.23	mg/(kg MS)	Antimoine total
06181902	ARRE 2	ARRE	ARRE	13/06/2016	11:02	6.67	mg/(kg MS)	Arsenic total
06181902	ARRE 2	ARRE	ARRE	13/06/2016	11:02	86.24	mg/(kg MS)	Baryum total
06181902	ARRE 2	ARRE	ARRE	13/06/2016	11:02	37	mg/(kg MS)	Bore total
06181902	ARRE 2	ARRE	ARRE	13/06/2016	11:02	0.70	mg/(kg MS)	Cadmium total
06181902	ARRE 2	ARRE	ARRE	13/06/2016	11:02	3.80	mg/(kg MS)	Chrome total
06181902	ARRE 2	ARRE	ARRE	13/06/2016	11:02	7.14	mg/(kg MS)	Cuivre total
06181902	ARRE 2	ARRE	ARRE	13/06/2016	11:02	3124	mg/(kg MS)	Fer total
06181902	ARRE 2	ARRE	ARRE	13/06/2016	11:02	0.047	mg/(kg MS)	Mercure total
06181902	ARRE 2	ARRE	ARRE	13/06/2016	11:02	3.85	mg/(kg MS)	Nickel total
06181902	ARRE 2	ARRE	ARRE	13/06/2016	11:02	9.72	mg/(kg MS)	Plomb total
06181902	ARRE 2	ARRE	ARRE	13/06/2016	11:02	118.31	mg/(kg MS)	Zinc total
06181500	ARRE 4	LE VIGAN	ARRE	13/06/2016	13:40	7.20	mg/(kg MS)	Arsenic total
06181500	ARRE 4	LE VIGAN	ARRE	13/06/2016	13:40	88.48	mg/(kg MS)	Baryum total
06181500	ARRE 4	LE VIGAN	ARRE	13/06/2016	13:40	30	mg/(kg MS)	Bore total
06181500	ARRE 4	LE VIGAN	ARRE	13/06/2016	13:40	0.88	mg/(kg MS)	Cadmium total
06181500	ARRE 4	LE VIGAN	ARRE	13/06/2016	13:40	8.09	mg/(kg MS)	Chrome total
06181500	ARRE 4	LE VIGAN	ARRE	13/06/2016	13:40	7.71	mg/(kg MS)	Cuivre total
06181500	ARRE 4	LE VIGAN	ARRE	13/06/2016	13:40	0.84	mg/(kg MS)	Etain total
06181500	ARRE 4	LE VIGAN	ARRE	13/06/2016	13:40	4140	mg/(kg MS)	Fer total
06181500	ARRE 4	LE VIGAN	ARRE	13/06/2016	13:40	0.060	mg/(kg MS)	Mercure total
06181500	ARRE 4	LE VIGAN	ARRE	13/06/2016	13:40	4.69	mg/(kg MS)	Nickel total
06181500	ARRE 4	LE VIGAN	ARRE	13/06/2016	13:40	14.17	mg/(kg MS)	Plomb total
06181500	ARRE 4	LE VIGAN	ARRE	13/06/2016	13:40	157.06	mg/(kg MS)	Zinc total
06181850	GLE 1	POMMIERS	LA GLEPPE	13/06/2016	11:33	9.67	mg/(kg MS)	Arsenic total
06181850	GLE 1	POMMIERS	LA GLEPPE	13/06/2016	11:33	126.17	mg/(kg MS)	Baryum total
06181850	GLE 1	POMMIERS	LA GLEPPE	13/06/2016	11:33	30	mg/(kg MS)	Bore total
06181850	GLE 1	POMMIERS	LA GLEPPE	13/06/2016	11:33	1.65	mg/(kg MS)	Cadmium total
06181850	GLE 1	POMMIERS	LA GLEPPE	13/06/2016	11:33	4.17	mg/(kg MS)	Chrome total
06181850	GLE 1	POMMIERS	LA GLEPPE	13/06/2016	11:33	6.28	mg/(kg MS)	Cuivre total
06181850	GLE 1	POMMIERS	LA GLEPPE	13/06/2016	11:33	4369	mg/(kg MS)	Fer total
06181850	GLE 1	POMMIERS	LA GLEPPE	13/06/2016	11:33	0.073	mg/(kg MS)	Mercure total
06181850	GLE 1	POMMIERS	LA GLEPPE	13/06/2016	11:33	4.90	mg/(kg MS)	Nickel total
06181850	GLE 1	POMMIERS	LA GLEPPE	13/06/2016	11:33	47.16	mg/(kg MS)	Plomb total
06181850	GLE 1	POMMIERS	LA GLEPPE	13/06/2016	11:33	1.70	mg/(kg MS)	Antimoine total

8.5.8. Résultats des analyses bactériologiques réalisées en 2016 par l'ARS

L'Hérault

Tableau 44 - Résultats des analyses bactériologiques réalisées dans l'Hérault en 2016 dans le cadre des suivis de l'ARS.

PSV - Code UE	PSV - Nom	PLV - Date	PLV - Heure	STR (UFC/100 ml)	ECOL (UFC/ 100m) I	PSV - Commune - Nom
281301030D034240	HERAULT - LE VIEUX MOULIN	17/08/2016	15h40	438	46	CASTELNAU-DE-GUERS
281301030D034240	HERAULT - LE VIEUX MOULIN	14/06/2016	15h05	<15	30	CASTELNAU-DE-GUERS
281301030D034240	HERAULT - LE VIEUX MOULIN	19/07/2016	15h15	<15	110	CASTELNAU-DE-GUERS
281301030D034240	HERAULT - LE VIEUX MOULIN	02/08/2016	15h40	15	46	CASTELNAU-DE-GUERS
281303003D034168	HERAULT- LES SABLIERES	17/08/2016	11h55	15	30	ANIANE
281303003D034168	HERAULT- LES SABLIERES	14/06/2016	12h00	<15	46	ANIANE
281303003D034168	HERAULT- LES SABLIERES	19/07/2016	11h55	30	15	ANIANE
281303003D034168	HERAULT- LES SABLIERES	02/08/2016	11h55	<15	76	ANIANE
281303086D034150	HERAULT-AMONT ST GUILHEM	17/08/2016	10h50	<15	<15	SAINT-GUILHEM-LE-DESERT
281303086D034150	HERAULT-AMONT ST GUILHEM	05/07/2016	10h15	<15	<15	SAINT-GUILHEM-LE-DESERT
281303086D034150	HERAULT-AMONT ST GUILHEM	14/06/2016	11h00	<15	<15	SAINT-GUILHEM-LE-DESERT
281303086D034150	HERAULT-AMONT ST GUILHEM	19/07/2016	10h50	15	<15	SAINT-GUILHEM-LE-DESERT

28139039009004150 HERAULT-MAIONT VIS								
28130033D034060 HERAULT-AMONT VIS 19072016 1730 415 46 GANGES 28130033D034060 HERAULT-AMONT VIS 19072016 1720 415 30 GANGES 2813003D034060 HERAULT-AMONT VIS 010982016 1720 415 50 GANGES 2813003150034120 HERAULT-AMONT VIS 010982016 1730 51 5 46 GANGES 2813003150034120 HERAULT-AMGLAS 130982016 1730 415 5 15 808536 6 2813003150034120 HERAULT-AMGLAS 130982016 1730 415 5 15 808536 6 2813003150034120 HERAULT-AMGLAS 173092016 1730 415 5 15 808536 6 2813003150034120 HERAULT-AMGLAS 173092016 1730 415 415 808536 6 2813003150034120 HERAULT-BAIGNADE DU PONT 170982016 1730 40 5 15 15 15 CANET 2813002102034210 HERAULT-BAIGNADE DU PONT 19072016 1730 40 5 15 15 15 CANET 2813002102034210 HERAULT-BAIGNADE DU PONT 19072016 1730 40 5 15 15 15 CANET 2813002102034210 HERAULT-BAIGNADE DU PONT 19072016 1730 45 15 15 CANET 2813002102034210 HERAULT-BAIGNADE DU PONT 19072016 1730 45 15 15 CANET 2813002102034210 HERAULT-BAIGNADE DU PONT 100982016 1730 45 15 15 CANET 2813002102034210 HERAULT-BAIGNADE DU PONT 100982016 1730 45 15 15 CANET 281300210203410 HERAULT-BAIGNADE DU PONT 100982016 1730 45 15 15 SAINT-BANDE-FOS 2813002050034160 HERAULT-LE LABADOU 150072016 1730 45 15 SAINT-BANDE-FOS 2813002050034160 HERAULT-LE LABADOU 05072016 1730 45 15 SAINT-BANDE-FOS 2813002050034160 HERAULT-LE LABADOU 05072016 1730 415 15 SAINT-BANDE-FOS 2813002050034161 HERAULT-LE LABADOU 05072016 1730 415 15 SAINT-BANDE-FOS 2813002050034161 HERAULT-LE LABADOU 05072016 1730 415 15 SAINT-BANDE-FOS 2813002050034161 HERAULT-LE PONT DU DIABLE 05072016 1730 415 15 SAINT-BANDE-FOS 2813002050034161 HERAULT-LE PONT DU DIABLE 05072016 1730 415 15 SAINT-BANDE-FOS 2813002050034161 HERAULT-LE PONT DU DIABLE 05072016 1730 415 15 SAINT-BANDE-FOS 281300300034161 HERAULT-LE PONT DU DIABLE 05072016 1730 415 15 SAINT-BANDE-FOS 281300300034161 HERAULT-LE PONT DU DIABLE 05072016 1730 415 15 SA	281303086D034150	HERAULT-AMONT ST GUILHEM	02/08/2016	10h55	<15		<15	SAINT-GUILHEM-LE-DESERT
281300335004000 HERAULT-AMONT VIS	281303033D034060	HERAULT-AMONT VIS	16/08/2016	12h45	<15		30	GANGES
28130031003400	281303033D034060	HERAULT-AMONT VIS	13/06/2016	13h15	<15		371	GANGES
2813003103004120 HERAULT-ANGLAS 13007/2016 159.05 15 15 BRISSAC 2813003103004120 HERAULT-ANGLAS 13007/2016 149.55 30 30 BRISSAC 2813003103004120 HERAULT-ANGLAS 16007/2016 149.55 30 30 BRISSAC 2813003103004120 HERAULT-ANGLAS 16002/016 149.55 30 30 BRISSAC 2813003103004120 HERAULT-ANGLAS 16002/016 149.55 30 30 BRISSAC 2813003103004120 HERAULT-BAIGNANDE DU PONT 17002/016 149.05 15 415 CARET 2813002102004210 HERAULT-BAIGNANDE DU PONT 16002/016 149.05 15 415 CARET 2813002102004210 HERAULT-BAIGNANDE DU PONT 16002/016 149.05 15 415 CARET 2813002102004210 HERAULT-BAIGNANDE DU PONT 16002/016 149.05 15 415 CARET 2813002102004210 HERAULT-BAIGNANDE DU PONT 16002/016 149.05 15 415 CARET 281300205004160 HERAULT-BELABADOU 17002/016 149.05 15 415 CARET 281300205004160 HERAULT-LE LABADOU 19007/2016 149.05 15 415 SAINT-JEAN-DE-FOS 281300205004160 HERAULT-LE LABADOU 19007/2016 149.05 15 415 SAINT-JEAN-DE-FOS 281300205004160 HERAULT-LE LABADOU 12007/2016 149.05 15 415 SAINT-JEAN-DE-FOS 281300205004160 HERAULT-LE LABADOU 12007/2016 149.05 15 415 SAINT-JEAN-DE-FOS 281300205004160 HERAULT-LE LABADOU 12002/2016 149.05 15 415 SAINT-JEAN-DE-FOS 281300205004161 HERAULT-LE LABADOU 12002/2016 149.05 15 415 SAINT-JEAN-DE-FOS 281300300004161 HERAULT-LE PONT DU DIABLE 17002/2016 149.05 15 51 SAINT-JEAN-DE-FOS 281300300004161 HERAULT-LE PONT DU DIABLE 17002/2016 149.05 15 51 SAINT-JEAN-DE-FOS 281300300004161 HERAULT-LE PONT DU DIABLE 10002/2016 149.05 15 51 SAINT-JEAN-DE-FOS 281300300004161 HERAULT-LE PONT DU DIABLE 10002/2016 149.05 15 51 51 SAINT-JEAN-DE-FOS 281300300004161 HERAULT-LE PONT DU DIABLE 10002/2016 149.05 15 51 51 51 51 51 51	281303033D034060	HERAULT-AMONT VIS	18/07/2016	12h20	<15		30	GANGES
2813003103004120 HERAULT-ANGLAS 13007/2016 159.05 15 15 BRISSAC 2813003103004120 HERAULT-ANGLAS 13007/2016 149.55 30 30 BRISSAC 2813003103004120 HERAULT-ANGLAS 16007/2016 149.55 30 30 BRISSAC 2813003103004120 HERAULT-ANGLAS 16002/016 149.55 30 30 BRISSAC 2813003103004120 HERAULT-ANGLAS 16002/016 149.55 30 30 BRISSAC 2813003103004120 HERAULT-BAIGNANDE DU PONT 17002/016 149.05 15 415 CARET 2813002102004210 HERAULT-BAIGNANDE DU PONT 16002/016 149.05 15 415 CARET 2813002102004210 HERAULT-BAIGNANDE DU PONT 16002/016 149.05 15 415 CARET 2813002102004210 HERAULT-BAIGNANDE DU PONT 16002/016 149.05 15 415 CARET 2813002102004210 HERAULT-BAIGNANDE DU PONT 16002/016 149.05 15 415 CARET 281300205004160 HERAULT-BELABADOU 17002/016 149.05 15 415 CARET 281300205004160 HERAULT-LE LABADOU 19007/2016 149.05 15 415 SAINT-JEAN-DE-FOS 281300205004160 HERAULT-LE LABADOU 19007/2016 149.05 15 415 SAINT-JEAN-DE-FOS 281300205004160 HERAULT-LE LABADOU 12007/2016 149.05 15 415 SAINT-JEAN-DE-FOS 281300205004160 HERAULT-LE LABADOU 12007/2016 149.05 15 415 SAINT-JEAN-DE-FOS 281300205004160 HERAULT-LE LABADOU 12002/2016 149.05 15 415 SAINT-JEAN-DE-FOS 281300205004161 HERAULT-LE LABADOU 12002/2016 149.05 15 415 SAINT-JEAN-DE-FOS 281300300004161 HERAULT-LE PONT DU DIABLE 17002/2016 149.05 15 51 SAINT-JEAN-DE-FOS 281300300004161 HERAULT-LE PONT DU DIABLE 17002/2016 149.05 15 51 SAINT-JEAN-DE-FOS 281300300004161 HERAULT-LE PONT DU DIABLE 10002/2016 149.05 15 51 SAINT-JEAN-DE-FOS 281300300004161 HERAULT-LE PONT DU DIABLE 10002/2016 149.05 15 51 51 SAINT-JEAN-DE-FOS 281300300004161 HERAULT-LE PONT DU DIABLE 10002/2016 149.05 15 51 51 51 51 51 51	281303033D034060	HERAULT-AMONT VIS	01/08/2016	12h30		15	46	GANGES
2813009130094120	281303013D034120	HERAULT-ANGLAS		15h05		15	15	BRISSAC
2813003150034120					<15		15	I.
BERNACH PERALLIT-ANGLAS 0108/2016 1465 30 30 BRISSAC						30	_	I.
BERISAC								
2813020120034210 HERAULT-BAIGNADE DU PONT 17/08/2016 15h00 30 15 CANET 2813020120034210 HERAULT-BAIGNADE DU PONT 14/08/2016 14h35 15 45 CANET 2813020120034210 HERAULT-BAIGNADE DU PONT 14/08/2016 14h35 15 45 CANET 2813020120034210 HERAULT-BAIGNADE DU PONT 19/08/2016 11h35 15 45 CANET 2813020120034210 HERAULT-BAIGNADE DU PONT 10/08/2016 11h35 15 45 CANET 2813020120034210 HERAULT-BAIGNADE DU PONT 10/08/2016 11h25 30 0.779 SAINT-JEAN-DE-FOS 2813020650034160 HERAULT-LE LABADOU 17/08/2016 11h25 30 179 SAINT-JEAN-DE-FOS 2813020650034160 HERAULT-LE LABADOU 18/07/2016 11h25 45 SAINT-JEAN-DE-FOS 2813020650034160 HERAULT-LE LABADOU 14/08/2016 11h30 415 45 SAINT-JEAN-DE-FOS 2813020650034160 HERAULT-LE LABADOU 14/08/2016 11h30 415 45 SAINT-JEAN-DE-FOS 2813020650034160 HERAULT-LE LABADOU 14/08/2016 11h30 415 45 SAINT-JEAN-DE-FOS 2813020650034160 HERAULT-LE PONT DU DIABLE 17/08/2016 11h40 415 43 ANIANE 2813000030034161 HERAULT-LE PONT DU DIABLE 17/08/2016 11h40 415 43 ANIANE 2813000030034161 HERAULT-LE PONT DU DIABLE 17/08/2016 11h40 415 43 ANIANE 2813000030034161 HERAULT-LE PONT DU DIABLE 17/08/2016 11h40 415 415 ANIANE 2813000030034161 HERAULT-LE PONT DU DIABLE 17/08/2016 11h40 415 415 ANIANE 2813000030034161 HERAULT-LE PONT DU DIABLE 10/08/2016 11h30 415 415 ANIANE 2813000030034161 HERAULT-LE PONT DU DIABLE 10/08/2016 11h30 415 415 ANIANE 28130003780034110 HERAULT-LE PONT DU DIABLE 10/08/2016 11h30 415 415 ANIANE 28130003780034110 HERAULT-LE VIEUN MOULIN 15/08/2016 14h50 415 ANIANE 28130003780034110 HERAULT-LE VIEUN MOULIN 15/08/2016 14h50 415 ANIANE 2813003780034110 HERAULT-LE VIEUN MOULIN 15/08/2016 14h50 415 ANIANE 2813003780034110 HERAULT-LE VIEUN MOULIN 15/08/2016 14h50 415 ANIANE 281300378003410 HERAULT-LE VIEUN MOULIN 15/08/2016 14h50 415 TO ANIANE 281300378003400 HERAULT-LE VIEUN MOULIN 15/08/2016 14h50 415 TO ANIANE 281300378003400 HERAULT-LE VIEUN MOULIN 15/08/2016 14h50 415 TO ANIANE 281300378003400 HERAULT-LE VIEUN MOULIN 15/08/2016 14h50 415 TO ANIANE 281300378003400 HERAULT-LE VIEUN MOULIN 15/08/2016 14h50 41					~15	- 00		
BERNAULT-BAIGNADE DU PONT 06:07/2016 13:30					110	30		
REPAULT-BAIGNADE DU PONT 14006/2016 14h35 15								-
BERNAULT-BAIGNADE DU PONT 1907/2016 14h45 15 30 CANET					~15	10		
28130205102004210 HERAULT-BLIGNADE DU PONT 02/08/2016 11h25 <15					<10	15		
B813020S50034160					~15	10		I.
2813020550034160 HERAULT-LE LABADOU 19107/2016 11h25 <15					×13	30		
281302055D034160 HERAULT-LE LABADOU 4507/2016 1055 <15					.1E	30	_	
281302055D034160 HERAULT-LE LABADOU 1400(2016 11h30 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15								
28130303003034161 HERAULT-LE PONT DU DIABLE 17/08/2016 11/104 <15 < 143 NAINAE 28130303003034161 HERAULT-LE PONT DU DIABLE 15/08/2016 11/104 <15 < 15 < 145 NAINAE 28130303003034161 HERAULT-LE PONT DU DIABLE 14/08/2016 11/104 <15 < 15 < 15 ANIANE 28130303003034161 HERAULT-LE PONT DU DIABLE 19/07/2016 11/105 <15 < 15 ANIANE 28130303003034161 HERAULT-LE PONT DU DIABLE 19/07/2016 11/105 <15 < 15 ANIANE 2813030303034161 HERAULT-LE PONT DU DIABLE 19/07/2016 11/105 <15 < 15 ANIANE 2813030303034161 HERAULT-LE PONT DU DIABLE 20/08/2016 11/105 <15 < 15 ANIANE 281303078D034161 HERAULT-LE PONT DU DIABLE 20/08/2016 11/105 <15 < 15 ANIANE 281303078D034161 HERAULT-LE VIEUX MOULIN 13/08/2016 14/105 <15 < 15 SAINT-BAUZILLE-DE-PUTOIS 281303078D034110 HERAULT-LE VIEUX MOULIN 13/08/2016 14/105 <15 < 15 SAINT-BAUZILLE-DE-PUTOIS 281303078D034110 HERAULT-LE VIEUX MOULIN 18/07/2016 14/105 <15 < 15 SAINT-BAUZILLE-DE-PUTOIS 281303078D034110 HERAULT-LE VIEUX MOULIN 16/08/2016 14/105 <15 < 15 SAINT-BAUZILLE-DE-PUTOIS 281303078D03410 HERAULT-LE VIEUX MOULIN 16/08/2016 14/105 <15 < 15 SAINT-BAUZILLE-DE-PUTOIS 281303078D034090 HERAULT-LE VILLAGE 13/08/2016 14/105 <15 < 15 SAINT-BAUZILLE-DE-PUTOIS 281303043D034090 HERAULT-LE VILLAGE 13/08/2016 14/105 <15 < 15 SAINT-BAUZILLE-DE-PUTOIS 281303043D034090 HERAULT-LE VILLAGE 15/09/2016 14/105 <15 < 15 SAINT-BAUZILLE-DE-PUTOIS 281303043D034090 HERAULT-LE VILLAGE 15/09/2016 14/105 <15 < 77 LAROGUE 281303043D034090 HERAULT-LE VILLAGE 15/09/2016 14/105 <15 < 77 LAROGUE 281303043D034090 HERAULT-LE VILLAGE 16/08/2016 14/105 <15 < 15 < ACZILHAC 281303043D034090 HERAULT-LE VILLAGE 16/08/2016 14/105 <15 < 15 < ACZILHAC 281303043D034090 HERAULT-LE SPORCES 16/08/2016 14/105 <15 < 15 < ACZILHAC 281303043D034090 HERAULT-LE SPORCES 10/106/2016 14/105 <15 < 15 < ACZILHAC 281303043D034090 HERAULT-LES FORCES 10/106/2016 14/105 <15 < 15 < ACZILHAC 281303043D03400 HERAULT-LES FORCES 10/106/2016 14/105 <15 < 15 < ACZILHAC 281303043D03400 HERAULT-LES FORCES 10/106/2016 14/105 <15 < 15 < ACZILHAC 281303043D03400 HERAULT								
B8130303D3034161 HERAULT-LE PONT DU DIABLE 17/08/2016 11/140 <15								
B813030303034161 HERAULT-LE PONT DU DIABLE 0507/2016 11145 <15								
2813030303034161 HERAULT-LE PONT DU DIABLE 1406/2016 11136 15								
281303003D034161 HERAULT-LE PONT DU DIABLE 1907/Z016 11h35 15 ANIANE 281303003D034161 HERAULT-LE PONT DU DIABLE 20/20/2016 11h30 15 30 ANIANE 281303078D034110 HERAULT-LE VIEUX MOULIN 1306/2016 14h50 15 35 SAINT-BAUZILLE-DE-PUTOIS 281303078D034110 HERAULT-LE VIEUX MOULIN 1800/72016 14h20 46 30 ANIANEAUZILLE-DE-PUTOIS 281303078D034110 HERAULT-LE VIEUX MOULIN 16/08/2016 14h20 46 30 ANIANEAUZILLE-DE-PUTOIS 281303043D34090 HERAULT-LE VILLAGE 04/07/2016 14h20 46 30 ANIANEAUZILLE-DE-PUTOIS 281303043D3403090 HERAULT-LE VILLAGE 18/07/2016 14h30 <15							_	
28130303D3034101 HERAULT-LE VICLY MOULIN								
281303078D034110							15	
281303078D034110					<15		30	
281303078D034110	281303078D034110	HERAULT-LE VIEUX MOULIN	04/07/2016	14h10		15	15	SAINT-BAUZILLE-DE-PUTOIS
281303078D034110 HERAULT-LE VIEUX MOULIN 16/08/2016 14h20 46 30 SAINT-BAUZILLE-DE-PUTOIS 281303043D034090 HERAULT-LE VIEUX MOULIN 16/08/2016 14h45 <15 15 SAINT-BAUZILLE-DE-PUTOIS 281303043D034090 HERAULT-LE VILLAGE 04/07/2016 13h45 <15 77 LAROQUE 281303043D034090 HERAULT-LE VILLAGE 18/07/2016 14h00 <15 77 LAROQUE 281303043D034090 HERAULT-LE VILLAGE 18/07/2016 14h00 <15 30 LAROQUE 281303043D034090 HERAULT-LE VILLAGE 16/08/2016 14h15 16 234 LAROQUE 281303043D034090 HERAULT-LE SULLAGE 16/08/2016 14h15 16 234 LAROQUE 281303021D034070 HERAULT-LES FORCES 16/08/2016 12h45 415 46 CAZILHAC 281303021D034070 HERAULT-LES FORCES 16/08/2016 13h15 <15 46 CAZILHAC 281303021D034070 HERAULT-LES FORCES 13/06/2016 13h15 <15 77 CAZILHAC 281303021D034070 HERAULT-LES FORCES 13/06/2016 13h15 <15 77 CAZILHAC 281303021D034070 HERAULT-LES FORCES 18/07/2016 12h35 <15 76 CAZILHAC 281303031034000 HERAULT-LES FORCES 18/07/2016 12h35 <15 15 46 CAZILHAC 281303034D034000 HERAULT-LES FORCES 18/07/2016 12h35 <15 57 CAZILHAC 281303034D034000 HERAULT-LES GORGES 18/07/2016 14h15 15 45 LAROQUE 281303043D034100 HERAULT-LES GORGES 13/06/2016 14h45 30 51 LAROQUE 281303043D034100 HERAULT-LES GORGES 13/06/2016 14h45 30 51 LAROQUE 281303043D034100 HERAULT-LES GORGES 16/08/2016 14h45 30 51 LAROQUE 281303043D034100 HERAULT-LES GORGES 16/08/2016 14h30 15 45 LAROQUE 281303043D034100 HERAULT-LES GORGES 16/08/2016 14h30 15 45 LAROQUE 281303043D034100 HERAULT-LES RIVIERES 17/08/2016 14h30 15 45 LAROQUE 281303043D034100 HERAULT-LES RIVIERES 14/06/2016 14h00 <15 51 CANET 281302012D034205 HERAULT-LES RIVIERES 14/06/2016 14h05 15 CANET 281303085D034155 HERAULT-LES RIVIERES 14/06/2016 14h05 15 CANET 281303085D034155 HERAULT-LES RIVIERES	281303078D034110	HERAULT-LE VIEUX MOULIN	13/06/2016	14h55	<15		30	SAINT-BAUZILLE-DE-PUTOIS
281303078D034110	281303078D034110	HERAULT-LE VIEUX MOULIN	18/07/2016	14h30	<15		177	SAINT-BAUZILLE-DE-PUTOIS
B81303043D034090	281303078D034110	HERAULT-LE VIEUX MOULIN	01/08/2016	14h20		46	30	SAINT-BAUZILLE-DE-PUTOIS
B81303043D034090	281303078D034110	HERAULT-LE VIEUX MOULIN	16/08/2016	14h45	<15		15	SAINT-BAUZILLE-DE-PUTOIS
B81303043D034090	281303043D034090	HERAULT-LE VILLAGE	04/07/2016	13h45	<15		46	LAROQUE
281303043D034090 HERAULT-LE VILLAGE 01/08/2016 14h00 144 647 LAROQUE 281303043D034090 HERAULT-LES FORCES 16/08/2016 12h15 161 234 LAROQUE 281303021D034070 HERAULT-LES FORCES 04/07/2016 12h45 15 46 CAZILHAC 281303021D034070 HERAULT-LES FORCES 04/07/2016 12h45 15 46 CAZILHAC 281303021D034070 HERAULT-LES FORCES 01/08/2016 12h35 15 46 CAZILHAC 281303021D034070 HERAULT-LES FORCES 01/08/2016 12h30 15 46 CAZILHAC 281303021D034070 HERAULT-LES FORCES 01/08/2016 12h30 15 46 CAZILHAC 281303021D034070 HERAULT-LES GORGES 01/08/2016 14h30 15 15 LAROQUE 28130303021D034010 HERAULT-LES GORGES 04/07/2016 14h45 30 61 LAROQUE 281303034D034100 HERAULT-LES GORGES 18/07/2016 14h15 15 45 LAROQUE 281303034D034100 HERAULT-LES GORGES 18/07/2016 14h15 15 45 LAROQUE 281303034D034100 HERAULT-LES GORGES 16/08/2016 14h30 15 15 LAROQUE 281302012D034205 HERAULT-LES RIVIERES 17/08/2016 14h30 15 15 LAROQUE 281302012D034205 HERAULT-LES RIVIERES 14/06/2016 14h00 15 15 CANET 281302012D034205 HERAULT-LES RIVIERES 19/07/2016 14h25 15 CANET 281302012D034205 HERAULT-LES RIVIERES 19/07/2016 14h25 15 CANET 281302012D034205 HERAULT-LES RIVIERES 02/08/2016 14h55 15 CANET 281303036D034155 HERAULT-LES RIVIERES 02/08/2016 11h10 15 46 SAINT-GUILHEM-LE-DESERT 281303036D034155 HERAULT-MOULIN DE BRUNAN 19/07/2016 11h05 15 CANET 281303036D034155 HERAULT-MOULIN DE BRUNAN 14/06/2016 11h10 30 <15 SAINT-GUILHEM-LE-DESERT 281302021D034188 HERAULT-PLAGE DE LA	281303043D034090	HERAULT-LE VILLAGE	13/06/2016	14h30	<15		77	LAROQUE
281303043D034090 HERAULT-LE VILLAGE 01/08/2016 14h00 144 647 LAROQUE 281303043D034090 HERAULT-LES FORCES 16/08/2016 12h15 161 234 LAROQUE 281303021D034070 HERAULT-LES FORCES 04/07/2016 12h45 15 46 CAZILHAC 281303021D034070 HERAULT-LES FORCES 04/07/2016 12h45 15 46 CAZILHAC 281303021D034070 HERAULT-LES FORCES 01/08/2016 12h35 15 46 CAZILHAC 281303021D034070 HERAULT-LES FORCES 01/08/2016 12h30 15 46 CAZILHAC 281303021D034070 HERAULT-LES FORCES 01/08/2016 12h30 15 46 CAZILHAC 281303021D034070 HERAULT-LES GORGES 01/08/2016 14h30 15 15 LAROQUE 28130303021D034010 HERAULT-LES GORGES 04/07/2016 14h45 30 61 LAROQUE 281303034D034100 HERAULT-LES GORGES 18/07/2016 14h15 15 45 LAROQUE 281303034D034100 HERAULT-LES GORGES 18/07/2016 14h15 15 45 LAROQUE 281303034D034100 HERAULT-LES GORGES 16/08/2016 14h30 15 15 LAROQUE 281302012D034205 HERAULT-LES RIVIERES 17/08/2016 14h30 15 15 LAROQUE 281302012D034205 HERAULT-LES RIVIERES 14/06/2016 14h00 15 15 CANET 281302012D034205 HERAULT-LES RIVIERES 19/07/2016 14h25 15 CANET 281302012D034205 HERAULT-LES RIVIERES 19/07/2016 14h25 15 CANET 281302012D034205 HERAULT-LES RIVIERES 02/08/2016 14h55 15 CANET 281303036D034155 HERAULT-LES RIVIERES 02/08/2016 11h10 15 46 SAINT-GUILHEM-LE-DESERT 281303036D034155 HERAULT-MOULIN DE BRUNAN 19/07/2016 11h05 15 CANET 281303036D034155 HERAULT-MOULIN DE BRUNAN 14/06/2016 11h10 30 <15 SAINT-GUILHEM-LE-DESERT 281302021D034188 HERAULT-PLAGE DE LA	281303043D034090	HERAULT-LE VILLAGE	18/07/2016	14h00	<15		30	LAROQUE
B81303043D034090	281303043D034090	HERAULT-LE VILLAGE		14h00		144	647	LAROQUE
B81303021D034070 HERAULT-LES FORCES 16/08/2016 12h55 <15								l .
REPAULT-LES FORCES 04/07/2016 12h45 <15					<15			
281303021D034070 HERAULT-LES FORCES 13/06/2016 13h15 <15								
281303021D034070 HERAULT-LES FORCES 01/08/2016 12h35 15								I.
281303021D034070					1.0	15		I.
REAULT-LES GORGES					<15	. 0		I.
281303043D034100								
281303043D034100					110	30		
281303043D034100								l .
281303043D034100							_	l .
281302012D034205 HERAULT-LES RIVIERES 17/08/2016 14h45 <15								
281302012D034205					-15	13		
281302012D034205								
281302012D034205 HERAULT-LES RIVIERES 02/08/2016 14h55 <15 CANET 281303086D034155 HERAULT-MOULIN DE BRUNAN 17/08/2016 11h10 15 46 SAINT-GUILHEM-LE-DESERT 281303086D034155 HERAULT-MOULIN DE BRUNAN 19/07/2016 11h05 15 <15					<10	15		I.
281303086D034155 HERAULT-MOULIN DE BRUNAN 17/08/2016 11h10 15 46 SAINT-GUILHEM-LE-DESERT 281303086D034155 HERAULT-MOULIN DE BRUNAN 19/07/2016 11h05 15 <15					.4.5	15		
281303086D034155 HERAULT-MOULIN DE BRUNAN 19/07/2016 11h05 15 <15					<15	45		
281303086D034155 HERAULT-MOULIN DE BRUNAN 05/07/2016 10h35 <15 <15 SAINT-GUILHEM-LE-DESERT 281303086D034155 HERAULT-MOULIN DE BRUNAN 14/06/2016 11h20 <15								
281303086D034155 HERAULT-MOULIN DE BRUNAN 14/06/2016 11h20 <15						15		I.
281303086D034155 HERAULT-MOULIN DE BRUNAN 02/08/2016 11h10 30 <15 SAINT-GUILHEM-LE-DESERT 281302021D034188 HERAULT-PLAGE DE LA MEUSE 17/08/2016 12h30 <15								
281302021D034188 HERAULT-PLAGE DE LA MEUSE 17/08/2016 12h30 <15					<15			
MEUSE 17/08/2016 12h30 <15 GIGNAC 281302021D034188 HERAULT-PLAGE DE LA MEUSE 14/06/2016 12h30 <15						30		
281302021D034188 HERAULT-PLAGE DE LA MEUSE 17/08/2016 12h30 <15	281302021D034188		17/08/2016	12h30	<15		<15	GIGNAC
MEUSE 14/06/2016 12h30 <15 15 GIGNAC 281302021D034188 HERAULT-PLAGE DE LA MEUSE 14/06/2016 12h30 <15								
281302021D034188 HERAULT-PLAGE DE LA MEUSE 14/06/2016 12h30 <15	281302021D034188		17/08/2016	12h30	<15		<15	GIGNAC
MEUSE 14/06/2016 12h30 <15 15 GIGNAC 281302021D034188 HERAULT-PLAGE DE LA MEUSE 05/07/2016 11h55 <15								
281302021D034188 HERAULT-PLAGE DE LA MEUSE 14/06/2016 12h30 <15	281302021D034188		14/06/2016	12h30	<15		15	GIGNAC
MEUSE D5/07/2016 11h55 <15 GIGNAC 281302021D034188 HERAULT-PLAGE DE LA MEUSE 05/07/2016 11h55 <15								
281302021D034188			14/06/2016	12h30	<15		15	GIGNAC
MEUSE	281302021D034188	MELISE						
281302021D034188 HERAULT-PLAGE DE LA 05/07/2016 11h55 <15 <15 GIGNAC					.4.		-15	CICNAC
MEUSE		HERAULT-PLAGE DE LA	05/07/2016	11h55	<15		~10	GIGINAC
		HERAULT-PLAGE DE LA	05/07/2016	11h55	<15		~10	GIGNAC
204202024D024400 HEDALII TIDIA CEIDELA 40/07/2046 40/07 45 45 CIONA C	281302021D034188	HERAULT-PLAGE DE LA MEUSE HERAULT-PLAGE DE LA						
281302021D034188 HERAULT-PLAGE DE LA 19/07/2016 12h35 15 <15 GIGNAC	281302021D034188 281302021D034188	HERAULT-PLAGE DE LA MEUSE HERAULT-PLAGE DE LA MEUSE	05/07/2016	11h55			<15	GIGNAC

	MEUSE	<u> </u>					
281302021D034188	HERAULT-PLAGE DE LA	19/07/2016	12h35		15	<15	GIGNAC
	MEUSE	10,01,2010					
281302021D034188	HERAULT-PLAGE DE LA MEUSE	02/08/2016	12h35		30	15	GIGNAC
281302021D034188	HERAULT-PLAGE DE LA MEUSE	02/08/2016	12h35		30	15	GIGNAC
281303078D034115	HERAULT-PLAN D'EAU DU VILLAGE	04/07/2016	14h25	<15		15	SAINT-BAUZILLE-DE-PUTOIS
281303078D034115	HERAULT-PLAN D'EAU DU VILLAGE	13/06/2016	15h15		15	61	SAINT-BAUZILLE-DE-PUTOIS
281303078D034115	HERAULT-PLAN D'EAU DU VILLAGE	18/07/2016	14h40		30	30	SAINT-BAUZILLE-DE-PUTOIS
281303078D034115	HERAULT-PLAN D'EAU DU VILLAGE	01/08/2016	14h40		77	61	SAINT-BAUZILLE-DE-PUTOIS
281303078D034115	HERAULT-PLAN D'EAU DU VILLAGE	16/08/2016	15h00		15	<15	SAINT-BAUZILLE-DE-PUTOIS
281303003D034180	HERAULT-SAINT PIERRE	17/08/2016	12h15	<15		<15	ANIANE
281303003D034180	HERAULT-SAINT PIERRE	17/08/2016	12h15	<15		<15	ANIANE
281303003D034180	HERAULT-SAINT PIERRE	14/06/2016	12h10	<15		30	ANIANE
281303003D034180	HERAULT-SAINT PIERRE	14/06/2016	12h10	<15		30	ANIANE
281303003D034180	HERAULT-SAINT PIERRE	05/07/2016	11h40	<15		15	ANIANE
281303003D034180	HERAULT-SAINT PIERRE	05/07/2016	11h40	<15		15	ANIANE
281303003D034180	HERAULT-SAINT PIERRE	19/07/2016	12h15	<15		<15	ANIANE
281303003D034180	HERAULT-SAINT PIERRE	19/07/2016	12h15	<15		<15	ANIANE
281303003D034180	HERAULT-SAINT PIERRE	02/08/2016	12h20		94	<15	ANIANE
281303003D034180	HERAULT-SAINT PIERRE	02/08/2016	12h20		94	<15	ANIANE
281302049D034201	HERAULT-SEUIL DU MAS D'AVELLAN	17/08/2016	14h00	<15		748	SAINT-ANDRE-DE-SANGONIS
281302049D034201	HERAULT-SEUIL DU MAS D'AVELLAN	14/06/2016	13h25	<15		30	SAINT-ANDRE-DE-SANGONIS
281302049D034201	HERAULT-SEUIL DU MAS D'AVELLAN	19/07/2016	13h05	<15		179	SAINT-ANDRE-DE-SANGONIS
281302049D034201	HERAULT-SEUIL DU MAS D'AVELLAN	02/08/2016	14h00	<15		683	SAINT-ANDRE-DE-SANGONIS
281303013D034140	HERAULT-ST ETIENNE D'ISSENSAC	18/08/2016	13h00		15	61	BRISSAC
281303013D034140	HERAULT-ST ETIENNE D'ISSENSAC	04/07/2016	15h30	<15		30	BRISSAC
281303013D034140	HERAULT-ST ETIENNE D'ISSENSAC	13/06/2016	15h50	<15		15	BRISSAC
281303013D034140	HERAULT-ST ETIENNE D'ISSENSAC	18/07/2016	15h15	<15		61	BRISSAC
281303013D034140	HERAULT-ST ETIENNE D'ISSENSAC	01/08/2016	15h10		30	30	BRISSAC
281303013D034140	HERAULT-ST ETIENNE D'ISSENSAC	16/08/2016	15h40		728	15	BRISSAC
281303043D034079	HERAULT-TIVOLI	04/07/2016	13h35	<15		15	LAROQUE
281303043D034079	HERAULT-TIVOLI	13/06/2016	14h15	<15		110	LAROQUE
281303043D034079	HERAULT-TIVOLI	18/07/2016	13h45		15	30	LAROQUE
281303043D034079	HERAULT-TIVOLI	01/08/2016	13h45		30	<15	LAROQUE

■ Les affluents de l'Hérault

Tableau 45 - Résultats des analyses bactériologiques réalisées dans les affluents de l'Hérault en 2016 dans le cadre des suivis de l'ARS.

	Sulvis														
PSV - Code UE	PSV - Nom	PLV - Date	PLV - Heure	STR (UFC/1 00ml)	ECOL (UFC/10 0m)I	PSV - Commune - Nom									
281303088D034035	LA BUEGES-LE STADE	04/07/2016	16h15	<15	45	SAINT-JEAN-DE-BUEGES									
281303088D034035	LA BUEGES-LE STADE	13/06/2016	16h15	<15	30	SAINT-JEAN-DE-BUEGES									
281303088D034035	LA BUEGES-LE STADE	18/07/2016	15h35	<15	94	SAINT-JEAN-DE-BUEGES									
281303088D034035	LA BUEGES-LE STADE	01/08/2016	15h35	<15	46	SAINT-JEAN-DE-BUEGES									
281303088D034035	LA BUEGES-LE STADE	16/08/2016	15h55	<15	94	SAINT-JEAN-DE-BUEGES									
281303036D034616	VIS-AIRE AMENAGEE	04/07/2016	12h15	<15	<15	GORNIES									
281303036D034616	VIS-AIRE AMENAGEE	13/06/2016	12h45	<15	<15	GORNIES									
281303036D034616	VIS-AIRE AMENAGEE	18/07/2016	11h50	15	30	GORNIES									
281303036D034616	VIS-AIRE AMENAGEE	01/08/2016	12h00	15	30	GORNIES									
281303036D034616	VIS-AIRE AMENAGEE	16/08/2016	12h15	<15	15	GORNIES									
281303021D034618	VIS-LES CASCADES	04/07/2016	12h40	<15	30	CAZILHAC									
281303021D034618	VIS-LES CASCADES	04/07/2016	12h40	<15	30	CAZILHAC									
281303021D034618	VIS-LES CASCADES	13/06/2016	13h15	15	77	CAZILHAC									
281303021D034618	VIS-LES CASCADES	13/06/2016	13h15	15	77	CAZILHAC									
281303021D034618	VIS-LES CASCADES	18/07/2016	12h15	15	1752	CAZILHAC									
281303021D034618	VIS-LES CASCADES	18/07/2016	12h15	15	1752	CAZILHAC									
281303021D034618	VIS-LES CASCADES	01/08/2016	12h20	<15	46	CAZILHAC									
281303021D034618	VIS-LES CASCADES	01/08/2016	12h20	<15	46	CAZILHAC									
281303021D034618	VIS-LES CASCADES	16/08/2016	12h30	<15	15	CAZILHAC									
281303021D034618	VIS-LES CASCADES	16/08/2016	12h30	<15	15	CAZILHAC									
281302057D034612	VIS-NAVACELLES LA CASCADE	04/07/2016	11h10	30	30	SAINT-MAURICE- NAVACELLES									
281302057D034612	VIS-NAVACELLES LA CASCADE	13/06/2016	11h55	<15	15	SAINT-MAURICE- NAVACELLES									
281302057D034612	VIS-NAVACELLES LA CASCADE	18/07/2016	11h00	15	<15	SAINT-MAURICE- NAVACELLES									
281302057D034612	VIS-NAVACELLES LA CASCADE	01/08/2016	11h00	30	46	SAINT-MAURICE- NAVACELLES									
281302057D034612	VIS-NAVACELLES LA CASCADE	16/08/2016	11h00	<15	30	SAINT-MAURICE- NAVACELLES									

8.6. INVERTÉBRÉS BENTHIQUES

8.6.1. Rapports d'essai macro-invertébrés petits cours d'eau

RAPPORT D'ESSAI n°« Inv-DCE-16- M13 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département – 1000 rue d'Alco – 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
19/07/2016	Hérault à Cazilhac (H5)	06181990

Opérateur(s) terrain : Antoine ROBE

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Antoine ROBE Date début laboratoire : 18/11/2016

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

Il s'agit de la première version de ce rapport d'essai

CODE STATION	COURS D'EAU	SITE	DATE	X AMONT	Y AMONT	X AVAL	Y AVAL	PRELEVE- MENT	SUBSTRAT	CLASSE VITESSE	BOCAL ou PHASE	HAUTEUR D'EAU	SUBSTRAT SECONDAIRE	COLMATAGE (intensité/nature)	MATERIEL PRELEVEMENT	COMMENTAIRE
6181990	HERAULT	CAZILHAC	19/07/2016	755969	6315395	756198	6315226	P1	S1	N5	A	25		0	surber	
Lpb (largeur plein-bord moyenne, en m) 32 Localisation du site, impérativ					mpérative si absend	ж X, Y :		P2	S 3	N1	Α	10		0	surber	
Lt (longueur tota	le de la station en m)	:	275					P3	S28	N1	Α	15		0	surber	
Lm (largeur mou	n (largeur mouillée moyenne, en m) 26 Visibilité des fonds 1						P4	S10	N1	Α	15		0	surber		
Sm (surface mou		7150	1% Sm = 71 m ²	Hydrologie appa	ydrologie apparente 3				S24	N5	В	40		0	surber	
Smarg (= surf. m	nax substrat marginal=Smx0,0	;	357	Tendance du déb	it les jours préc	édents	stable	P6	S30	N5	В	30		0	surber	
Photos / Cartogra	aphie (facultatif)	(OUI	Matériel 🗹	Durée terrain	H déb. : 10H30	H fin :	P7	S9	N3	В	25		0	surber	
Commentaires sur	r le prélèvement (difficultés ? co	onformité ?) (50 carac	tères max) :	Bon état vérifié (cocher)	Surber N°: 3	Tamis N°:	Haveneau N°:	P8	S29	N5	В	20		0	surber	
Accés par clinique	vétérinaire en rive gauche puis pa	ar un petit chemin qui d	onne en aval de la statio	n	•	•		P9	S24	N3	С	30		0	surber	
									S24	N1	С	30		0	surber	
								P11	S29	N3	С	20		0	surber	
								P12	S24	N6	С	30		0	surber	

					۵					PLAN D'ECHANTILLON	NAGE			
Ité	SUBSTRATS				(Kesse	N6		N5		N3		N1		
igpi				`	7.	> 75 cm/s	Rapide		Moyenne	6 à 25 cm/s			Nulle	Nombre de prélèvements
Habitabilité	Code Sandre - Nature du Substrat	Statut (D, M, MNR, P)	% de recouvremen	nt		N° prélèvement	Présence (x;xx;xxx)	N° prélèvement	Présence (x ; xx ; xxx)	N° prélèvement	Présence (x; xx; xxx)	N° prélèvement	Présence (x; xx; xxx)	définitifs réalisés
11	S1 - Bryophytes	М	1				х	1	х		х			1
10	S2 - Spermaphytes immergés (hydrophytes)													
9	S3 - Débris organiques grossiers (litières)	м	1									2	х	1
8	S28 - Chevelus racinaires libres dans l'eau, substrats ligneux (branchages)	М	1									3	х	1
7	S24 - Sédiments minéraux de grande taille (pierres, galets - 25 à 250 mm)	D	47			12	х	5	XXX	9	xx	10	х	4
6	S30 - Blocs facilement déplaçables (> 250 mm)	D	5					6	XXX		xx		х	1
5	S9 - Granulats grossiers (graviers 2 à 25 mm)	D	5						х	7	xx		х	1
4	S10 - Spermaphytes émergents (hélophytes)	м	1									4	х	1
3	S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins													
2	S25 - Sables et limons (< 2 mm)	М	3								х	_	х	_
1	S18 - Algues	м	1										х	
	S29 - <u>Surfaces</u> uniformes <u>dures</u> naturelles et artificielles (roches, dales, blocs non facilement déplaçables, marnes et argiles compactes)	D	35				х	8	XXX	11	xx		х	2
				100 N	Nombre	e de prélèvements	1	4		3		4		12

Phase A: substrats marginaux (M) selon ordre d'I	nabitabilité		STATUT	Dominant (D), Marginal (M), Marginal non représnetatif (MNR) ou Présent (P)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)
Phase B: substrats dominants (D) selon ordre d'i	Phase B : substrats dominants (D) selon ordre d'habitabilité			Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0-inconnu ; 1-bonne visibilité ; 2-visibilité moyenne; 3-visibilité faible; 4-fonds non visibles
Phase C : substrats dominants (D) en privilégiant la représentativité des substrats			CLASSE VITESSE	Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0=inconnu ; 1=pas d'eau ; 2=trous d'eau; 3=basses eaux; 4= moyennes eaux; 5= hautes eaux; 6= crue débordante
ORCANISME - ACHASCOR	RGANISME: AQUASCOP N° CONTRAT: 9227		BOCAL/PHASE	Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»
ORGANISME . AQUASCOP			HAUTEUR D'EAU	Pour chaque microprélèvement, en cm	Lpb	Largeur au débit de Plein Bord (en m)
	PRELEVEUR: Antoine ROBE ASSISTANT: Mailis CROIZER		SUBSTRAT SECONDAIRE	Pour chaque microprélèvement, utiliser les codes SANDRE	Lt I m	Longueur totale de la station (en m) Larceur mouillée movenne quand prélèvement (en m avec 1 décimale si <5m)
PRELEVEUR : Antoine ROBE			COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)	Sm Smarn	Superficie mouillée de la station (m²)
		non 🏻	MATERIEL	Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Superficie maximale d'un substrat marginal (Sm*0.05 ; m²) Dominant / Marcinal / marcinal Non Recrésentatif (suivant le protocole)
		COMMENTAIRE	Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) ; 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)	

DATE DE PRELEVEMENT: 19/07/2016

COURS D'EAU: Hérault

SITE (STATION/COMMUNE): Cazilhac

CODE STATION: 06181990

	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
	Leuctridae	Leuctra	69	11	68	114	19
PLECOPTERA		Leuctra geniculata	33830		3	36	3
	Nemouridae	Nemoura	26	1			
	Perlidae	Perla	164		1	3	
	Brachycentridae	Micrasema	268	1			
	Hydropsychidae	Cheumatopsyche lepida	222	87	301	163	55
		Hydropsyche	212	131	29	57	21
		Hydroptila	200	1	3	3	
	Hydroptilidae	Orthotrichia	197	2		1	
		Hydroptilidae	193	1		1	
	Leptoceridae	Mystacides	312	295	1	3	29
TRICHOPTERA	Philopotamidae	Chimarra	207		3	2	
	Polycentropodidae	Polycentropus	231	2	1	6	
	r ory come op carace	Polycentropodidae	223			1	
		Metalype fragilis	247	1		14	1
	Psychomyiidae	Psychomyia pusilla	240	6	147	112	26
	rsycholliyhdae	Tinodes	245	2			
		Psychomyiidae	238			3	
	Rhyacophilidae	Rhyacophila lato-sensu	183	6	9	7	2
		Baetis lato sensu	9794	47	688	50	78
		Centroptilum luteolum	384	29		5	3
	Baetidae	Cloeon	387	11			1
		Procloeon	390	33		5	3
		Baetidae	363	39		3	4
	Caenidae	Caenis	457	640	71	67	77
	Ephemerellidae	Ephemerella ignita	451	42	4	8	5
EPHEMEROPTERA	_pomoromade	Ecdyonurus	421	2	2	- "	
	Heptageniidae		400			1	
	riepiageriiluae	Epeorus Heptageniidae	399		25	25	5
		Charatarararari	475	_	25		
	Leptophlebiidae	Choroterpes picteti	491	6		6	1
	Leptoprilebildae	Habrophlebia		1			
		Leptophlebiidae	473	6		20	2
	Potamanthidae	Potamanthus luteus	510	1		1	
HETEROPTERA	Corixidae	Micronecta	719	66		11	7
	Dryopidae	Dryops	613	16	3		1
	Dytiscidae	Laccophilinae	2394	2			
		Elmis	618	53	5	5	6
		Esolus	619	40	144	65	24
COLEOPTERA		Limnius	623	13	10	21	4
002201 12101	Elmidae	Normandia	624	7			
		Oulimnius	622	125	43	7	17
		Riolus	625	20			2
		Stenelmis	617	13			1
	Hydraenidae	Hydraena	608		2		
	Anthomyidae	Anthomyidae	847	1			
	Athericidae	Athericidae	838		5		
	Blephariceridae	Blephariceridae	747			28	2
	Ceratopogonidae	Ceratopogonidae	819		10		1
	Chironomidae	Chironomidae	807	2496	264	345	310
DIPTERA	Dixidae	Dixidae	793	1	201	0.0	0.0
	Empididae	Empididae	831	12		2	1
	Limoniidae	Limoniidae	757	1	3	7	1
	Simuliidae	Simuliidae	801	3	6	80	8
	Tabanidae	Tabanidae	837	8	U	00	
	Tipulidae	Tipulidae	753	٥		2	
			753 650	9			
DDONATA	Calopterygidae Gomphidae	Calopteryx Onychogomphus	650 682				
	онтришае			2		-	
CRUSTACEA	Gammaridae	Gammarus	892	84	1	1	8
		Gammaridae	887	84	_	1	8
	Ancylidae	Ancylus fluviatilis	1029	41	3	4	4
	Hydrobiidae	Potamopyrgus antipodarum	979	21	1	1	2
GASTROPODA	Neritidae	Theodoxus fluviatilis	968		1		
	Physidae	Physa lato-sensus	997	49	1		Ę
		Physella	19280	2			
TURBELLARIA	Turbellaria	Dugesiidae	1055	1	10	24	3
OLIGOCHAETA	Oligochaeta	Oligochaeta	933	6	4	3	1
NEMATODA	Nematoda	Nematoda	1089	1	1		
CRUSTACEA	Ostracodes	Ostracodes	3170	1	1		
HYDRACARINA	Hydracarina	Hydracarina	906	1	1	1	
NEMERTEA	Prostomatidae	Prostoma	3110	•	1	<u> </u>	
*EMENTEM	i iosioinaudae			5.6		45	13
		cont	rôle nb taxon	56	38	45	13
			nb individus				

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou juvéniles

Commentaire hors accréditation :

Selon la Directive DCE 2007/22, les listes des phases A et B donnent l'IBGN équivalent (MPCE) suivant = 19 /20

RAPPORT D'ESSAI n°« Inv-DCE-16- M14 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département – 1000 rue d'Alco – 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
19/07/2016	Hérault à Laroque (H6)	06182000

Opérateur(s) terrain : Antoine ROBE

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Antoine ROBE Date début laboratoire : 22/11/2016

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

Il s'agit de la première version de ce rapport d'essai

CODE STATION	COURS D'EAU	SITE	DATE	X AMONT	Y AMONT	X AVAL	Y AVAL	PRELEVE- MENT	SUBSTRAT	CLASSE VITESSE	BOCAL ou PHASE	HAUTEUR D'EAU	SUBSTRAT SECONDAIRE	COLMATAGE (intensité/nature)	MATERIEL PRELEVEMENT	COMMENTAIRE
6182000	HERAULT	LAROQUE	19/07/2016	757493	6314270	757808	6314147	P1	S1	N5	Α	15		0	surber	
Lpb (largeur plei	Lpb (largeur plein-bord moyenne, en m) 48			Localisation du site,	impérative si absend	ж X, Y:		P2	S3	N1	Α	45		0	surber	
Lt (longueur tota	le de la station en m)	:	320					P3	S28	N1	Α	10		0	surber	
Lm (largeur mou	illée moyenne, en m)		38	Visibilité des fon	lisibilité des fonds 1					N1	Α	30		0	surber	
Sm (surface mou	uillée de la station en m²)	12160	1% Sm = 122 m ²	Hydrologie appa	rologie apparente 3				S24	N3	В	10		0	surber	
Smarg (= surf. n	nax substrat marginal=Smx0,0		608	Tendance du dél		édents	stable	P6	S30	N5	В	20		0	surber	
Photos / Cartogra	aphie (facultatif)		OUI	Matériel ☑	Durée terrain	H déb. : 13H30	H fin :	P7	S29	N3	В	25		0	surber	
Commentaires su	r le prélèvement (difficultés ? co	onformité ?) (50 carac	tères max) :	Bon état vérifié (cocher)	Surber N°: 3	Tamis N°:	Haveneau N°:	P8	S29	N1	В	30		0	surber	
	ing de Tivoli : demander à l'acceui	il.						P9	S29	N5	С	20		0	surber	
Baignade + canoë								P10	S29	N6	С	20		0	surber	
								P11	S24	N5	С	15		0	surber	
								P12	S29	N3	С	20		0	surber	

				PLAN D'ECHANTILLONNAGE										
ilité	SUBSTRATS			Vites			N5 26 à 75 cm/s	Movenne				Nulle	Nombre de prélèvements	
Habitabilité	Code Sandre - Nature du Substrat	Statut (D, M, MNR, P)	% de recouvrement		> 75 cm/s N° prélèvement	Présence (x; xx; xxx)	26 a 75 cm/s N° prélèvement	Présence (x ; xx ; xxx)	6 à 25 cm/s N° prélèvement	Présence (x; xx; xxx)	0 à 5 cm/s N° prélèvement	Présence (x ; xx ; xxx)	définitifs réalisés	
11	S1 - Bryophytes	м	1			х	1	х					1	
10	S2 - Spermaphytes immergés (hydrophytes)													
9	S3 - Débris organiques grossiers (litières)	м	1								2	х	1	
8	S28 - Chevelus racinaires libres dans l'eau, substrats ligneux (branchages)	М	1								3	х	1	
7	S24 - Sédiments minéraux de grande taille (pierres, galets - 25 à 250 mm)	D	31			х	11	xx	5	XXX		х	2	
6	S30 - Blocs facilement déplaçables (> 250 mm)	D	6			х	6	XXX		х		х	1	
5	S9 - Granulats grossiers (graviers 2 à 25 mm)	м	1								4	х	1	
4	S10 - Spermaphytes émergents (hélophytes)	м	1									х		
	S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins													
2	S25 - Sables et limons (< 2 mm)	м	3									х		
1	S18 - Algues													
0	S29 - Surfaces uniformes dures naturelles et artificielles (roches, dalles, blocs non facilement déplaçables, mames et aroiles compactes)	D	55		10	х	9	xx	7 12	xxx	8	xx	5	
			100	Nomb	re de prélèvements	1	4		3		4		12	

Phase A: substrats marginaux (M) selon ordre d'i	pohitohilitó		STATUT	Dominant (D), Marginal (M), Marginal non représnetatif (MNR) ou Présent (P)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)		
			SUBSTRAT		A LAMORT GLAVAC (INCOMEN)			
	Phase B : substrats dominants (D) selon ordre d'habitabilité			Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0+inconnu ; 1+bonne visibilité ; 2+visibilité moyenne; 3+visibilité faible; 4+fonds non visibles		
Phase C: substrats dominants (D) en privilégiant	la représentativité des substrats	CLASSE VITESSE	Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0-inconnu ; 1-pas d'eau ; 2-trous d'eau; 3-basses eaux; 4- moyennes eaux; 5- hautes eaux; 6- crue débordante			
ODC ANISME - ACHASCOD	RGANISME : AQUASCOP N° CONTRAT : 9227		BOCAL/PHASE	Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»		
ONGANISME . AQUASCOI			HAUTEUR D'EAU	Pour chaque microprélèvement, en cm	Lpb	Largeur au débit de Plein Bord (en m)		
			SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	Lt	Longueur totale de la station (en m)		
PRELEVEUR: Antoine ROBE	ASSISTANT: Mailis CROIZER		SECONDAIRE	Pour chaque incropresevenent, uniser les codes avvoire	Lm	Largeur mouillée moyenne quand prélèvement (en m avec 1 décimale si <5m)		
FREELVEOR . AMONG ROBE	ASSISTANT. Walls ONOIZEN		COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)	Sm	Superficie mouilée de la station (m²)		
	_	_			Smarg	Superficie maximale d'un substrat marginal (Sm*0.05; m²)		
Regroupement effectué sur le terrain : oui ☑ non		non 🗆	MATERIEL	Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Dominant / Marginal / marginal Non Représentatif (suivant le protocole)		
Regroupement effectue sur le terrain :			COMMENTAIRE	Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) ; 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)		

DATE DE PRELEVEMENT: 19/07/2016

COURS D'EAU: Hérault

SITE (STATION/COMMUNE): Laroque

CODE STATION: 06182000

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
		Leuctra	69	12	27	32	71
PLECOPTERA	Leuctridae	Leuctra geniculata	33830		7		
		Leuctridae	66		2		:
	Perlidae	Perla	164			1	
	Brachycentridae	Micrasema	268	8			
	Hydropsychidae	Cheumatopsyche lepida	222	255	19	27	30
	, , ,	Hydropsyche	212	45	12	9	60
	t to other methods a	Hydroptila	200	6			
	Hydroptilidae	Orthotrichia	197		1		,
	1 1	Hydroptilidae	193	1			
TRICHOPTERA	Leptoceridae	Mystacides	312	4	_		25
	Philopotamidae	Chimarra	207 231	20	2	3	2:
	Polycentropodidae	Polycentropus		4	1		
		Polycentropodidae	223	1			
	Psychomyiidae	Metalype fragilis	247 240		5	3	79
	Psycholliyildae	Psychomyia pusilla	240	1	27	52	/8
	Dhuasanhilidas	Tinodes	183		4		-
	Rhyacophilidae	Rhyacophila lato-sensu Baetis lato sensu	9794	6 41	7	33	8
		Centroptilum luteolum	384	2	'	33	
	Baetidae	Cloeon	384	2			2
	Daeliuae	Procloeon	390			1	
		Baetidae	363	5		'	į
EPHEMEROPTERA	Caonidae	Caenis	457	80	9	3	92
LI TILIVILITOI TERM	Ephemerellidae	Ephemerella ignita	451	34	4	10	48
	<u> грпеттегениае</u>	Ecdyonurus	421	34	6	17	23
	Heptageniidae	Heptageniidae	399		4	23	27
		Choroterpes picteti	475		1	23	
	Leptophlebiidae	Leptophlebiidae	473		2		2
	Corixidae	Micronecta	719	3			3
HETEROPTERA	Gerridae	Gerris	735	1			1
	Dryopidae	Dryops	613	2	5	2	9
	Diyopidao	Elmis	618	431	5	1	437
		Esolus	619	80	11	36	12
COLEOPTERA		Limnius	623		3	14	17
	Elmidae	Normandia	624	16	_	3	19
		Oulimnius	622	128	4	10	142
		Riolus	625	32			32
	Athericidae	Athericidae	838	1		1	2
	Ceratopogonidae	Ceratopogonidae	819	3	2		
	Chironomidae	Chironomidae	807	2520	97	50	266
DIPTERA	Empididae	Empididae	831	37	1	3	4
	Limoniidae	Limoniidae	757	7	2	1	10
	Simuliidae	Simuliidae	801			2	2
	Tabanidae	Tabanidae	837			2	2
ODONATA	Gomphidae	Onychogomphus	682	2			2
MEGALOPTERA	Sialidae	Sialis	704	1			
0011074054	0	Gammarus	892	107	1		108
CRUSTACEA	Gammaridae	Gammaridae	887	38		1	39
	Ancylidae	Ancylus fluviatilis	1029	20	80	50	150
CASTRODODA	Hydrob iidae	Potamopyrgus antipodarum	979	8			
GASTROPODA	Physidae	Physa lato-sensus	997	2	2		4
	Planorbidae	Planorbidae	1009	1			
TURBELLARIA	Turbellaria	Dugesiidae	1055	8	49	36	93
OLIGOCHAETA	Oligochaeta	Oligochaeta	933	31	3	1	
NEMATODA	Nematoda	Nematoda	1089	1			
CRUSTACEA	Ostracodes	Ostracodes	3170	1		1	
HYDRACARINA	Hydracarina	Hydracarina	906	1	1	1	;
	Prostomatidae	Prostoma	3110	1			
NEMERTEA	riosiomalidae	i iootoiiia					
NEMERTEA	Prosiorratidae		rôle nb taxon	44	33	31	108

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou juvéniles

Commentaire hors accréditation :

Selon la Directive DCE 2007/22, les listes des phases A et B donnent l'IBGN équivalent (MPCE) suivant = 17 /20

RAPPORT D'ESSAI n°« Inv-DCE-16- M20 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département - 1000 rue d'Alco - 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
21/07/2016	Hérault à Agonès (H7)	06182020

Opérateur(s) terrain : Antoine ROBE

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Antoine ROBE Date début laboratoire : 02/12/2016

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

Il s'agit de la première version de ce rapport d'essai

CODE STATION	COURS D'EAU	SITE	DATE	X AMONT	Y AMONT	X AVAL	Y AVAL	PRELEVE- MENT	SUBSTRAT	CLASSE VITESSE	BOCAL ou PHASE	HAUTEUR D'EAU	SUBSTRAT SECONDAIRE	COLMATAGE (intensité/nature)	MATERIEL PRELEVEMENT	COMMENTAIRE
6182020	HERAULT	AGONES	21/07/2016	759230	6312959	759111	6312638	P1	S1	N5	Α	10		0	surber	
Lpb (largeur ple	ein-bord moyenne, en m)		45	Localisation du site	, impérative si absen	ce X, Y:		P2	S3	N1	Α	100		0	surber	
Lt (longueur tota	ale de la station en m)		375					P3	S28	N1	Α	15		0	surber	
Lm (largeur moi	uillée moyenne, en m)	venne, en m) 36 Visibilité des fonds					1	P4	S 9	N3	Α	20		0	surber	
Sm (surface mo	Sm (surface mouillée de la station en m²) 13500 1% Sm = 135 m²						3	P5	S24	N5	В	30		0	surber	
Smarg (= surf. i	max substrat marginal=Smx0,0		675	Tendance du dé	bit les jours préd		stable	P6	S30	N5	В	25		0	surber	
Photos / Cartogi	raphie (facultatif)		OUI	Matériel ☑	Durée terrain	H déb. : 9H30	H fin:	P7	S25	N1	В	20		0	surber	
Commentaires su	ur le prélèvement (difficultés ? co	onformité ?) (50 carac	ctères max) :	Bon état vérifié (coche	Surber N°: 3	Tamis N°:	Haveneau N°:	P8	S29	N3	В	40		1	surber	
					•	•	•	P9	S29	N1	С	15		2	surber	
								P10	S29	N5	С	20		0	surber	
								P11	S29	N6	С	10		0	surber	
								P12	S29	N3	С	10		1	surber	

	PLAN D'ECHANTILLONNAGE												
							N/F			NAGE			
, ş	SUBSTRATS			VITES	N6								
Habitabilité	Code Sandre - Nature du Substrat	Statut (D, M, MNR, P)	% de recouvrement		> 75 cm/s N° prélèvement	Rapide Présence (x ; xx ; xxx)	26 à 75 cm/s N° prélèvement	Présence (x;xx;xxx)	6 à 25 cm/s N° prélèvement	Présence (x;xx;xxx)	0 à 5 cm/s N° prélèvement	Présence (x;xx;xxx)	Nombre de prélèvements définitifs réalisés
11	S1 - Bryophytes	М	1			xx	1	xxx		х			1
10	S2 - Spermaphytes immergés (hydrophytes)												
	S3 - Débris organiques grossiers (litières)	м	1								2	х	1
	S28 - Chevelus racinaires libres dans l'eau, substrats ligneux (branchages)	м	1								3	х	1
7	S24 - Sédiments minéraux de grande taille (pierres, galets - 25 à 250 mm)	D	10				5	XXX		xx		х	1
	S30 - Blocs facilement déplaçables (> 250 mm)	D	13				6	xx		х			1
5	S9 - Granulats grossiers (graviers 2 à 25 mm)	м	4					xx	4	xxx		х	1
4	S10 - Spermaphytes émergents (hélophytes)	P											
	S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins	м	1									х	
2	S25 - Sables et limons (< 2 mm)	D	18								7	х	1
1	S18 - Algues	м	1									х	
0	S29 - <u>Surfaces</u> uniformes <u>dures</u> naturelles et artificielles (roches, dalles, blocs non facilement déplaçables, mames et argiles compactes)	D	50		11	х	10	xx	8 12	XXX	9	xx	5
	100			Nomb	re de prélèvements	1	4		3		4		12

Phase A: substrats marginaux (M) selon ordre d'	habitabilité		STATUT	Dominant (D), Marginal (M), Marginal non représnetatif (MNR) ou Présent (P)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)
Phase B: substrats dominants (D) selon ordre d'	habitabilité		SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0=inconnu ; 1=bonne visibilité ; 2=visibilité mayenne; 3=visibilité faible; 4=fonds non visibles
Phase C: substrats dominants (D) en privilégiant	la représentativité des substrats	CLASSE VITESSE	Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0=inconnu ; 1=pas d'eau ; 2=trous d'eau; 3=basses eaux; 4= moyennes eaux; 5= hautes eaux; 6= crue débordante	
ORGANISME: AQUASCOP	Nº CONTRAT . 0007		BOCAL/PHASE	Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»
ORGANISME: AQUASCOP	DRGANISME: AQUASCOP N° CONTRAT: 9227		HAUTEUR D'EAU	Pour chaque microprélèvement, en cm	Lpb	Largeur au débit de Plein Bord (en m)
PRELEVEUR : Antoine ROBE	ASSISTANT: Mailis CROIZER		SUBSTRAT SECONDAIRE	Pour chaque microprélèvement, utiliser les codes SANDRE	Lt Lm	Longueur totale de la station (en m) Largeur mouillée movenne guand prélèvement (en m avec 1 décimale si <5m)
PRELEVEUR: Antoine ROBE	ASSISTANT: Mailis CRUIZER		COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)	Sm Smarg	Superficie mouitée de la station (m²) Superficie maximale d'un substrat marginal (Sm²0.05 : m²)
Regroupement effectué sur le terrain : oui ☑ non □			MATERIEL	Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Dominant / Marginal / marginal Non Représentatif (suivant le protocole)
			COMMENTAIRE	Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) ; 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)

DATE DE PRELEVEMENT : 21/07/2016

COURS D'EAU : Hérault

SITE (STATION/COMMUNE): Agonès

CODE STATION: 06182020

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
PLECOPTERA	Leuctridae	Leuctra	69	8	8		16
I LLCOI ILIXA	Leucinuae	Leuctra geniculata	33830		2		2
	Brachycentridae	Micrasema	268	8			8
		Cheumatopsyche lepida	222	75	4	1	80
	Hydropsychidae	Hydropsyche	212	20	9	2	31
		Hydropsychidae	211	5			5
		Hydroptila	200	11	3	8	22
	Hydroptilidae	Orthotrichia	197	8			8
		Hydroptilidae	193		1	2	3
TRICHOPTERA	Lantonovidos	Mystacides	312	2	1		3
	Leptoceridae	Oecetis	317	2			2
	Philopotamidae	Chimarra	207	1	1		2
	Polycentropodidae	Polycentropus	231	_	3		3
	,	Metalype fragilis	247	1	2	4	7
	Psychomyiidae	Psychomyia pusilla	240	1	14	21	36
	, cycnomynado	Tinodes	245	1			1
	Rhyacophilidae	Rhyacophila lato-sensu	183	6		1	7
	Kriyacoprillidae	Baetis lato sensu	9794		141	150	537
				246	141	150	
	Descriptor.	Centroptilum luteolum	384	8			8
	Baetidae	Cloeon	387	38	3		41
		Procloeon	390	15		4	19
		Baetidae	363	8	3		11
	Caenidae	Caenis	457	99	17	5	121
EPHEMEROPTERA	Ephemerellidae	Ephemerella ignita	451	70	8		78
		Ecdyonurus	421		13		13
	Heptageniidae	Epeorus	400		1		1
		Heptageniidae	399	2	12		14
		Choroterpes picteti	475	8	4		12
	Leptophlebiidae	Leptophlebiidae	473	7	1		8
	Potamanthidae	Potamanthus luteus	510	1			1
HETEROPTERA	Corixidae	Micronecta	719	41	9	69	119
TIETEROT TERM	Dryopidae	Dryops	613	2		- 03	2
	Dytiscidae	Hydroporinae	2393	2			2
	Dyuscidae	Elmis	618	29	3		32
					_		
		Esolus	619	73	12		85
COLEOPTERA		Limnius	623	4	1		5
	Elmidae	Normandia	624	4			4
		Oulimnius	622	53			53
		Stenelmis	617		1		1
		Elmidae	614	4			4
	Gyrinidae	Orectochilus	515	1			1
	Anthomyidae	Anthomyidae	847	1			1
	Athericidae	Athericidae	838	3			3
	Blephariceridae	Blephariceridae	747		1		1
	Ceratopogonidae	Ceratopogonidae	819		1		1
DIPTERA	Chironomidae	Chironomidae	807	1760	411	400	2571
	Empididae	Empididae	831	15	13	4	32
	Limoniidae	Limoniidae	757	6	1	9	16
	Psychodidae	Psychodidae	783	1		<u> </u>	1
	Simuliidae	Simuliidae	801	- '	26	71	97
	Calopterygidae	Calopteryx	650	1	20	- ' '	1
ODONATA	Gomphidae		678	1	——		1
	Gumprilaae	Gomphidae					86
CDLICTACE *	Gammaridae	Gammarus	892	84	2		
CRUSTACEA	4	Gammaridae	887	97	5		102
	Atyidae	Atyaephyra desmarestii	862	13			13
L	Ancylidae	Ancylus fluviatilis	1029	11			11
GASTROPODA	Hydrobiidae	Potamopyrgus antipodarum		5	1		6
	Neritidae	Theodoxus fluviatilis	968	2			2
TURBELLARIA	Turbellaria	Dugesiidae	1055	18	4		22
OLIGOCHAETA	Oligochaeta	Oligochaeta	933	54	4		58
NEMATODA	Nematoda	Nematoda	1089	1		1	2
	Copépodes	Copépodes	3206	1			1
CRUSTACEA	Ostracodes	Ostracodes	3170	1			1
HYDRACARINA	Hydracarina	Hydracarina	906	1	1	1	3
HYDROZOA	Hydrozoa	Hydrozoa	3168	1	-	1	3
NEMERTEA	Prostomatidae	Prostoma	3110			'	4
NEWERTER	riostomatidae			1 57	20	10	1
			rôle nb taxon	5/	373	18	113
			nb individus	0040	745		

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou juvéniles

Commentaire hors accréditation :

Selon la Directive DCE 2007/22, les listes des phases A et B donnent l'IBGN équivalent (MPCE) suivant = 19 /20

RAPPORT D'ESSAI n°« Inv-DCE-16- M15 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département - 1000 rue d'Alco - 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
19/07/2016	Hérault à Saint-Bauzille-de-Putois (H8)	06182030

Opérateur(s) terrain : Antoine ROBE

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Antoine ROBE Date début laboratoire : 06/12/2016

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

Il s'agit de la première version de ce rapport d'essai

CODE STATION	COURS D'EAU	SITE	DATE	X AMONT	X AMONT Y AMONT X AVAL			PRELEVE- MENT	SUBSTRAT	CLASSE VITESSE	BOCAL ou PHASE	HAUTEUR D'EAU	SUBSTRAT SECONDAIRE	COLMATAGE (intensité/nature)	MATERIEL PRELEVEMENT	COMMENTAIRE
6182030	HERAULT	ST-BAUZILLE-DE- PUTOIS	19/07/2016	758872	6309752	758680	6309499	P1	S1	N5	Α	10		0	surber	
Lpb (largeur ple	[largeur plein-bord moyenne, en m) 22 Localisation du site, impérative si absence X, Y :					P2	S28	N5	Α	15		0	surber			
Lt (longueur tota	ale de la station en m)	3	320					P3	S9	N5	Α	20		0	surber	
Lm (largeur mou	m (largeur mouillée moyenne, en m) 17 Visibilité des fonds					1	P4	S25	N1	Α	15		0	surber		
Sm (surface mo	uillée de la station en m²)	5440	1% Sm = 54 m ²	= 54 m ² Hydrologie apparente				P5	S24	N5	В	20		0	surber	
Smarg (= surf. r	max substrat marginal=Smx0,0	2	272	Tendance du déb	it les jours préc		stable	P6	S30	N5	В	10		0	surber	
Photos / Cartogi	aphie (facultatif)	C	DUI	Matériel ☑	Durée terrain	H déb. : 16H00	H fin:	P7	S29	N5	В	40		0	surber	
Commentaires su	r le prélèvement (difficultés ? co	onformité ?) (50 caraci	tères max) :	Bon état vérifié (cocher)	Surber N°: 3	Tamis N°:	Haveneau N°:	P8	S24	N3	В	20		0	surber	
	i, nombreux baigneurs.							P9	S24	N1	С	25		1	surber	
Périphyton très ab	ondant							P10	S24	N6	С	30		0	surber	
								P11	S24	N5	С	20		0	surber	
								P12	S24	N3	С	20		0	surber	

			PLAN D'ECHANTILLONNAGE										
ilité	SUBSTRATS			Vitess	N6		N5		N3		N1	Nulle	
Habitabilité	Code Sandre - Nature du Substrat	Statut (D, M, MNR, P)	% de recouvrement		> 75 cm/s N° prélèvement	Présence (x; xx; xxx)	26 à 75 cm/s N° prélèvement	Présence (x ; xx ; xxx)	6 à 25 cm/s N° prélèvement	Présence (x ; xx ; xxx)	0 à 5 cm/s N° prélèvement	Présence (x;xx;xxx)	Nombre de prélèvements définitifs réalisés
11	S1 - Bryophytes	м	1			х	1	xx				х	1
10	S2 - Spermaphytes immergés (hydrophytes)												
	S3 - Débris organiques grossiers (litières)												
	S28 - Chevelus racinaires libres dans l'eau, substrats ligneux (branchages)	м	1				2	XX		Х		х	1
	S24 - Sédiments minéraux de grande taille (pierres, galets - 25 à 250 mm)	D	71		10	х	5 11	xxx	8 12	xx	9	х	6
6	\$30 - Blocs facilement déplaçables (> 250 mm)	D	15				6	xxx		xx		х	1
5	S9 - Granulats grossiers (graviers 2 à 25 mm)	м	1				3	xxx		xx		х	1
4	S10 - Spermaphytes émergents (hélophytes)												
3	S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins												
2	S25 - Sables et limons (< 2 mm)	м	1								4	х	1
	S18 - Algues												
0	S29 - <u>Surfaces</u> uniformes <u>dures</u> naturelles et artificielles (roches, dalles, blocs non facilement déplaçables, marnes et argiles compactes)	D	10			х	7	xxx		xx		х	1
			100	Nomb	re de prélèvements								0

Phase A: substrats marginaux (M) selon ordre d'ha	abitabilité		STATUT	Dominant (D), Marginal (M), Marginal non représnetatif (MNR) ou Présent (P)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)
Phase B: substrats dominants (D) selon ordre d'ha	ase B : substrats dominants (D) selon ordre d'habitabilité			Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0-inconnu ; 1-bonne visibilité ; 2-visibilité moyenne; 3-visibilité faible; 4-fonds non visibles
Phase C : substrats dominants (D) en privilégiant la	a représentativité des substrats	CLASSE VITESSE	Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0-inconnu ; 1-pas d'eau ; 2-trous d'eau; 3-basses eaux; 4- moyennes eaux; 5- hautes eaux; 6- crue débordante	
ORGANISME: AQUASCOP	N° CONTRAT : 9227		BOCAL/PHASE	Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»
ORGANISME . AQUASCOF	RGANISME: AQUASCOP N° CONTRAT: 9227		HAUTEUR D'EAU	Pour chaque microprélèvement, en cm	Lpb	Largeur au débit de Plein Bord (en m)
PRELEVEUR: Antoine ROBE	ASSISTANT : Mailis CROIZER		SUBSTRAT SECONDAIRE	Pour chaque microprélèvement, utiliser les codes SANDRE	Lt Lm	Longueur totale de la station (en m) Largeur mouillée moyenne quand prélèvement (en m avec 1 décirmale si <5m)
FRELEVEUR : AIROINE ROBE	ASSISTANT. Walls CROIZER		COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)	Sm Smarg	Superficie mouitée de la station (m²) Superficie maximale d'un substrat marginal (Sm*0.05 ; m²)
Regroupement effectué sur le terrain :	roupement offectué our le terrain . Oui ☑ n		MATERIEL	Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Dominant / Marginal / marginal Non Représentatif (suivant le protocole)
Regroupement effectue sur le terrain :			COMMENTAIRE	Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) ; 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)

DATE DE PRELEVEMENT: 19/07/2016

COURS D'EAU: Hérault

SITE (STATION/COMMUNE): Saint-Bauzille-de-Putois

CODE STATION: 06182030

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
	Leuctridae	Leuctra	69		23	8	31
PLECOPTERA		Leuctra geniculata	33830		9		9
	Perlidae	Perla	164		2	1	3
	Brachycentridae	Micrasema	268	4		1	5
	Hydropsychidae	Cheumatopsyche lepida	222	36	132	30	198
	riyaropoyoriiaao	Hydropsyche	212	68	33	27	128
	Leptoceridae	Mystacides	312	1			1
		Setodes	318			1	1
TRICHOPTERA	Philopotamidae	Chimarra	207	4	32	2	38
	Polycentropodidae	Polycentropus	231		7		7
	l olycomiopodiado	Polycentropodidae	223		2		2
	Psychomyiidae	Metalype fragilis	247		2		2
	1 Sychollyllado	Psychomyia pusilla	240	1	24	23	48
	Rhyacophilidae	Rhyacophila lato-sensu	183	2	2	3	7
	Baetidae	Baetis lato sensu	9794	76	185	120	381
	Caenidae	Caenis	457	7	9	4	20
	Ephemerellidae	Ephemerella ignita	451	80	32	8	120
		Ecdyonurus	421		53	18	71
EPHEMEROPTERA	Heptageniidae	Epeorus	400		4		4
	' *	Heptageniidae	399		128	35	163
		Choroterpes picteti	475		1	1	2
	Leptophlebiidae	Leptophlebiidae	473		6	1	7
	Potamanthidae	Potamanthus luteus	510		1	1	2
HETEROPTERA	Corixidae	Micronecta	719		·	9	9
	Dryopidae	Dryops	613	43		3	46
	Diyopidao	Elmis	618	23	12	2	37
		Esolus	619	29	46	26	101
		Limnius	623	12	8	4	24
		Normandia	624	6	•	1	7
COLEOPTERA	Elmidae	Oulimnius	622	140	10	8	158
		Riolus	625	18	2	0	20
		Stenelmis	617	18	2		20
		Elmidae	614	_			8
	11 1		-	6	2		1
	Hydraenidae	Hydraena	608		1		
	Blephariceridae	Blephariceridae	747		1	2	3
	Ceratopogonidae	Ceratopogonidae	819	15	3	1	19
DIDTED A	Chironomidae	Chironomidae	807	1980	60	70	2110
DIPTERA	Empididae	Empididae	831	155	1	2	158
	Limoniidae	Limoniidae	757	1	1		2
	Psychodidae	Psychodidae	783	1			1
	Simuliidae	Simuliidae	801	1		6	7
ODONATA	Gomphidae	Onychogomphus	682	1			1
CRUSTACEA	Gammaridae	Gammarus	892	3	6	2	11
		Gammaridae	887	29	6	4	39
	Ancylidae	Ancylus fluviatilis	1029	3	5	13	21
GASTROPODA	Hydrobiidae	Potamopyrgus antipodarum	979	14	1	3	18
S. STROI ODA	Neritidae	Theodoxus fluviatilis	968			1	1
	Physidae	Physa lato-sensus	997		5		5
TURBELLARIA	Turbellaria	Dugesiidae	1055	17	39	9	65
OLIGOCHAETA	Oligochaeta	Oligochaeta	933	3	3	2	8
CRUSTACEA	Ostracodes	Ostracodes	3170		1		1
HYDRACARINA	Hydracarina	Hydracarina	906	1	1	1	3
HYDROZOA	Hydrozoa	Hydrozoa	3168			1	1
		•	ontrôle nb taxon	32	42	38	112
			ôle nb individus	2780	903	454	4137

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou juvéniles

Commentaire hors accréditation :

Selon la Directive DCE 2007/22, les listes des phases A et B donnent l'IBGN équivalent (MPCE) suivant = 17 /20

RAPPORT D'ESSAI n°« Inv-DCE-16- M19 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département - 1000 rue d'Alco - 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
21/07/2016	Hérault à Causse-de-la-Selle (H10)	06300051

Opérateur(s) terrain : Antoine ROBE

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Antoine ROBE Date début laboratoire : 09/12/2016

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

Il s'agit de la première version de ce rapport d'essai

CODE STATION	COURS D'EAU	SITE	DATE	X AMONT	Y AMONT	X AVAL	Y AVAL	PRELEVE- MENT		CLASSE VITESSE	BOCAL ou PHASE	HAUTEUR D'EAU	SUBSTRAT SECONDAIRE	COLMATAGE (intensité/nature)	MATERIEL PRELEVEMENT	
6300051	HERAULT	CAUSSE-DE-LA- SELLE	21/07/2016	753472	6300889	753597	6300614	P1	S 3	N1	А	10		0	surber	
Lpb (largeur plein-bord moyenne, en m) 34 Localisation du site, impérative si absence X, Y:					P2	S28	N1	Α	25		0	surber				
Lt (longueur tota	ale de la station en m)	;	330					P3	S10	N1	Α	10		0	surber	
Lm (largeur mou	uillée moyenne, en m)		29	Visibilité des fon	sibilité des fonds					N1	Α	10		0	surber	
Sm (surface mo		9570	1% Sm = 96 m ²	Hydrologie appa	ydrologie apparente 3				S 1	N5	В	20		1	surber	
Smarg (= surf. r			478	Tendance du dél	bit les jours préc		stable	P6	S2	N3	В	30		0	surber	
Photos / Cartogr	aphie (facultatif)	(OUI	Matériel ☑	Durée terrain	H déb. : 13H15	H fin:	P7	S24	N5	В	15		0	surber	
Commentaires su	r le prélèvement (difficultés ? co	onformité ?) (50 carac	tères max) :	Bon état vérifié (cochet)	Surber N°: 3	Tamis N°:	Haveneau N°:	P8	S30	N5	В	25		0	surber	
					•	•	•	P9	S9	N3	С	25		0	surber	
								P10	S18	N5	С	30		0	surber	
								P11	S29	N3	С	40		1	surber	
								P12	S 1	N3	С	20		2	surber	

				0.			<u>'</u>	<u>"</u>	PLAN D'ECHANTILLONI	NAGE	'	'	,
bilité	SUBSTRATS			11855	N6		N5		N3		N1		
Habitabi	Code Sandre - Nature du Substrat	Statut (D, M, MNR, P)	% de recouvrement	7.	> 75 cm/s N° prélèvement	Rapide Présence (x; xx; xxx)	26 à 75 cm/s N° prélèvement	Présence (x ; xx ; xxx)	6 à 25 cm/s N° prélèvement	Présence (x ; xx ; xxx)	0 à 5 cm/s N° prélèvement	Présence (x;xx;xxx)	Nombre de prélèvements définitifs réalisés
11	S1 - Bryophytes	D	30			х	5	xxx	12	xx		х	2
10	S2 - Spermaphytes immergés (hydrophytes)	D	10					х	6	xxx		х	1
9	S3 - Débris organiques grossiers (litières)	М	1								1	х	1
8	S28 - Chevelus racinaires libres dans l'eau, substrats ligneux (branchages)	М	1								2	х	1
7	S24 - Sédiments minéraux de grande taille (pierres, galets - 25 à 250 mm)	D	10				7	xxx		xx		х	1
6	S30 - Blocs facilement déplaçables (> 250 mm)	D	15				8	xxx		xx		х	1
5	S9 - Granulats grossiers (graviers 2 à 25 mm)	D	6						9	xx		х	1
4	S10 - Spermaphytes émergents (hélophytes)	м	1								3	х	1
3	S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins												
2	S25 - Sables et limons (< 2 mm)	М	1								4	х	1
1	S18 - Algues	D	10				10	XXX		xx		х	1
	S29 - <u>Surfaces</u> uniformes <u>dures</u> naturelles et artificielles (roches, dales, blocs non facilement déplaçables, marnes et argiles compactes)	D	15					xx	11	xxx		х	1
			100	Nomb	re de prélèvements		4		4		4		12

Phase A: substrats marginaux (M) selon ordre d'habitabilité		STATUT	Dominant (D), Marginal (M), Marginal non représnetatif (MNR) ou Présent (P)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)
Phase B: substrats dominants (D) selon ordre d'habitabilité	SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0-inconnu ; 1-bonne visibilité ; 2-visibilité moyenne; 3-visibilité faible; 4-fonds non visibles	
Phase C : substrats dominants (D) en privilégiant la représentativité des s	CLASSE VITESSE	Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0=inconnu ; 1=pas d'eau ; 2=trous d'eau; 3=basses eaux; 4= moyennes eaux; 5= hautes eaux; 6= crue débordante	
ORGANISME : AQUASCOP N° CONTRAT :	0007	BOCAL/PHASE	Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»
ORGANISME: AQUASCOP N° CONTRAT:	RGANISME: AQUASCOP N° CONTRAT: 9227			Lpb	Largeur au débit de Plein Bord (en m)
		SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	Lt	Longueur totale de la station (en m)
PRELEVEUR : Antoine ROBE ASSISTANT :	Mailis CROIZER	SECONDAIRE		Lm	Largeur mouilée moyenne quand prélèvement (en m avec 1 décimale si <5m)
FRELEVEUR . AIRIOINE RODE ASSISTANT .	IVIAIIIS CRUIZER	COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)	Sm	Superficie mouillée de la station (m²)
			Total disagne meroprocessing de dia 5 (o = not o = ned important)	Smarg	Superficie maximale d'un substrat marginal (Sm*0.05; m²)
Regroupement effectué sur le terrain : oui ☑ non □			Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Dominant / Marginal / marginal Non Représentatif (suivant le protocole)
			Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) ; 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)

DATE DE PRELEVEMENT : 21/07/2016

COURS D'EAU: Hérault

SITE (STATION/COMMUNE): Causse-de-la-Selle

CODE STATION: 06300051

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
PLECOPTERA	Leuctridae	Leuctra	69		1	1	2
I EEOOI TEIOT		Leuctra geniculata	33830		1		
	Brachycentridae	Micrasema	268		1		
	Hydropsychidae	Cheumatopsyche lepida	222		14	5	1:
	, , - ,	Hydropsyche	212		61	4	6
		Hydroptila	200	2	31	63	9
	Hydroptilidae	Orthotrichia	197	10	89	91	19
		Hydroptilidae	193		3		:
		Athripsodes	311	4		2	
		Ceraclea	313		2	10	1:
TRICHOPTERA	Leptoceridae	Mystacides	312	22	1	5	2
		Oecetis	317		11	82	9:
		Setodes	318		6		
	Philopotamidae	Chimarra	207		7		
		Cyrnus	224			1	
	Polycentropodidae	Polycentropus	231	1	13	16	3
		Polycentropodidae	223		1	2	
		Psychomyia pusilla	240		42	44	8
	Psychomyiidae	Tinodes	245			2	
		Psychomyiidae	238			2	1
	Danidan	Baetis lato sensu	9794	7	3	1	1
	Baetidae	Cloeon	387	4			
EDITEMEDODIES:	0	Procloeon bifidum	391	1			
EPHEMEROPTERA		Caenis	457	18	4	38	6
	Ephemerellidae	Ephemerella ignita	451	2	8	9	1:
	Leptophlebiidae	Choroterpes picteti	475	1			
	Potamanthidae	Potamanthus luteus	510	3			;
HETEROPTERA	Corixidae	Micronecta	719			1	
	Dryopidae	Dryops	613	113	1	1	115
		Elmis	618		5	11	11
		Esolus	619	1	5	36	4:
COLEODTEDA	Classide e	Limnius	623		2		
COLEOPTERA	Elmidae	Normandia	624		12	14	20
		Oulimnius	622	11	73	52	130
		Stenelmis	617		2		:
	11 -1 17 1	Elmidae	614		2		2
	Hydrophilidae Athericidae	Hydrophilinae Athericidae	2517 838	1			1:
			819	10		1	1
DIPTERA	Ceratopogonidae Chironomidae	Ceratopogonidae Chironomidae	807	1	040	2	580
DIFTERA	Empididae	Empididae	831	9	219 17	352 13	30
	Limoniidae	Limoniidae	757	1	17 5	2	3
	Aeshnidae	Boyeria irene	671	1	5	2	
ODONATA	Aestitidae		679				
ODONATA	Gomphidae	Gomphus	682	2		2	
		Onychogomphus		204	40	96	
	Gammaridae	Gammarus Gammaridae	892 887	436	19 69		319 729
CRUSTACEA	At 11 .				69	224	
	Atyidae	Atyaephyra desmarestii	862	12			11
	Cambaridae	Orconectes	870	1 242	147	404	76
BIVALVIA	Corbiculidae	Corbicula Pisidium	1051 1043	242 18	117 1	404	76
DIVALVIA	Sphaeriidae	Sphaeriidae	1043	5	1		1:
	Asser Pales			4	_	94	
	Ancylidae	Ancylus fluviatilis	1029	4	9		10
	Bithyniidae	Bithynia	994 979	2229	163	704	309
GASTROPODA	Hydrobiidae Lymnaeidae	Potamopyrgus antipodarum Radix	1004	2229	163 1	104	309
OF STROP ODA	Lymnaeidae Neritidae		1004 968	59	1 126	83	26
		Theodoxus fluviatilis	997	2	120	63	26
	Physidae Blanarhidae	Physa lato-sensus		5	1		
TURBELLARIA	Planorbidae	Planorbidae	1009	5 185		420	130
OLIGOCHAETA	Turbellaria	Dugesiidae	1055 933	185 83	680 7	436 3	
CRUSTACEA	Oligochaeta	Oligochaeta	933 3206	83 1	′	3	9:
	Copépodes	Copépodes		1			
CRUSTACEA	Ostracodes	Ostracodes	3170		-	-	
	Hydracarina	Hydracarina	906	1	1	1	
		Hydrozoa	3168	1	1		
HYDROZOA	Hydrozoa						
HYDROZOA PORIFERA	Spongillidae	Spongillidae	3106		1		
HYDRACARINA HYDROZOA PORIFERA BRYOZOA	Spongillidae Bryozoa	Spongillidae Bryozoa	1087		1	1	:
HYDROZOA PORIFERA	Spongillidae	Spongillidae Bryozoa Prostoma	1087 3110	1	1	1	
HYDROZOA PORIFERA BRYOZOA	Spongillidae Bryozoa	Spongillidae Bryozoa Prostoma	1087	1 41	1		129

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou juvéniles

Commentaire hors accréditation :

Selon la Directive DCE 2007/22, les listes des phases A et B donnent l'IBGN équivalent (MPCE) suivant = 19 /20

RAPPORT D'ESSAI n°« Inv-DCE-16- M21 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département - 1000 rue d'Alco - 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
18/08/2016	Hérault à Puechabon (H11)	06182120

Opérateur(s) terrain : Antoine ROBE

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Antoine ROBE Date début laboratoire : 02/01/2017

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

☑ Il s'agit de la première version de ce rapport d'essai

CODE STATION	COURS D'EAU	SITE	DATE	X AMONT	Y AMONT	X AVAL	Y AVAL	PRELEVE- MENT	SUBSTRAT	CLASSE VITESSE	BOCAL ou PHASE	HAUTEUR D'EAU	SUBSTRAT SECONDAIRE	COLMATAGE (intensité/nature)	MATERIEL PRELEVEMENT	COMMENTAIRE
6182120	HERAULT	PUECHABON	18/08/2016	748032	6294699	747622	6294637	P1	S1	N5	Α	20		0	surber	
Lpb (largeur ple	in-bord moyenne, en m)		36	Localisation du site,	impérative si absend	e X, Y :		P2	S2	N3	Α	25		0	surber	
Lt (longueur tota			430					P3	S 3	N1	Α	10		0	surber	
Lm (largeur mou			28	Visibilité des fon			1	P4	S28	N1	Α	20		0	surber	
Sm (surface mo		12040	1% Sm = 120 m ²	Hydrologie appa	ydrologie apparente			P5	S24	N5	В	25		0	surber	
Smarg (= surf. r	max substrat marginal=Smx0,0		600	Tendance du dél	oit les jours préc		stable	P6	S29	N1	В	25		2	surber	
Photos / Cartogr	raphie (facultatif)		OUI	Matériel ☑	Durée terrain	H déb. : 10H00	H fin :	P7	S29	N3	В	40	Algues	0	surber	
Commentaires su	ır le prélèvement (difficultés ? co	onformité ?) (50 carac	tères max) :	Bon état vérifié (cocher)	Surber N°: 3	Tamis N°:	Haveneau N°:	P8	S24	N3	В	20	Algues	0	surber	
								P9	S29	N5	С	25		0	surber	
								P10	S29	N6	С	20		0	surber	
								P11	S29	N1	С	20		1	surber	
								P12	S24	N1	С	20		2	surber	

									PLAN D'ECHANTILLON	NAGE			
ité	SUBSTRATS			Vitesse	N6		N5		N3		N1		
Habitabilité	Code Sandre - Nature du Substrat	Statut (D, M, MNR, P)	% de recouvrement	7	> 75 cm/s N° prélèvement	Rapide Présence (x; xx; xxx)	26 à 75 cm/s N° prélèvement	Présence (x ; xx ; xxx)	6 à 25 cm/s N° prélèvement	Présence (x ; xx ; xxx)	0 à 5 cm/s N° prélèvement	Présence (x; xx; xxx)	Nombre de prélèvements définitifs réalisés
11	S1 - Bryophytes	м	1				1	XX		х		х	1
10	S2 - Spermaphytes immergés (hydrophytes)	м	1					х	2	xx		х	1
9	S3 - Débris organiques grossiers (litières)	м	1								3	х	1
8	S28 - Chevelus racinaires libres dans l'eau, substrats ligneux (branchages)	М	1					XX		х	4	XXX	1
7	S24 - Sédiments minéraux de grande taille (pierres, galets - 25 à 250 mm)	D	31			х	5	xxx	8	xx	12	х	3
6	\$30 - Blocs facilement déplaçables (> 250 mm)	м	4			х		х		х		х	
5	S9 - Granulats grossiers (graviers 2 à 25 mm)	м	1									х	
4	S10 - Spermaphytes émergents (hélophytes)	м	1									х	
3	S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins												
2	S25 - Sables et limons (< 2 mm)	М	2							х		xx	
1	S18 - Algues	м	3					XX		х			
0	S29 - Surfaces uniformes dures naturelles et artificielles (roches, dalles, blocs non facilement déplaçables, marnes et argiles compactes)	D	54		10	х	9	х	7	xx	6 11	xxx	5
			100	Nomb	re de prélèvements	1	3		3		5		12

Phase A : substrats marginaux (M) selon ordre d'habitabilité		STATUT	Dominant (D), Marginal (M), Marginal non représnetatif (MNR) ou Présent (P)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)
Phase B : substrats dominants (D) selon ordre d'habitabilité	SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0-inconnu ; 1-bonne visibilité ; 2-visibilité moyenne; 3-visibilité faible; 4-fonds non visibles	
Phase C : substrats dominants (D) en privilégiant la représentativité des sul	ostrats	CLASSE VITESSE	Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0-inconnu ; 1-pas d'eau ; 2-trous d'eau; 3-basses eaux; 4- moyennes eaux; 5- hautes eaux; 6- crue débordante
ORGANISME : AQUASCOP N° CONTRAT :	9227	BOCAL/PHASE	Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»
ORGANISME. AQUASCOF IN CONTRAL.	9221	HAUTEUR D'EAU	Pour chaque microprélèvement, en cm	Lpb	Largeur au débit de Plein Bord (en m)
PRELEVEUR : Antoine ROBE ASSISTANT : N	failis CROIZER	SUBSTRAT SECONDAIRE	Pour chaque microprélèvement, utiliser les codes SANDRE	Lt Lm	Longueur totale de la station (en m) Largeur mouillée moyenne quand prélèvement (en m avec 1 décimale si <5m)
7,00,017,011		COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)	Sm Smarg	Superficie mouillée de la station (m²) Superficie maximate d'un substrat marginal (Sm*0.05 ; m²)
Regroupement effectué sur le terrain : oui 🗹 non		MATERIEL	Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Dominant / Marginal / marginal Non Représentatif (suivant le protocole)
regroupement enectue our le terrain .	COMMENTAIRE	Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) ; 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)	

DATE DE PRELEVEMENT : 18/08/2016

COURS D'EAU : Hérault

SITE (STATION/COMMUNE): Puechabon

CODE STATION: 06182120

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
PLECOPTERA	Leuctridae	Leuctra	69		1		1
		Leuctra geniculata	33830		2		2
	Ecnomidae	Ecnomus	249			3	3
	Hydropsychidae	Hydropsyche	212	187	21	5	213
	Hydroptilidae	Hydroptila	200	5	6		11
	Trydropulldae	Orthotrichia	197	19	2	1	22
		Ceraclea	313	1	3		4
	Leptoceridae	Mystacides	312	1	1	4	6
TRICHOPTERA		Setodes	318		2		2
	Philopotamidae	Chimarra	207		43	2	45
		Cyrnus	224	1			1
	Polycentropodidae	Polycentropus	231	11	17	4	32
	.,,	Polycentropodidae	223	2	2		4
		Paduniella vandeli	20557	2	8	3	13
	Psychomyiidae	Tinodes	245	3	3	3	9
		Baetis lato sensu	9794	20	22	11	53
		Cloeon	387	2	22	- ''	2
	Baetidae						
		Procloeon	390	2	44		2
EPHEMEROPTERA	0 11	Baetidae	363	1	11		12
	Caenidae	Caenis	457	29	38	29	96
	Heptageniidae	Ecdyonurus	421		2		2
	, ,	Heptageniidae	399		6		6
	Leptophlebiidae	Leptophlebiidae	473		3	2	5
HETEROPTERA	Corixidae	Micronecta	719	11	14	15	40
		Elmis	618	2			2
		Esolus	619	2	14	1	17
COLEOPTERA	Elmidae	Limnius	623	1	11		12
		Normandia	624	9	2		11
		Oulimnius	622	4	42	3	49
	Athericidae	Athericidae	838		1		1
	Chironomidae	Chironomidae	807	192	110	69	371
	Limoniidae	Limoniidae	757	3	4	2	9
DIPTERA	Psychodidae	Psychodidae	783	-	1		1
	Simuliidae	Simuliidae	801	2		48	50
	Tabanidae	Tabanidae	837		1	70	1
ODONATA	Gomphidae	Onychogomphus	682		5		5
MEGALOPTERA	Sialidae	Sialis	704	1	,		1
WILGALOFILIA	Sialiuae	Gammarus	892	64	7	1	72
	Gammaridae	Gammaridae	887	86	9	2	97
CRUSTACEA	Asellidae	Asellidae		2	9	2	97
			880			2	
	Atyidae	Atyaephyra desmarestii	862	24	1		25
BIVALVIA	Corbiculidae	Corbicula	1051	3	3		6
	Sphaeriidae	Pisidium	1043	1			1
	Ancylidae	Ancylus fluviatilis	1029		3	12	15
	Hydrobiidae	Potamopyrgus antipodarum	979	1			1
GASTROPODA	Neritidae	Theodoxus fluviatilis	968	22	2	4	28
	Physidae	Physa lato-sensus	997	5			5
	Planorbidae	Planorbidae	1009	13			13
HIRUDINEA	Hirudinae	Erpobdellidae	928		1	1	2
TURBELLARIA	Turbellaria	Dugesiidae	1055	11	36	2	49
OLIGOCHAETA	Oligochaeta	Oligochaeta	933	15	5	3	23
CRUSTACEA	Copépodes	Copépodes	3206	1		1	2
HYDRACARINA	Hydracarina	Hydracarina	906	1	1	1	3
NEMERTEA	Prostomatidae	Prostoma	3110	1		<u> </u>	1
. TEMELY LEFT	Jotomanaa		contrôle nb taxon	40	40	27	107
			rôle nb individus	763	466	234	1463
			role no maiviaus	703	400	234	1403

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou invéniles

juvéniles

Commentaire hors accréditation:

Selon la Directive DCE 2007/22, les listes des phases A et B donnent l'IBGN équivalent (MPCE) suivant = 17 /20

RAPPORT D'ESSAI n°« Inv-DCE-16- M22 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département - 1000 rue d'Alco - 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
18/08/2016	Hérault à Canet (H16)	06183200

Opérateur(s) terrain : Antoine ROBE

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Antoine ROBE Date début laboratoire : 03/01/2017

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

Il s'agit de la première version de ce rapport d'essai

_																
CODE STATION	COURS D'EAU	SITE	DATE	X AMONT	Y AMONT	X AVAL	Y AVAL	PRELEVE- MENT	SUBSTRAT	CLASSE VITESSE	BOCAL ou PHASE	HAUTEUR D'EAU	SUBSTRAT SECONDAIRE	COLMATAGE (intensité/nature)	MATERIEL PRELEVEMENT	COMMENTAIRE
6183200	HERAULT	CANET	18/08/2016	740057	6277785	739764	6277723	P1	S1	N1	A	15	Algues	2	surber	
Lpb (largeur plei	in-bord moyenne, en m)		51	Localisation du site,	alisation du site, impérative si absence X, Y :				S2	N3	Α	25		1	surber	
Lt (longueur tota	le de la station en m)		325					P3	S3	N1	Α	10		1	surber	
Lm (largeur mou	uillée moyenne, en m)		41	Visibilité des fon	sibilité des fonds				S28	N1	Α	15	Litière	1	surber	
Sm (surface mor		13325	1% Sm = 133 m ²	Hydrologie appa		3	P5	S24	N3	В	10	Algues	2	surber		
Smarg (= surf. r	nax substrat marginal=Smx0,0		665	Tendance du dét	oit les jours préc	édents	stable	P6	S25	N1	В	20		0	surber	
Photos / Cartogr	aphie (facultatif)		OUI	Matériel ☑	Durée terrain	H déb. : 14H15	H fin :	P7	S18	N3	В	25		1	surber	
Commentaires su	r le prélèvement (difficultés ? co	onformité ?) (50 carac	tères max) :	Bon état vérifié (cocher)	Surber N°: 3	Tamis N°:	h	P8	S29	N3	В	10	Algues	0	surber	
	les baigneurs, beuacoup de piétin							P9	S24	N1	С	15	Algues	2	surber	
Prélèvements dans les zones moins piétinnées, secteur aval et rive gauche en amont.								P10	S24	N5	С	15		0	surber	Argile
								P11	S29	N1	С	20	Algues	2	surber	
							P12	S18	N1	С	30		1	surber		

								·	*	PLAN D'ECHANTILLON	NAGE			
<u> </u>	SUBSTRATS				1,0556	Ne		N5		N3		N1		
ab.	30B311K13				70.	> 75 cm/s	Rapide		Moyenne		Lente	0 à 5 cm/s	Nulle	Nombre de prélèvements
Habitabilité	Code Sandre - Nature du Substrat	Statut (D, M, MNR, P)	% de recouvreme	nt		N° prélèvement	Présence (x;xx;xxx)	N° prélèvement	Présence (x ; xx ; xxx)	N° prélèvement	Présence (x; xx; xxx)	N° prélèvement	Présence (x; xx; xxx)	définitifs réalisés
11	S1 - Bryophytes	м	1								х	1	xx	1
10	S2 - Spermaphytes immergés (hydrophytes)	м	1							2	xx		х	1
9	S3 - Débris organiques grossiers (litières)	м	1									3	х	1
8	S28 - Chevelus racinaires libres dans l'eau, substrats ligneux (branchages)	М	1			· ·		·				4	х	1
7	S24 - Sédiments minéraux de grande taille (pierres, galets - 25 à 250 mm)	D	38				х	10	х	5	xxx	9	xx	3
6	S30 - Blocs facilement déplaçables (> 250 mm)	м	1								xx		х	
5	S9 - Granulats grossiers (graviers 2 à 25 mm)	м	1								x			
4	S10 - Spermaphytes émergents (hélophytes)	м	1										х	
3	S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins													
2	S25 - Sables et limons (< 2 mm)	D	10					·				6	х	1
1	S18 - Algues	D	20				х		х	7	xxx	12	xx	2
0	S29 - <u>Surfaces</u> uniformes <u>dures</u> naturelles et artificielles (roches, dales, blocs non facilement déplaçables, marnes et argiles compactes)	D	25				х		х	8	xxx	11	xx	2
			·	100	Nombr	e de prélèvements		1		4		7		12

Phase A: substrats marginaux (M) selon ordre d'I	nabitabilité		STATUT	Dominant (D), Marginal (M), Marginal non représnetatif (MNR) ou Présent (P)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)
Phase B : substrats dominants (D) selon ordre d'habitabilité			SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0-inconnu ; 1-bonne visibilité ; 2-visibilité moyenne; 3-visibilité faible; 4-fonds non visibles
Phase C : substrats dominants (D) en privilégiant la représentativité des substrats			CLASSE VITESSE	Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0=inconnu ; 1=pas d'eau ; 2=trous d'eau; 3=basses eaux; 4= moyennes eaux; 5= hautes eaux; 6= crue débordante
ORGANISME: AQUASCOP	N° CONTRAT: 9227		BOCAL/PHASE	Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»
ORGANISME . AQUASCOP	SANISME: AQUASCOP N° CONTRAT: 9227		HAUTEUR D'EAU	Pour chaque microprélèvement, en cm	Lpb	Largeur au débit de Plein Bord (en m)
			SUBSTRAT SECONDAIRE	Pour chaque microprélèvement, utiliser les codes SANDRE	Lt I m	Longueur totale de la station (en m) Larceur mouillée movenne quand prélèvement (en m avec 1 décimale si <5m)
PRELEVEUR: Antoine ROBE	ASSISTANT : Maïlis CROIZER		COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)	Sm Smarn	Superficie mouillée de la station (m²)
	oui 🗹	non 🗆	MATERIEL	Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Superficie maximale d'un substrat marginal (Sm*0.05 ; m²) Dominant / Marcinal / marcinal Non Recrésentatif (suivant le protocole)
		COMMENTAIRE	Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) ; 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)	

DATE DE PRELEVEMENT: 18/08/2016

COURS D'EAU : Hérault

SITE (STATION/COMMUNE): Canet

CODE STATION: 06183200

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
	Hydropsychidae	Hydropsyche	212			38	38
		Hydroptila	200	11	13	21	45
	Hydroptilidae	Orthotrichia	197	28	2	2	32
		Hydroptilidae	193	2	2	11	15
		Leptocerus	319	3			3
TRICHOPTERA	Leptoceridae	Mystacides	312	124	5	7	136
		Oecetis	317	3			3
	Philopotamidae	Chimarra	207			4	4
	Polycentropodidae	Polycentropus	231	2	10	5	17
		Paduniella vandeli	20557			1	1
	Psychomyiidae	Psychomyia pusilla	240			6	6
		Baetis lato sensu	9794	1	3	9	13
		Cloeon	387	4	Ŭ	6	10
	Baetidae	Procloeon	390	37	7	14	58
		Baetidae	363	9	1	7	17
EPHEMEROPTERA	Caenidae	Caenis	457	14	39	38	91
		Ecdyonurus	421	14	37	2	2
	Heptageniidae	Heptageniidae	399			7	7
	Leptophlebiidae	Leptophlebiidae			-		
HETEROPTERA	Corixidae	Micronecta	473	_	1	1	2
HETEROPTERA	Corixidae		719	3	10	37	50
	Dryopidae	Dryops	613	66	1	1	68
		Pomatinus	33844	3			3
		Elmis	618	17			17
		Esolus	619	25	13	9	47
		Normandia	624	34	1		35
COLEOPTERA	Elmidae	Oulimnius	622	336	26	10	372
		Riolus	625	17			17
		Stenelmis	617		3	2	5
		Elmidae	614	8			8
	Haliplidae	Haliplus	518	1			1
	i ialipiluae	Haliplidae	517			1	1
	Hydrophilidae	Hydrophilinae	2517	1			1
	Athericidae	Athericidae	838	1			1
	Ceratopogonidae	Ceratopogonidae	819	4			4
DIPTERA	Chironomidae	Chironomidae	807	212	133	160	505
	Empididae	Empididae	831	1		1	2
	Simuliidae	Simuliidae	801	_	1		1
	Calopterygidae	Calopteryx	650	79	4		83
	Coenagrionidae	Coenagrionidae	658	100	-		100
ODONATA	Gomphidae	Onychogomphus	682	100	3	1	4
	Platycnemididae	Platycnemis	657	126	3	1	127
CRUSTACEA	Gammaridae	Gammarus	892	120		'	127
BIVALVIA	Corbiculidae	Corbicula			4//	10	
DIVALVIA			1051	330	166	10	506
	Ancylidae	Ancylus fluviatilis	1029	15	1	2	18
	Hydrobiidae	Potamopyrgus antipodarum	979	28	2	3	33
GASTROPODA		Hydrobiidae	973	2			2
	Neritidae	Theodoxus fluviatilis	968	360	4	3	367
	Physidae	Physa lato-sensus	997	315			315
	Planorbidae	Planorbidae	1009	49			49
HIRUDINEA	Hirudinae	Erpobdellidae	928	1			1
TURBELLARIA	Turbellaria	Dugesiidae	1055	267	17	17	301
OLIGOCHAETA	Oligochaeta	Oligochaeta	933			44	44
CRUSTACEA	Cladocères	Cladocères	3127	1		1	2
CRUSTACEA	Ostracodes	Ostracodes	3170	1	1	1	3
11) /DD 40 4D IN 14	Hydracarina	Hydracarina	906	1	1	1	3
HYDRACARINA							
NEMERTEA	Prostomatidae	Prostoma	3110	1	1	1	3
	Prostomatidae		3110 ôle nb taxon	<u> </u>	28	37	3 109

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou juvéniles

Commentaire hors accréditation :

Selon la Directive DCE 2007/22, les listes des phases A et B donnent l'IBGN équivalent (MPCE) suivant = 13 /20

RAPPORT D'ESSAI n°« Inv-DCE-16- M5 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département - 1000 rue d'Alco - 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
18/07/2016	Vis à Saint-Maurice-de-Navacelles (VIS1)	06181950

Opérateur(s) terrain : Antoine ROBE

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Antoine ROBE Date début laboratoire : 21/10/2016

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

Il s'agit de la première version de ce rapport d'essai

CODE STATION	COURS D'EAU	SITE	DATE	X AMONT	Y AMONT	X AVAL	Y AVAL	PRELEVE- MENT	SUBSTRAT	CLASSE VITESSE	BOCAL ou PHASE	HAUTEUR D'EAU	COLMATAGE (intensité/nature)	MATERIEL PRELEVEMENT	COMMENTAIRE
6181950	vis	ST-MAURICE- NAVACELLES	18/07/2016	741197	6310933	741262	6310881	P1	S1	N6	Α	10	0	surber	
Lpb (largeur ple			11	Localisation du site,	impérative si absenc	ж X, Y:		P2	S3	N1	Α	20	0	surber	
Lt (longueur tota			95					P3	S28	N1	Α	25	0	surber	
Lm (largeur mou			8	Visibilité des fon			1	P4	S18	N5	Α	20	0	surber	
Sm (surface mo	uillée de la station en m²)	760	1% Sm = 7,6 m ²	Hydrologie appa	ydrologie apparente				S24	N5	В	20	0	surber	
Smarg (= surf. r	max substrat marginal=Smx0,0		38	Tendance du dét			stable	P6	S30	N5	В	15	0	surber	
Photos / Cartogr	aphie (facultatif)		OUI	Matériel ☑	Durée terrain	H déb. : 10H00	H fin:	P7	S9	N3	В	60	0	surber	
Commentaires su	r le prélèvement (difficultés ? co	onformité ?) (50 carac	tères max) :	Bon état vérifié (cocher)	Surber N°: 3	Tamis N°:	Haveneau N°:	P8	S25	N1	В	20	0	surber	
								P9	S29	N5	С	20	0	surber	
								P10	S24	N1	С	20	0	surber	
								P11	S24	N3	С	15	0	surber	
								P12	S29	N3	С	15	0	surber	

				PLAN D'ECHANTILLONNAGE									
iité	SUBSTRATS			Vites								Nulle	
Habitabilité	Code Sandre - Nature du Substrat	Statut (D, M, MNR, P)	% de recouvrement		> 75 cm/s N° prélèvement	Présence (x; xx; xxx)	26 à 75 cm/s I N° prélèvement	Présence (x ; xx ; xxx)	6 à 25 cm/s N° prélèvement	Présence (x ; xx ; xxx)	0 à 5 cm/s N° prélèvement	Présence (x;xx;xxx)	Nombre de prélèvements définitifs réalisés
11	S1 - Bryophytes	м	1		1	х		х					1
10	S2 - Spermaphytes immergés (hydrophytes)												
9	S3 - Débris organiques grossiers (litières)	М	1								2	х	1
8	S28 - Chevelus racinaires libres dans l'eau, substrats ligneux (branchages)	М	1					х			3	х	1
7	S24 - Sédiments minéraux de grande taille (pierres, galets - 25 à 250 mm)	D	37			х	5	х	11	х	10	х	3
6	S30 - Blocs facilement déplaçables (> 250 mm)	D	24			х	6	х		x			1
5	S9 - Granulats grossiers (graviers 2 à 25 mm)	D	5						7	x		x	1
4	S10 - Spermaphytes émergents (hélophytes)												
3	S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins												
2	S25 - Sables et limons (< 2 mm)	D	5					х			8	х	1
	S18 - Algues	м	1			х	4	х					1
	S29 - <u>Surfaces</u> uniformes <u>dures</u> naturelles et artificielles (roches, dalles, blocs non facilement déplaçables, marnes et argiles compactes)	D	25			х	9	х	12	х	<u> </u>	х	2
			100			1	4		3		4		12

Phase A: substrats marginaux (M) selon ordre d'h	abitabilité		STATUT	Dominant (D), Marginal (M), Marginal non représnetatif (MNR) ou Présent (P)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)
Phase B : substrats dominants (D) selon ordre d'habitabilité			SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0=inconnu ; 1=bonne visibilité ; 2=visibilité moyenne; 3=visibilité faible; 4=fonds non visibles
Phase C : substrats dominants (D) en privilégiant	la représentativité des substrats		CLASSE VITESSE	Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0=inconnu ; 1=pas d'eau ; 2=trous d'eau; 3=basses eaux; 4= moyennes eaux; 5= hautes eaux; 6= crue débordante
ORGANISME: AQUASCOP	N° CONTRAT: 9227		BOCAL/PHASE	Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»
ORGANISME . AQUASCOP	QUASCOP N'CONTRAT: 9227		HAUTEUR D'EAU	Pour chaque microprélèvement, en cm	Lpb	Largeur au débit de Plein Bord (en m)
PRELEVEUR : Antoine ROBE	ASSISTANT: Mailis CROIZER		SUBSTRAT SECONDAIRE	Pour chaque microprélèvement, utiliser les codes SANDRE	Lt Lm	Longueur totale de la station (en m) Largeur mouillée moyenne quand prélèvement (en m avec 1 décimale si <5m)
FRELEVEUR : Altionie ROBE	ASSISTANT . Walls CROIZER		COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)	Sm Smarg	Superficie mouilée de la station (m²) Superficie maximale d'un substrat marginal (Sm°0.05; m²)
Regroupement effectué sur le terrain :	oui 🗹	non 🗆	MATERIEL	Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Dominant / Marginal / marginal Non Représentatif (suivant le protocole)
Regroupement enectue sur le terrain .	upement effectue sur le terrain :		COMMENTAIRE	Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) ; 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)

DATE DE PRELEVEMENT: 18/07/2016

COURS D'EAU : Vis

SITE (STATION/COMMUNE): Saint-Maurice-de-Navacelles

CODE STATION: 06181950

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
	Leuctridae	Leuctra	69	6	144	17	16
PLECOPTERA	Leuctridae	Leuctra geniculata	33830	1	14	1	1
	Nemouridae	Protonemura	46	2			
	Perlidae	Dinocras	156		2		
		Perla	164		26		2
TRICHOPTERA	Glossosomatidae	Agapetus	191			1	
	Goeridae	Silo - Lithax	5219	3	19	12	
		Goeridae	286	2			
	Hydropsychidae	Hydropsyche	212	21	13	11	
		Hydropsychidae	211	3	1	1	
	Hydroptilidae	Hydroptila	200			5	
	Limnephilidae	Limnephilinae	3163	7		,	
	Odontoceridae	Odontocerum albicorne	340	,	5		
	Polycentropodidae	Polycentropodidae	223		1		
		Tinodes	245	5	9	15	
	Psychomyiidae			6	1	15	
	Rhyacophilidae	Rhyacophila lato-sensu	183				
	Sericostomatidae	Sericostoma	322	32	2		
		Sericostomatidae	321		7	1	
EPHEMEROPTERA	Baetidae	Baetis lato sensu	9794	274	520	235	10
	Caenidae	Caenis	457	1	73	4	
	Ephemerellidae	Ephemerella ignita	451	32	69	40	1
	Ephemeridae	Ephemera	502	3	8		
	Heptageniidae Leptophlebiidae	Ecdyonurus	421		5	2	
		Heptageniidae	399		2	1	
		Habrophlebia	491	55	9	2	
		Leptophlebiidae	473	49	10	2	
HETEROPTERA	Gerridae	Gerris	735	1			
HEIEROPIEKA	Veliidae	Veliidae	743	1			
COLEOPTERA	Dytiscidae	Hydroporinae	2393	4	25	11	
	Elmidae	Elmis	618	50	15	12	
		Esolus	619	2	86	15	1
		Limnius	623	5	20	3	
		Normandia	624	·		1	
		Oulimnius	622		5	1	
		Riolus	625	20	5	8	
	Hydraenidae	Hydraena	608	1	6	1	
	Athericidae	Athericidae	838	7	7	2	
DIPTERA			819	1	1		
	Ceratopogonidae	Ceratopogonidae	807			4.4	5
	Chironomidae	Chironomidae		320	218	44	5
	Dixidae	Dixidae	793	1			
	Empididae	Empididae	831	8	4	7	
	Limoniidae	Limoniidae	757		2	7	
	Psychodidae	Psychodidae	783	1			
	Rhagionidae	Rhagionidae	841		1		
	Simuliidae	Simuliidae	801	38	4	12	
	Stratiomyidae	Stratiomyidae	824	1	1		
	Tipulidae	Tipulidae	753	1	1		
ODONATA	Calopterygidae	Calopteryx	650	1			
CRUSTACEA	Gammaridae	Gammarus	892	626	167	7	8
CRUSTACEA	Gammanuae	Gammaridae	887	231	84	4	3
BIVALVIA	Sphaeriidae	Pisidium	1043	1			
GASTROPODA	Ancylidae	Ancylus fluviatilis	1029	9			
		Potamopyrgus antipodarum	979	19	20		
	Hydrobiidae	Hydrobiidae	973	33		1	
	Lymnaeidae	Radix	1004	1	1	6	
		Lymnaeidae	998	2		,	
ΓURBELLARIA	Turbellaria	Planariidae	1061	17	2		
OLIGOCHAETA				15	38	2	
	Oligochaeta	Oligochaeta	933				
NEMATODA	Nematoda	Nematoda	1089	1	1	_	
HYDRACARINA	Hydracarina	Hydracarina	906	1	1	1	
			rôle nb taxon	47	45	35	1.
		contrôle	nb individus	1921	1655	495	40

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou juvéniles

Commentaire hors accréditation :

Selon la Directive DCE 2007/22, les listes des phases A et B donnent l'IBGN équivalent (MPCE) suivant = 20 /20

RAPPORT D'ESSAI n°« Inv-DCE-16- M6 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département - 1000 rue d'Alco - 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
18/07/2016	Vis à Gornies (VIS2)	06181960

Opérateur(s) terrain : Antoine ROBE

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Antoine ROBE Date début laboratoire : 03/11/2016

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

☑ Il s'agit de la première version de ce rapport d'essai

CODE STATION	COURS D'EAU	SITE	DATE	X AMONT	Y AMONT	X AVAL	Y AVAL	PRELEVE- MENT	SUBSTRAT	CLASSE VITESSE	BOCAL ou PHASE	HAUTEUR D'EAU	SUBSTRAT SECONDAIRE	COLMATAGE (intensité/nature)	MATERIEL PRELEVEMENT	COMMENTAIRE
6181960	vis	GORNIES	18/07/2016	754488	6309855	749733	6309927	P1	S1	N5	Α	15		0	surber	
Lpb (largeur plei	n-bord moyenne, en m)		22	Localisation du site, impérative si absence X, Y :			P2	S25	N1	Α	20		0	surber		
Lt (longueur tota	le de la station en m)		190					P3	S28	N1	Α	20		0	surber	
Lm (largeur mou			20	Visibilité des fon			1	P4	S10	N3	Α	10		0	surber	
Sm (surface mou	Sm (surface mouillée de la station en m²) 3800 1% Sm = 38 m² Hyd			Hydrologie apparente 3			P5	S24	N1	В	30		0	surber		
Smarg (= surf. n	nax substrat marginal=Smx0,0		190	Tendance du dét	it les jours préc		stable	P6	S30	N5	В	20		0	surber	
Photos / Cartogra	aphie (facultatif)		OUI	Matériel ☑	Durée terrain	H déb. : 14H00	H fin :	P7	S9	N1	В	20		0	surber	
Commentaires su	r le prélèvement (difficultés ? co	onformité ?) (50 carad	ctères max) :	Bon état vérifié (cocher)	Surber N°: 3	Tamis N°:	Haveneau N°:	P8	S29	N1	В	25		1	surber	
						•		P9	S29	N3	С	30		0	surber	
								P10	S29	N5	С	40		0	surber	
								P11	S29	N6	С	20		0	surber	
								P12	S24	N5	С	20		0	surber	

				PLAN D'ECHANTILLONNAGE									
ilité	SUBSTRATS			-likess.		Rapide		Movenne				Nulle	
Habitabilité	Code Sandre - Nature du Substrat	Statut (D, M, MNR, P)	% de recouvrement		> 75 cm/s N° prélèvement	Présence (x;xx;xxx)	26 à 75 cm/s N° prélèvement	Présence (x;xx;xxx)	6 à 25 cm/s N° prélèvement	Présence (x;xx;xxx)	0 à 5 cm/s N° prélèvement	Présence (x ; xx ; xxx)	Nombre de prélèvements définitifs réalisés
11	S1 - Bryophytes	м	1			х	1	х				х	1
10	S2 - Spermaphytes immergés (hydrophytes)												
9	S3 - Débris organiques grossiers (litières)	P											
8	S28 - Chevelus racinaires libres dans l'eau, substrats ligneux (branchages)	м	1								3	х	1
7	S24 - Sédiments minéraux de grande taille (pierres, galets - 25 à 250 mm)	D	27			х	12	х		х	5	х	2
6	S30 - Blocs facilement déplaçables (> 250 mm)	D	10			x	6	х		x			1
5	S9 - Granulats grossiers (graviers 2 à 25 mm)	D	5								7	х	1
4	S10 - Spermaphytes émergents (hélophytes)	м	1						4	х			1
3	S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins												
2	S25 - Sables et limons (< 2 mm)	М	2				·				2	х	1
	S18 - Algues	М	1			х		х					
	S29 - <u>Surfaces</u> uniformes <u>dures</u> naturelles et artificielles (roches, dalles, blocs non facilement déplaçables, marnes et argiles compactes)	D	52		11	х	10	х	9	xxx	8	х	4
			100			1	4		2		5		12

Phase A : substrats marginaux (M) selon ordre d'habitabilité	STATUT	Dominant (D), Marginal (M), Marginal non représnetatif (MNR) ou Présent (P)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)
Phase B: substrats dominants (D) selon ordre d'habitabilité	SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0-inconnu ; 1-bonne visibilité ; 2-visibilité moyenne; 3-visibilité faible; 4-fonds non visibles
Phase C: substrats dominants (D) en privilégiant la représentativité des substrats	CLASSE VITESSE	Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0-inconnu ; 1-pas d'eau ; 2-trous d'eau; 3-basses eaux; 4- moyennes eaux; 5- hautes eaux; 6- crue débordante
ORGANISME: AQUASCOP N° CONTRAT: 9227	BOCAL/PHASE	Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»
ORGANISME: AQUASCOF N° CONTRAT: 9227	HAUTEUR D'EAU	Pour chaque microprélèvement, en cm	Lpb	Largeur au débit de Plein Bord (en m)
PRELEVEUR : Antoine ROBE ASSISTANT : Mailis CROIZER	SUBSTRAT SECONDAIRE	Pour chaque microprélèvement, utiliser les codes SANDRE	Lt Lm	Longueur totale de la station (en m) Largeur mouillée moyenne quand prélèvement (en m avec 1 décimale si <5m)
ACCOPACT: Main ONGLER	COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)	Sm Smarg	Superficie mouillée de la station (m²) Superficie maximale d'un substrat marginal (Sm²0.05 : m²)
Regroupement effectué sur le terrain : oui ☑ non □	MATERIEL	Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Dominant / Marginal / marginal Non Représentatif (suivant le protocole)
Regroupement effectue sur le terrain .	COMMENTAIRE	Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) ; 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)

DATE DE PRELEVEMENT : 18/07/2016

COURS D'EAU: Vis

SITE (STATION/COMMUNE): Gornies

CODE STATION: 06181960

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
	Leuctridae	Leuctra	69	49	333	29	411
PLECOPTERA	Leucindae	Leuctra geniculata	33830		42	5	47
	Perlidae	Perla	164		12	6	18
	Goeridae	Silo - Lithax	5219	3	6	2	11
	Hydropsychidae	Hydropsyche	212	1		1	2
	Hydroptilidae	Hydroptila	200		1	1	2
TRICHOPTERA	Polycentropodidae	Polycentropus	231		12	3	15
	l olycerillopodidae	Polycentropodidae	223		1	1	2
	Psychomyiidae	Psychomyiidae	238	1			1
	Rhyacophilidae	Rhyacophila lato-sensu	183	3	1	2	6
	Baetidae	Baetis lato sensu	9794	143	141	220	504
	Baetidae	Baetidae	363	7			7
	Ephemerellidae	Ephemerella ignita	451	24	23		47
EPHEMEROPTERA	Heptageniidae	Ecdyonurus	421		11	18	29
	періаўеннае	Heptageniidae	399		10	1	11
	l antanblabiidaa	Habrophlebia	491	1			1
	Leptophlebiidae	Leptophlebiidae	473	3			3
LIETED ODTED A	Corixidae	Micronecta	719	1	1		2
HETEROPTERA	Gerridae	Gerris	735			1	1
		Elmis	618	12			12
		Esolus	619	194	174	22	390
001 5007504	Elmidae	Limnius	623	12	6	3	21
COLEOPTERA		Oulimnius	622	36	30	6	72
		Riolus	625	267	48	20	335
	Hydraenidae	Hydraena	608	1	1		2
	Anthomyidae	Anthomyidae	847	4	1	1	6
	Athericidae	Athericidae	838	2	5	4	11
	Chironomidae	Chironomidae	807	75	50	16	141
	Empididae	Empididae	831	1		1	2
DIPTERA	Ephydridae	Ephydridae	844	80		1	81
	Limoniidae	Limoniidae	757	3	15	18	36
	Psvchodidae	Psychodidae	783	2			2
	Simuliidae	Simuliidae	801	14	9	48	71
	Tipulidae	Tipulidae	753	12	2		14
ODONATA	Gomphidae	Gomphidae	678		1		1
	·	Gammarus	892	236	25	4	265
CRUSTACEA	Gammaridae	Gammaridae	887	169	15	5	189
	Ancylidae	Ancylus fluviatilis	1029	1		Ť	100
GASTROPODA	Hvdrobiidae	Potamopyrgus antipodarum	979	4			4
TURBELLARIA	Turbellaria	Dugesiidae	1055	1	2		3
OLIGOCHAETA	Oligochaeta	Oligochaeta	933	19	158	6	183
NEMATODA	Nematoda	Nematoda	1089	13	.50	1	183
HYDRACARINA	Hydracarina	Hydracarina	906	1	1	1	3
TITEINACANINA	riyaracanna		rôle nb taxon	33	30	29	92
			nb individus	1382	1137	447	2966
		Controle	- nib illulviuus	1302	1137	447	2900

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou

juvéniles

Commentaire hors accréditation:

RAPPORT D'ESSAI n°« Inv-DCE-16- M7 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département - 1000 rue d'Alco - 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
18/07/2016	Vis à Saint-Laurent-le-Minier (VIS3)	06181980

Opérateur(s) terrain : Antoine ROBE

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Antoine ROBE Date début laboratoire : 14/11/2016

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

☑ Il s'agit de la première version de ce rapport d'essai

CODE STATION	COURS D'EAU	SITE	DATE	X AMONT	Y AMONT	X AVAL	Y AVAL	PRELEVE- MENT	SUBSTRAT	CLASSE VITESSE	BOCAL ou PHASE	HAUTEUR D'EAU	SUBSTRAT SECONDAIRE	COLMATAGE (intensité/nature)	MATERIEL PRELEVEMENT	COMMENTAIRE
6181980	vis	HERAULT A CANET	18/07/2016	754225	6315640	754391	6315690	P1	S3	N1	Α	20		0	surber	
Lpb (largeur plei	n-bord moyenne, en m)		18	Localisation du site, impérative si absence X, Y :			P2	S28	N1	Α	10		0	surber		
Lt (longueur total	Lt (longueur totale de la station en m) 200							P3	S30	N5	Α	30		0	surber	
Lm (largeur mou			14	Visibilité des fon	ds		1	P4	S9	N1	Α	15		0	surber	
Sm (surface mou	Sm (surface mouillée de la station en m²) 2800 1% Sm = 28 m			Hydrologie apparente 3			P5	S1	N5	В	25		1	surber		
Smarg (= surf. m	nax substrat marginal=Smx0,0		140	Tendance du dél	oit les jours préc	édents	stable	P6	S24	N5	В	30		0	surber	
Photos / Cartogra	aphie (facultatif)		OUI	Matériel ☑	Durée terrain	H déb. : 16H20	H fin :	P7	S29	N5	В	20		0	surber	
Commentaires sur	r le prélèvement (difficultés ? c	onformité ?) (50 carac	tères max) :	Bon état vérifié (cocher)	Surber N°: 3	Tamis N°:	Haveneau N°:	P8	S29	N3	В	15		0	surber	
								P9	S29	N1	С	20		0	surber	
								P10	S29	N6	С	40		0	surber	
								P11	S29	N5	С	20		0	surber	
								P12	S29	N3	С	20		0	surber	

				و ر					PLAN D'ECHANTILLON	NAGE					
iité	SUBSTRATS			VINES	N6								N		
Habitabilité	Code Sandre - Nature du Substrat	Statut (D, M, MNR, P)	% de recouvrement		> 75 cm/s N° prélèvement	Rapide Présence (x ; xx ; xxx)	26 à 75 cm/s N° prélèvement	Présence (x;xx;xxx)	6 à 25 cm/s N° prélèvement	Présence (x;xx;xxx)	0 à 5 cm/s N° prélèvement	Présence (x; xx; xxx)	Nombre de prélèvements définitifs réalisés		
11	S1 - Bryophytes	D	5				5	х		х		х	1		
10	S2 - Spermaphytes immergés (hydrophytes)														
9	S3 - Débris organiques grossiers (litières)	м	1								1	х	1		
8	S28 - Chevelus racinaires libres dans l'eau, substrats ligneux (branchages)	м	1								2	х	1		
7	S24 - Sédiments minéraux de grande taille (pierres, galets - 25 à 250 mm)	D	7				6	х		х		х	1		
6	S30 - Blocs facilement déplaçables (> 250 mm)	М	1				3	х					1		
5	S9 - Granulats grossiers (graviers 2 à 25 mm)	М	3								4	х	1		
	S10 - Spermaphytes émergents (hélophytes)	М	1									х			
	S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins														
2	S25 - Sables et limons (< 2 mm)	М	3									х			
1	S18 - Algues	м	4					х							
0	S29 - <u>Surfaces</u> uniformes <u>dures</u> naturelles et artificielles (roches, dalles, blocs non facilement déplaçables, marnes et argiles compactes)	D	74		10	х	7 11	XXX	8 12	xx	9	х	6		
			100	Nomb	re de prélèvements	1	5		2		4		12		

Phase A: substrats marginaux (M) selon ordre d'	habitabilité		STATUT	Dominant (D), Marginal (M), Marginal non représnetatif (MNR) ou Présent (P)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)
Phase B: substrats dominants (D) selon ordre d'	habitabilité		SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0=inconnu ; 1=banne visibilité ; 2=visibilité moyenne; 3=visibilité faible; 4=fonds non visibles
Phase C: substrats dominants (D) en privilégiant	la représentativité des substrats		CLASSE VITESSE	Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0=inconnu ; 1=pas d'eau ; 2=trous d'eau; 3=basses eaux; 4= moyennes eaux; 5= hautes eaux; 6= crue débordante
ODCANISME . ACHASCOD	GANISME: AQUASCOP N° CONTRAT: 9227			Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»
ORGANISME. AQUASCOI	GANISME: AQUASCOP N° CONTRAT: 9227		HAUTEUR D'EAU	Pour chaque microprélèvement, en cm	Lpb	Largeur au débit de Pfein Bord (en m)
PRELEVEUR : Antoine ROBE	ASSISTANT : Mailis CROIZER		SUBSTRAT SECONDAIRE	Pour chaque microprélèvement, utiliser les codes SANDRE	Lt Lm	Longueur totale de la station (en m) Largeur mouillée moyenne quand prélèvement (en m avec 1 décimale si <6m)
PREELVEOR: Among Robe	ASSISTANT: Walls ONOIZEN		COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)	Sm Smarg	Superficie mouitlée de la station (m²) Superficie maximale d'un substrat marginal (Sm*0.05 ; m²)
Regroupement effectué sur le terrain :	oui ☑	non 🗆	MATERIEL	Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Dominant / Marginal / marginal Non Représentatif (suivant le protocole)
Regroupement effectue sur le terrain :			COMMENTAIRE	Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) ; 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)

DATE DE PRELEVEMENT: 18/07/2016

COURS D'EAU : Vis

SITE (STATION/COMMUNE): Saint-Laurent-le-Minier

CODE STATION: 06181980

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
PLECOPTERA	Leuctridae	Leuctra	69	16	13		29
I LLOOF TERM	Loudindae	Leuctra geniculata	33830	1	1		2
	Brachycentridae	Micrasema	268	3	6		9
PLECOPTERA PRICHOPTERA PHEMEROPTERA PODONATA PRUSTACEA PASTROPODA PURBELLARIA PURBELLARIA PURBELLARIA PURBELLARIA PURDACARINA PURDACARINA PURDACOA PURBELLARIA PURDACARINA PURDACOA PURBELLARIA PURDACARINA PURDACOA PURD	Goeridae	Goera pilosa	288	1			1
	Goeridae	Silo	292	22	1		23
	Lludronovohidoo	Cheumatopsyche lepida	222	1	4		5
	Hydropsychidae	Hydropsyche	212	2	15		17
	Lludrontilidoo	Hydroptila	200	10	32		42
	Hydroptilidae	Hydroptilidae	193	2	1		3
		Ceraclea	313	1			1
TRICHOPTERA	Leptoceridae	Mystacides	312	22			22
	, ·	Leptoceridae	310	1			1
		Cyrnus	224	3			3
	Polycentropodidae		231	3	2		5
	. , ,	Polycentropodidae	223	1			1
		Metalype fragilis	247	8	15	18	41
	Psychomyiidae	Psychomyia pusilla	240	26	33	45	104
	, cyonomynado	Tinodes	245	1	- 33	73	104
	Rhyacophilidae	Rhyacophila lato-sensu	183		6	3	9
	татуасоришиае	Baetis lato sensu	9794	80	77	27	184
					- //	21	
	Baetidae	Centroptilum luteolum Cloeon	384 387	11			11 11
	Баешае			11			
EDUENIED ODTED A		Procloeon	390	33			33
EPHEMEROPIERA		Baetidae	363	15			15
	Caenidae	Caenis	457	3			3
	Ephemerellidae	Ephemerella ignita	451	37	16		53
	Heptageniidae	Heptageniidae	399	7	9		16
	Leptophlebiidae	Leptophlebiidae	473	1			1
HETEROPTERA	Corixidae	Micronecta	719	4			4
	Dryopidae	Dryops	613	5			5
		Elmis	618	21	27	3	51
COLEOPTERA	Elmidae	Esolus	619	174	150	4	328
	Ellilidae	Oulimnius	622	42	232	1	275
		Riolus	625	16	137	2	155
	Anthomyidae	Anthomyidae	847	1	1		2
	Athericidae	Athericidae	838	9	3		12
	Blephariceridae	Blephariceridae	747			3	3
	Chironomidae	Chironomidae	807	2520	1056	220	3796
DIPTERA	Empididae	Empididae	831	11	43	14	68
5	Limoniidae	Limoniidae	757	15	13	26	54
	Simuliidae	Simuliidae	801	5	2	74	81
	Tabanidae	Tabanidae	837	2	1	74	3
			753	2			3 1
	Tipulidae	Tipulidae			1		1
ODONATA	Aeshnidae	Boyeria irene	671	1			
	Gomphidae	Onychogomphus	682	3			3
CRUSTACEA	Gammaridae	Gammarus	892	189	5	1	195
		Gammaridae	887	231	3		234
	Ancylidae	Ancylus fluviatilis	1029	21	1		22
GASTROPODA	Hydrobiidae	Potamopyrgus antipodarum	979	2	1		3
	Physidae	Physa lato-sensus	997	4			4
TURBELLARIA	Turbellaria	Dugesiidae	1055	14	5		19
OLIGOCHAETA	Oligochaeta	Oligochaeta	933	8	2		10
NEMATODA	Nematoda	Nematoda	1089	1	1		2
HYDRACARINA	Hydracarina	Hydracarina	906	1	1	1	3
HYDROZOA	Hydrozoa	Hydrozoa	3168	1			1
NEMERTEA	Prostomatidae	Prostoma	3110	1			1
			rôle nb taxon	53	35	15	103
			nb individus	3624	1916	442	5982
			-1.15 Individus	5027	1310	7.72	3302

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou juvéniles

Commentaire hors accréditation :

RAPPORT D'ESSAI n°« Inv-DCE-16- M9 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département - 1000 rue d'Alco - 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
13/07/2016	Buèges à Saint-Jean-de-Buèges (BU1)	06184620

Opérateur(s) terrain : Aurélia MARQUIS

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Aurélia MARQUIS Date début laboratoire : 15/03/2017

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

☑ Il s'agit de la première version de ce rapport d'essai

CODE STATION	COURS D'EAU	SITE	DATE	X AMONT	Y AMONT	X AVAL	Y AVAL	PRELEVE- MENT	SUBSTRAT	CLASSE VITESSE	BOCAL ou PHASE	HAUTEUR D'EAU	SUBSTRAT SECONDAIRE	COLMATAGE (intensité/nature)	MATERIEL PRELEVEMENT	COMMENTAIRE
6184620	BUEGES	ST-JEAN-DE- BUEGES	13/07/2016	750432	6303452	750488	6303515	P1	S 3	N1	Α	30		0	surber	
Lpb (largeur plei		1	10,4	Localisation du site, i	mpérative si absen	ce X, Y:	•	P2	S28	N1	Α	10		0	surber	
Lt (longueur totale de la station en m) 100								P3	S30	N5	Α	50	Bryophytes	0	surber	concrétion
Lm (largeur mouillée moyenne, en m) 6,7 Visibilité des fonds					1	P4	S9	N3	Α	30		0	surber			
Sm (surface mod	Sm (surface mouillée de la station en m²) 670 1% Sm = 6,7 m			Hydrologie apparente 3			3	P5	S1	N1	В	20		0	surber	
Smarg (= surf. n	max substrat marginal=Smx0,0	:	33,5	Tendance du déb			stable	P6	S24	N5	В	30		0	surber	concrétion
Photos / Cartogr	raphie (facultatif)		OUI	Matériel	Durée terrain	H déb. :	H fin:	P7	S18	N1	В	20		0	surber	
Commentaires su	ır le prélèvement (difficultés ? co	onformité ?) (50 carac	tères max) :	Bon état vérifié (cocher)	Surber N°: M1	Tamis N°:	Haveneau N°:	P8	S29	N5	В	10		0	surber	
								P9	S1	N3	С	15		0	surber	concrétion
								P10	S24	N3	С	40		0	surber	concrétion
								P11	S1	N5	С	10		0	surber	
								P12	S24	N1	С	20		0	surber	concrétion

				.0					PLAN D'ECHANTILLON	NAGE			
ii té	SUBSTRATS			111855	Ne								
Habitabilité	Code Sandre - Nature du Substrat	Statut (D, M, MNR, P)	% de recouvrement		> 75 cm/s N° prélèvement	Rapide Présence (x; xx; xxx)	26 à 75 cm/s / N° prélèvement	Présence (x ; xx ; xxx)	6 à 25 cm/s N° prélèvement	Présence (x ; xx ; xxx)	0 à 5 cm/s N° prélèvement	Présence (x; xx; xxx)	Nombre de prélèvements définitifs réalisés
11	S1 - Bryophytes	D	36			x	11	x	9	xx	5	xxx	3
10	S2 - Spermaphytes immergés (hydrophytes)												
	S3 - Débris organiques grossiers (litières)	м	1								1	х	1
8	S28 - Chevelus racinaires libres dans l'eau, substrats ligneux (branchages)	м	2							х	2	xx	1
7	S24 - Sédiments minéraux de grande taille (pierres, galets - 25 à 250 mm)	D	34				6	xx	10	х	12	х	3
6	S30 - Blocs facilement déplaçables (> 250 mm)	м	3					xx	3	xxx		х	1
5	S9 - Granulats grossiers (graviers 2 à 25 mm)	м	2						4	х			1
4	S10 - Spermaphytes émergents (hélophytes)	м	1							х		х	
	S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins												
2	S25 - Sables et limons (< 2 mm)												
1	S18 - Algues	D	7					х		х	7	xx	1
0	S29 - Surfaces uniformes dures naturelles et artificielles (roches, dalles, blocs non facilement déplaçables, mames et argiles compactes)	D	14				8	XX					1
			100	Nomb	re de prélèvements		3		4		5		12

Phase A: substrats marginaux (M) selon ordre d'ha	abitabilité			STATUT	Dominant (D), Marginal (M), Marginal non représnetatif (MNR) ou Présent (P)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)
Phase B: substrats dominants (D) selon ordre d'ha	abitabilité			SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0-inconnu ; 1-bonne visibilité ; 2-visibilité moyenne; 3-visibilité faible; 4-fonds non visibles
Phase C : substrats dominants (D) en privilégiant la	a représentativité des su	bstrats		CLASSE VITESSE	Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0-inconnu ; 1-pas d'eau ; 2-trous d'eau; 3-basses eaux; 4- moyennes eaux; 5- hautes eaux; 6- crue débordante
GANISME: AQUASCOP N° CONTRAT: 9227			BOCAL/PHASE	Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»	
ORGANISME: AQUASCOP	N'CONTRAL:	9221		HAUTEUR D'EAU	Pour chaque microprélèvement, en cm	Lpb	Largeur au débit de Plein Bord (en m)
PRELEVEUR: Aurélia MARQUIS	ASSISTANT:	Manon JEZEQUEL		SUBSTRAT SECONDAIRE	Pour chaque microprélèvement, utiliser les codes SANDRE	Lt Lm	Longueur totale de la station (en m) Largeur mouillée moyenne quand prélèvement (en m avec 1 décimale si <5m)
FREELVEOR : Autelia MARQUIO	ASSISTANT.	Wallon SEZEQUEE		COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)	Sm Smarg	Superficie movillée de la station (m²) Superficie maximale d'un substrat marginal (Sm*0.05 ; m²)
Regroupement effectué sur le terrain : oui ☑ no		non 🗆	MATERIEL	Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Dominant / Marginal / marginal Non Représentatif (suivant le protocole)	
Regroupement effectue sur le terrain :			COMMENTAIRE	Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) : 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)	

DATE DE PRELEVEMENT : 13/07/2016

COURS D'EAU : Buèges

SITE (STATION/COMMUNE): Saint-Jean-de-Buèges

CODE STATION: 06184620

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
PLECOPTERA	Leuctridae	Leuctra	69	6		6	12
		Leuctra geniculata	33830	4		11	15
	Brachycentridae	Micrasema	268	1		2	3
	Calamoceratidae	Calamoceras marsupus	343	3			3
	Hydropsychidae	Hydropsyche	212	1	1	1	3
	Hydroptilidae	Hydroptila	200	9	26	12	47
	7	Hydroptilidae	193		1		1
	Lepidostomatidae	Lepidostoma hirtum	306	20	7	21	48
	<i>'</i>	Lepidostomatidae	304		1	3	4
		Adicella	320	1			1
TRICHOPTERA	1 1	Mystacides	312	3		_	3
	Leptoceridae	Setodes	318	3	1	3	7
		Triaenodes	314	1			1
		Leptoceridae	310	2		3	5
	Polycentropodidae	Polycentropus	231		1	3	4
		Polycentropodidae	223	1		3	4
	Psychomyiidae	Psychomyia pusilla	240		1	1	2
	Dharanahilida	Tinodes	245	2	7	6	15
	Rhyacophilidae	Rhyacophila lato-sensu	183		2	1	3
	Sericostomatidae	Sericostomatidae	321	1		8	1
	Baetidae	Baetis lato sensu	9794 384	2			10
	Баешае	Centroptilum luteolum	390	66	67	68	201
EPHEMEROPTERA	O id	Procloeon		_	1		1
	Caenidae	Caenis	457	7	2	_	9 4
	Ephemerellidae	Ephemerella ignita	451 473	_	1	3	
	Leptophlebiidae	Leptophlebiidae	613	1 3		1	2
	Dryopidae	Dryops		16	7	5	28
		Elmis	618 619	22	,	20	28 42
COLEOPTERA		Esolus Normandia	624		4	20	15
COLEOFIERA	Elmidae	Oulimnius	622	11 119	4 52	180	351
		Riolus	625	119 81	52 19	180	110
		Stenelmis	617		19	10	5
	Athericidae	Athericidae	838	5 3		2	5
	Ceratopogonidae		819	3		2	2
		Ceratopogonidae	807	168	132	114	414
	Chironomidae Empididae	Chironomidae Empididae	831			2	8
DIPTERA	Limoniidae	Limoniidae	757	1 6	5 28	14	48
DIFTERA	Psychodidae	Psychodidae	783	0	20	14	1
	Sciomyzidae	Sciomyzidae	845		1	1	1
	Simuliidae	Simuliidae	801	1	2		3
	Tipulidae	Tipulidae	753	'	1		1
	Aeshnidae	Boyeria irene	671	3	5		8
	Corduliidae	Oxygastra curtisii	692	1	3		1
ODONATA		Onychogomphus	682	2	2	3	7
SSONAIA	Gomphidae	Gomphidae	678	6		1	7
	Platycnemididae	Platycnemis	657	16			16
	-	Gammarus	892	5	5	3	13
CRUSTACEA	Gammaridae	Gammaridae	887	3	1	,	4
	Lymnaeidae	Radix	1004	133	80	10	223
GASTROPODA	Physidae	Physella	19280	3			3
HIRUDINEA	Hirudinae	Glossiphoniidae	908	2			2
TURBELLARIA	Turbellaria	Dugesiidae	1055	47	24	17	88
OLIGOCHAETA	Oligochaeta	Oligochaeta	933	4		4	8
HYDRACARINA	Hydracarina	Hydracarina	906	1	1	1	3
HYDROZOA	Hydrozoa	Hydrozoa	3168	1	•		1
NEMERTEA	Prostomatidae	Prostoma	3110	1		1	2
	solomando		rôle nb taxon	46	31	36	113
			nb individus	798	488	546	1832

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou juvéniles

Commentaire hors accréditation :

RAPPORT D'ESSAI n°« Inv-DCE-16- M18 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département – 1000 rue d'Alco – 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
20/07/2016	Salagou à Le Bosc (SLG1)	06182600

Opérateur(s) terrain : Antoine ROBE

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Antoine ROBE Date début laboratoire : 15/03/2017

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

Il s'agit de la première version de ce rapport d'essai

CODE STATION	COURS D'EAU	SITE	DATE	X AMONT	Y AMONT	X AVAL	Y AVAL	PRELEVE- MENT	SUBSTRAT	CLASSE VITESSE	BOCAL ou PHASE	HAUTEUR D'EAU	COLMATAGE (intensité/nature)	MATERIEL PRELEVEMENT	COMMENTAIRE
6182600	SALAGOU	SALAGOU A LE- BOSC	20/07/2016	733409	6285692	733487	6285750	P1	S28	N1	Α	10	0	surber	
Lpb (largeur ple	in-bord moyenne, en m)		6	Localisation du site, impérative si absence X, Y :			P2	S30	N1	Α	10	0	surber		
Lt (longueur totale de la station en m) 120								P3	S25	N1	Α	10	0	surber	
Lm (largeur mou	uillée moyenne, en m)		3	Visibilité des fonds 1				P4	S18	N1	Α	5	0	surber	
Sm (surface mo		360	1% Sm = 4 m ²	Hydrologie appa			3	P5	S3	N1	В	5	0	surber	
Smarg (= surf. r	max substrat marginal=Smx0,0		18	Tendance du dét			stable	P6	S24	N3	В	5	0	surber	
Photos / Cartogr	raphie (facultatif)	(DUI	Matériel ☑	Durée terrain	H déb.: 14H00	H fin :	P7	S9	N1	В	10	0	surber	
Commentaires su	ır le prélèvement (difficultés ? co	onformité ?) (50 carac	tères max) ;	Bon état vérifié (cocher)	Surber N°: 3	Tamis N°:	Haveneau N°:	P8	S29	N1	В	10	0	surber	
Station à 25 m en						•		P9	S9	N3	С	5	0	surber	
Faible lame d'eau	ble lame d'eau							P10	S9	N5	С	5	0	surber	
							P11	S9	N1	С	15	0	surber		
								P12	S9	N3	С	5	0	surber	

				PLAN D'ECHANTILLONNAGE									
ité	SUBSTRATS			Wite:5					N3			Nulle	
Habitabilité	Code Sandre - Nature du Substrat	Statut (D, M, MNR, P)	% de recouvrement		> 75 cm/s N° prélèvement	Présence (x;xx;xxx)	26 à 75 cm/s I N° prélèvement	Présence (x; xx; xxx)	6 à 25 cm/s N° prélèvement	Présence (x ; xx ; xxx)	0 à 5 cm/s N° prélèvement	Présence (x; xx; xxx)	Nombre de prélèvements définitifs réalisés
11	S1 - Bryophytes												
10	S2 - Spermaphytes immergés (hydrophytes)												
9	S3 - Débris organiques grossiers (litières)	D	5							х	5	xx	1
8	S28 - Chevelus racinaires libres dans l'eau, substrats ligneux (branchages)	М	1								1	xx	1
7	S24 - Sédiments minéraux de grande taille (pierres, galets - 25 à 250 mm)	D	10						6	xx		х	1
6	S30 - Blocs facilement déplaçables (> 250 mm)	м	1								2	xx	1
5	S9 - Granulats grossiers (graviers 2 à 25 mm)	D	65				10	х	9 12	xx	7 11	xxx	5
4	S10 - Spermaphytes émergents (hélophytes)	P										х	
3	S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins												
2	S25 - Sables et limons (< 2 mm)	М	1				·				3	х	1
	S18 - Algues	М	2								4	х	1
0	S29 - <u>Surfaces</u> uniformes <u>dures</u> naturelles et artificielles (roches, dalles, blocs non facilement déplaçables, marnes et argiles compactes)	D	15							х	8	xx	1
			100	Nombi	re de prélèvements	•	1		3		8		12

-						
Phase A: substrats marginaux (M) selon ordre d'h	nabitabilité		STATUT	Dominant (D), Marginal (M), Marginal non représnetatif (MNR) ou Présent (P)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)
Phase B: substrats dominants (D) selon ordre d'h	nabitabilité		SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0-inconnu ; 1-bonne visibilité ; 2-visibilité moyenne; 3-visibilité faible; 4-fonds non visibles
Phase C : substrats dominants (D) en privilégiant	ase C : substrats dominants (D) en privilégiant la représentativité des substrats			Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0-inconnu ; 1-pas d'eau ; 2-trous d'eau; 3-basses eaux; 4- moyennes eaux; 5- hautes eaux; 6- crue débordante
ORGANISME: AQUASCOP	N° CONTRAT: 9227		BOCAL/PHASE	Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»
ORGANISME: AQUASCOP	N CONTRAL: 9221		HAUTEUR D'EAU	Pour chaque microprélèvement, en cm	Lpb	Largeur au débit de Plein Bord (en m)
			SUBSTRAT SECONDAIRE	Pour chaque microprélèvement, utiliser les codes SANDRE	Lt	Longueur totale de la station (en m) Largeur mouillée moyenne quand prélèvement (en m avec 1 décimale si <5m)
PRELEVEUR: Antoine ROBE	ASSISTANT: Mailis CROIZER		COLMATAGE	Pour chaque micropréfévement de 0 à 5 (0 = nul 5 = très important)	Sm	Superficie mouillée de la station (m²)
			COLMATAGE	Pour chaque micropreievement, de 0 a 5 (0 = nul 5 = tres important)	Smarg	Superficie maximale d'un substrat marginal (Sm*0.05 ; m²)
Regroupement effectué sur le terrain :	oui ☑	non 🗆	MATERIEL	Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Dominant / Marginal / marginal Non Représentatif (suivant le protocole)
Regroupement effectue sur le terrain .			COMMENTAIRE	Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) : 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)

DATE DE PRELEVEMENT : 20/07/2016

COURS D'EAU: Salagou

SITE (STATION/COMMUNE): Le Bosc

CODE STATION: 06182600

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
PLECOPTERA	Leuctridae	Leuctra geniculata	33830		1		1
	Glossosomatidae	Agapetus	191		6	10	16
		Glossosomatidae	189			1	1
	Goeridae	Silo	292	3	2	25	30
		Silo - Lithax	5219	4		5	9
	Hydropsychidae	Hydropsyche	212		7	4	11
		Athripsodes	311		1	1	2
TRICHOPTERA	Leptoceridae	Mystacides	312	4	10	5	19
	,	Oecetis	317			5	5
		Setodes	318			1	1
	5	Cyrnus	224			1	1
	Polycentropodidae	Polycentropus	231	16	12	41	69
		Polycentropodidae	223		1	17	18
	Psychomyiidae	Lype	241	2	2		4
	.,,	Tinodes	245		2		2
		Baetis lato sensu	9794		6	30	36
	Baetidae	Cloeon	387	5			5
EPHEMEROPTERA		Baetidae	363	3			3
	Caenidae	Caenis	457	2	19	66	87
	Heptageniidae	Heptageniidae	399		1		1
HETEROPTERA	Corixidae	Micronecta	719	1	1		2
	Dryopidae	Dryops	613	1		1	2
	Dytiscidae	Laccophilinae	2394	3		1	4
COLEOPTERA		Elmis	618		1		1
COLEOPTERA	Elmidae	Esolus	619		3		3
		Oulimnius	622	15	34	68	117
	Hydraenidae	Hydraena	608	1		1	2
	Chironomidae	Chironomidae	807	150	73	230	453
	Empididae	Empididae	831	2	2		4
DIPTERA	Limoniidae	Limoniidae	757			1	1
	Simuliidae	Simuliidae	801			153	153
	Tabanidae	Tabanidae	837			1	1
	Aeshnidae	Boyeria irene	671		1		1
		Gomphus	679	1			1
	Gomphidae	Onychogomphus	682	1	5	20	26
ODONATA		Gomphidae	678		1	6	7
	Libellulidae	Sympetrum	699	1	•	·	1
	Platycnemididae	Platycnemis	657	1			1
MEGALOPTERA	Sialidae	Sialis	704	2			2
PLANNIPENNES	Sisyridae	Sisyra	856	1		2	3
FLAMMFLIMILS	Crangonyctidae	Crangonyx pseudogracilis	5117	1	1	7	9
		Gammarus	892	221	629	140	990
CRUSTACEA	Gammaridae	Gammaridae	887	95	629	280	1066
	Acallidae					75	
	Asellidae Corbiculidae	Asellidae Corbicula	880 1051	8 143	41		124 331
				143	77	111	
BIVALVIA	Dreissenidae	Dreissena polymorpha	1047	20	_		2 42
	Sphaeriidae	Pisidium	1043 1042	20	6	16	42 105
	A analassial	Sphaeriidae		38	37	30	
	Acroloxidae	Acroloxus	1033	3	2	46:	5
CACTROPORA	Ancylidae	Ancylus fluviatilis	1029	72	69	124	265
GASTROPODA	Ferrissiidae	Ferrissia	1030	4000	6	6	12
	Hydrobiidae	Potamopyrgus antipodarum	979	1860	1373	2400	5633
LUDUBINE:	Planorbidae	Planorbidae	1009	2			2
HIRUDINEA	Hirudinae	Glossiphoniidae	908		1	3	4
TURBELLARIA	Turbellaria	Dendrocoelidae	1071		1	1	2
		Dugesiidae	1055	12	293	400	705
OLIGOCHAETA	Oligochaeta	Oligochaeta	933	1040	41	150	1231
HYDRACARINA	Hydracarina	Hydracarina	906	1	1	1	3
NEMERTEA	Prostomatidae	Prostoma	3110		1	1	2
		cont	rôle nb taxon	35	39	42	116
		contrôle	nb individus	3735	3461	4443	11639

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou juvéniles

Commentaire hors accréditation :

RAPPORT D'ESSAI n°« Inv-DCE-16- M16 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département - 1000 rue d'Alco - 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
20/07/2016	Lergue à Lodève (LER2)	06300053

Opérateur(s) terrain : Antoine ROBE

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Aurélia MARQUIS Date début laboratoire : 20/03/2017

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

Il s'agit de la première version de ce rapport d'essai

CODE STATION	COURS D'EAU	SITE	DATE	X AMONT	Y AMONT	X AVAL	Y AVAL	PRELEVE- MENT	SUBSTRAT	CLASSE VITESSE	BOCAL ou PHASE	HAUTEUR D'EAU	SUBSTRAT SECONDAIRE	COLMATAGE (intensité/nature)	MATERIEL PRELEVEMENT	COMMENTAIRE
6300053	LERGUE A LODEVE	LODEVE	20/07/2016	727372	6288644	727526	6288462	P1	S1	N5	Α	5		0	surber	
Lpb (largeur plei	n-bord moyenne, en m)		16	Localisation du site,	mpérative si absend	e X, Y:		P2	S2	N1	Α	90		0	surber	
Lt (longueur total	le de la station en m)		250						S28	N5	Α	25		0	surber	
Lm (largeur mou	n (largeur mouillée moyenne, en m) 15				Visibilité des fonds			P4	S9	N3	Α	10		0	surber	
Sm (surface mouillée de la station en m²) 3750 1% Sm = 38 r			1% Sm = 38 m ²	Hydrologie apparente 3			P5	S24	N5	В	10	algues	0	surber		
Smarg (= surf. m	nax substrat marginal=Smx0,0		190	Tendance du déb			stable	P6	S30	N5	В	20	algues	0	surber	
Photos / Cartogra	aphie (facultatif)		OUI	Matériel ☑	Durée terrain	H déb. : 9H45	H fin :	P7	S18	N5	В	20		0	surber	
Commentaires sur	le prélèvement (difficultés ? co	onformité ?) (50 carac	tères max) :	Bon état vérifié (cocher)	Surber N°:	Tamis N°:		P8	S29	N1	В	20		0	surber	
	éveloppement algal très important.							P9	S18	N1	С	20		0	surber	
Mouille à l'amont ne Amont station diffic	on preievable. ile d'accés (profondeur + embâcle						P10	S18	N3	С	20		0	surber		
	,							P11	S18	N6	С	5		0	surber	
								P12	S18	N5	С	40		0	surber	

									PLAN D'ECHANTILLON	IAGE			
īté	SUBSTRATS			1110551	N6		N5		N3		N1		
Habitabilité		Ct-t-t		7.	> 75 cm/s N°	Rapide Présence	26 à 75 cm/s I N°	Moyenne Présence	6 à 25 cm/s N°	Présence	0 à 5 cm/s N°	Nulle Présence	Nombre de prélèvements définitifs réalisés
Hab	Code Sandre - Nature du Substrat	Statut (D, M, MNR, P)	% de recouvrement		prélèvement	(x;xx;xxx)	prélèvement	(x;xx;xxx)	prélèvement	(x;xx;xxx)	prélèvement	(x;xx;xxx)	dennitirs realises
11	S1 - Bryophytes	м	1				1	х					1
10	S2 - Spermaphytes immergés (hydrophytes)	м	1								2	х	1
9	S3 - Débris organiques grossiers (litières)												
8	S28 - Chevelus racinaires libres dans l'eau, substrats ligneux (branchages)	м	1				3	х					1
7	S24 - Sédiments minéraux de grande taille (pierres, galets - 25 à 250 mm)	D	6				5	xx		х			1
6	S30 - Blocs facilement déplaçables (> 250 mm)	D	5			х	6	xx		х			1
5	S9 - Granulats grossiers (graviers 2 à 25 mm)	м	3						4	xx		х	1
4	S10 - Spermaphytes émergents (hélophytes)	м	1							х			
3	S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins												
2	S25 - Sables et limons (< 2 mm)	м	4							х		х	
1	S18 - Algues	D	68		11	х	7 12	xxx	10	х	9	xx	5
0	S29 - <u>Surfaces</u> uniformes <u>dures</u> naturelles et artificielles (roches, dalles, blocs non facilement déplaçables, mames et argiles compactes)	D	10			х		х		xx	8	XXX	1
			100	Nombi	re de prélèvements	1	6		2		3		12

Phase A: substrats marginaux (M) selon ordre d'	habitabilité		STATUT	Dominant (D), Marginal (M), Marginal non représnetatif (MNR) ou Présent (P)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)
Phase B : substrats dominants (D) selon ordre d'	habitabilité		SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0-inconnu ; 1-bonne visibilité ; 2-visibilité moyenne; 3-visibilité faible; 4-fonds non visibles
Phase C : substrats dominants (D) en privilégiant	la représentativité des substrats		CLASSE VITESSE	Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0-inconnu ; 1-pas d'eau ; 2-trous d'eau; 3-basses eaux; 4- moyennes eaux; 5- hautes eaux; 6- crue débordante
ORGANISME: AQUASCOP	N° CONTRAT: 9227		BOCAL/PHASE	Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»
ORGANISME . AQUASCOP	INIE: AQUASCOP N'CONTRAL: 9221		HAUTEUR D'EAU	Pour chaque microprélèvement, en cm	Lpb	Largeur au débit de Plein Bord (en m)
PRELEVEUR : Antoine ROBE	ASSISTANT : Mailis CROIZER		SUBSTRAT SECONDAIRE	Pour chaque microprélèvement, utiliser les codes SANDRE	Lt Lm	Longueur totale de la station (en m) Largeur mouillée moyenne quand prélèvement (en m avec 1 décimale si «5m)
TREET TON TO A TROUB TROOP	ALGORITHM I MIGHIO OTTOILENT		COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)	Sm Smarg	Superficie mouitée de la station (m²) Superficie maximate d'un substrat marginal (Sm²0.05 : m²)
Regroupement effectué sur le terrain :	oui 🗹	non 🗆	MATERIEL	Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Dominant / Marginal / marginal Non Représentatif (suivant le protocole)
Regroupement enectue sur le terrain .			COMMENTAIRE	Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) ; 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)

DATE DE PRELEVEMENT : 20/07/2016

COURS D'EAU : Lergue

SITE (STATION/COMMUNE): Lodève

CODE STATION: 06300053

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
PLECOPTERA	Leuctridae	Leuctra	69	1			1
I EEGOI TETOT	Loudinado	Leuctra geniculata	33830	4			4
	Brachycentridae	Oligoplectrum maculatum	264	1			1
	Hydropsychidae	Cheumatopsyche lepida	222	30	1		31
PLECOPTERA TRICHOPTERA EPHEMEROPTERA HETEROPTERA COLEOPTERA DIPTERA ODONATA CRUSTACEA GASTROPODA HIRUDINEA TURBELLARIA OLIGOCHAETA NEMATHELMINTHA CRUSTACEA HYDRACARINA HYDROZOA	riyaropoyomaao	Hydropsyche	212	570	30	10	610
	Hydroptilidae	Hydroptila	200	289	667	369	1325
	Polycentropodidae	Polycentropus	231	1		2	3
	i oiyeenaopouluae	Polycentropodidae	223		2		2
	Rhyacophilidae	Rhyacophila lato-sensu	183	4	23	18	45
	Baetidae	Baetis lato sensu	9794	262	1500	235	1997
	Daeliuae	Cloeon	387	20		10	30
EDUEMEDODTED A	Caenidae	Caenis	457	282	48	58	388
EPHEWEROPIERA	Ephemerellidae	Ephemerella ignita	451	2	2	6	10
		Ecdyonurus	421		1		1
	Heptageniidae	Heptageniidae	399		2		2
	Corixidae	Corixinae	5196	1			1
HETEROPTERA	Gerridae	Gerris	735			1	1
	Dryopidae	Dryops	613	208	5	15	228
	Dytiscidae	Hydroporinae	2393		1	3	4
		Elmis	618	18	5	10	33
		Esolus	619	8	6	4	18
COLEOPTERA	Elmidae	Limnius	623	2	•	-	2
00220112101		Oulimnius	622	46	11	22	79
		Riolus	625	6	5	16	27
	Haliplidae	Haliplus	518	1	1	10	2
	Hydraenidae	Hydraena	608		1		1
	Anthomyidae	Anthomyidae	847	84	3	3	90
	Athericidae	Athericidae	838	3	3	2	5
	Chironomidae	Chironomidae	807	3000	1200	4800	9000
	Empididae	Empididae	831	9	3	17	29
	Emplaidae Ephydridae	Ephydridae	844	9	2	17	3
DIPTERA	1 7	1 /	757			1	<u> </u>
	Limoniidae	Limoniidae		_	1		5
	Psychodidae	Psychodidae	783	2	2	1	
	Simuliidae	Simuliidae	801	88	153	5	246
	Stratiomyidae	Stratiomyidae	824	1		1	2
	Tipulidae	Tipulidae	753	6	3	1	10
ODONATA	Gomphidae	Onychogomphus	682	1			1
CRUSTACEA	Gammaridae	Gammarus	892	176	7	8	191
		Gammaridae	887			3	3
	Ancylidae	Ancylus fluviatilis	1029	62	100	4	166
	Hydrobiidae	Potamopyrgus antipodarum		1200	36	160	1396
GASTROPODA	Lymnaeidae	Radix	1004	4	4		8
	Neritidae	Theodoxus fluviatilis	968		1		1
	Physidae	Physa lato-sensus	997	18	5	9	32
HIRUDINEA	Hirudinae	Erpobdellidae	928	3	8		11
	Turbellaria	Dugesiidae	1055	800	28	40	868
OLIGOCHAETA	Oligochaeta	Oligochaeta	933	42	26	278	346
NEMATHELMINTHA	Nemathelmintha	Nemathelmintha	3111	1	1	1	3
CRUSTACEA	Ostracodes	Ostracodes	3170	1	1	1	3
HYDRACARINA	Hydracarina	Hydracarina	906	1	1	1	3
HYDROZOA	Hydrozoa	Hydrozoa	3168	1	1	1	3
NEMERTEA	Prostomatidae	Prostoma	3110	1	1		2
		con	trôle nb taxon	42	40	35	117

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou juvéniles

Commentaire hors accréditation :

RAPPORT D'ESSAI n°« Inv-DCE-16- M70 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département - 1000 rue d'Alco - 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
24/06/2016	Boyne à Cazouls-d'Hérault (BO1)	06183900

Opérateur(s) terrain : Aurélia MARQUIS

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Aurélia MARQUIS Date début laboratoire : 24/11/2016

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

Il s'agit de la première version de ce rapport d'essai

CODE STATION	COURS D'EAU	SITE	DATE	X AMONT	Y AMONT	X AVAL	Y AVAL	PRELEVE- MENT	SUBSTRAT	CLASSE VITESSE	BOCAL ou PHASE	HAUTEUR D'EAU		COLMATAGE (intensité/nature)	MATERIEL PRELEVEMENT	COMMENTAIRE
6183900	BOYNE	BOYNE A CAZOULS- D'HERAULT	24/06/2016	736272	6267765	736389	6267691	P1	S1	N5	Α	5		0	surber	
Lpb (largeur ple	in-bord moyenne, en m)	1	11,5	Localisation du site, i	mpérative si absenc	ж X, Y:		P2	S3	N1	Α	10		1	surber	
Lt (longueur tota			135					P3	S28	N1	Α	25		0	surber	
Lm (largeur mou			3,5	Visibilité des fon			1	P4	S30	N3	Α	25		0	surber	
Sm (surface mo	Sm (surface mouillée de la station en m²) 472 1% Sm = 4,7 r			Hydrologie apparente 3			P5	S24	N1	В	30		0	surber		
Smarg (= surf. r		2	23,6	Tendance du déb			stable	P6	S9	N1	В	15		0	surber	
Photos / Cartogr	aphie (facultatif)	(oui	Matériel ☑	Durée terrain	H déb. : 10H00	H fin :	P7	S10	N3	В	5		0	surber	
Commentaires su	r le prélèvement (difficultés ? co	onformité ?) (50 carac	tères max) :	Bon état vérifié (cochet)	Surber N°: M3	Tamis N°:	Haveneau N°:	P8	S24	N3	В	5		0	surber	
								P9	S24	N5	С	5		0	surber	
								P10	S24	N1	С	20	algues	0	surber	
								P11	S24	N3	С	10		0	surber	
								P12	S24	N5	С	5		0	surber	

				٥					PLAN D'ECHANTILLONI	NAGE			
ž.	SUBSTRATS			111055									
Habitabilité	Code Sandre - Nature du Substrat	Statut (D, M, MNR, P)	% de recouvrement		> 75 cm/s N° prélèvement	Rapide Présence (x; xx; xxx)	26 à 75 cm/s I N° prélèvement	Présence (x ; xx ; xxx)	6 à 25 cm/s N° prélèvement	Présence (x;xx;xxx)	0 à 5 cm/s N° prélèvement	Présence (x; xx; xxx)	Nombre de prélèvements définitifs réalisés
11	S1 - Bryophytes	м	1				1	х					1
10	S2 - Spermaphytes immergés (hydrophytes)												
9	S3 - Débris organiques grossiers (litières)	м	1								2	х	1
8	S28 - Chevelus racinaires libres dans l'eau, substrats ligneux (branchages)	м	1							х	3	xx	1
7	S24 - Sédiments minéraux de grande taille (pierres, galets - 25 à 250 mm)	D	68				9 12	x	8 11	xx	5 10	XXX	6
6	S30 - Blocs facilement déplaçables (> 250 mm)	м	1					x	4	xx			1
5	S9 - Granulats grossiers (graviers 2 à 25 mm)	D	19							xx	6	xxx	1
4	S10 - Spermaphytes émergents (hélophytes)	D	5						7	х		х	1
	S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins												
2	S25 - Sables et limons (< 2 mm)	м	1							х			
1	S18 - Algues	м	2									х	
	S29 - Surfaces uniformes dures naturelles et artificielles (roches, dalles, blocs non facilement déplaçables, marnes et argiles compactes)	м	1									х	
			100	Nomb	re de prélèvements		3		4		5		12

Phase A: substrats marginaux (M) selon ordre d'ha	abitabilité		STATUT	Dominant (D), Marginal (M), Marginal non représnetatif (MNR) ou Présent (P)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)		
Phase B: substrats dominants (D) selon ordre d'ha	minants (D) selon ordre d'habitabilité minants (D) en privilégiant la représentativité des substrats JASCOP N° CONTRAT : 9227 elia MARQUIS ASSISTANT : Mailis CROIZER		SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0=inconnu ; 1=bonne visibilité ; 2=visibilité moyenne; 3=visibilité faible; 4=fonds non visibles		
Phase C : substrats dominants (D) en privilégiant la	ts dominants (D) selon ordre d'habitabilité s dominants (D) en privilégiant la représentativité des substrats AQUASCOP N° CONTRAT : 9227 Aurélia MARQUIS ASSISTANT : Mailis CROIZER			ats (D) en privilégiant la représentativité des substrats classe vitesse		Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0=inconnu ; 1=pas d'eau ; 2=trous d'eau; 3=basses eaux; 4= moyennes eaux; 5= hautes eaux; 6= crue débordante
ORGANISME: AQUASCOP	N° CONTRAT . 0227		BOCAL/PHASE	Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»		
ORGANISME . AQUASCOF	N CONTRAL. 9221		HAUTEUR D'EAU	Pour chaque microprélèvement, en cm	Lpb	Largeur au débit de Plein Bord (en m)		
PRELEVEUR: Aurélia MARQUIS	ASSISTANT · Mailie CROIZER		SUBSTRAT SECONDAIRE	Pour chaque microprélèvement, utiliser les codes SANDRE	Lt Lm	Longueur totale de la station (en m) Largeur mouillée moyenne quand prélèvement (en m avec 1 décimale si <5m)		
FRELEVEUR : Autelia MANQUIS	ASSISTANT. Walls CROIZER		COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)	Sm Smarg	Superficie mouilée de la station (m²) Superficie maximale d'un substrat marginal (Sm°0.05; m²)		
Regroupement effectué sur le terrain :	oui ☑	non 🗆	MATERIEL	Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Dominant / Marginal / marginal Non Représentatif (suivant le protocole)		
Regroupement enectue sur le terrain :	<u> </u>		COMMENTAIRE	Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) ; 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)		

DATE DE PRELEVEMENT : 24/06/2016

COURS D'EAU : Boyne

SITE (STATION/COMMUNE): Cazouls-d'Hérault

CODE STATION: 06183900

Groupes	Familles	TAXON SANDRE	CODE	phA	phB	phC	TOTAL
			SANDRE				
PLECOPTERA	Leuctridae	Leuctra geniculata	33830	4	2	17	23
	Goeridae	Silo	292		3		3
	Hydropsychidae	Hydropsyche	212	13	1	13	27
	Hydroptilidae	Hydroptila	200	12	3	2	17
	, ,	Hydroptilidae	193	18	1		19
ODONATA MEGALOPTERA CRUSTACEA BIVALVIA GASTROPODA HIRUDINEA TURBELLARIA OLIGOCHAETA CRUSTACEA HYDRACARINA	Leptoceridae	Leptocerus	319	1			1
	.,	Mystacides	312			3	3
	Philopotamidae	Chimarra	207	5		6	11
	•	Philopotamidae	206	1			1
		Cyrnus	224		5		5
	Polycentropodidae	Polycentropus	231	4	4		8
		Polycentropodidae	223	5	3	2	10
	Psychomyiidae	Lype	241	3			3
	-	Tinodes	245	7	9	2	18
	Rhyacophilidae	Rhyacophila lato-sensu	183	1	1	7	9
		Baetis lato sensu	9794	37	2	69	108
	Baetidae	Centroptilum luteolum	384	6	3	3	12
		Cloeon	387	3	1		4
EPHEMEROPTERA		Baetidae	363	3	1		4
	Caenidae	Caenis	457	1	5	22	28
	Ephemerellidae	Ephemerella ignita	451	9		1	10
	Heptageniidae	Heptageniidae	399	1			1
HETEROPTERA	Corixidae	Micronecta	719	1		1	2
TIETEROI TERA	Gerridae	Gerris	735	1			1
	Dytiscidae	Hydroporinae	2393	1			1
		Elmis	618		3	17	20
COLEOPTERA		Esolus	619	30	75	109	214
COLLOI ILIX	Elmidae	Limnius	623		14	51	65
		Oulimnius	622	46	23	74	143
		Stenelmis	617	2			2
	Athericidae	Athericidae	838	1		1	2
	Ceratopogonidae	Ceratopogonidae	819	5		1	6
	Chironomidae	Chironomidae	807	33	5	13	51
DIPTERA	Dixidae	Dixidae	793		1		1
DIPTERA	Psychodidae	Psychodidae	783	2			2
	Simuliidae	Simuliidae	801	18	1	9	28
	Tipulidae	Tipulidae	753	5		1	6
	Calopterygidae	Calopteryx	650	1			1
	Coenagrionidae	Coenagrionidae	658	3			3
ODONATA	Gomphidae	Onychogomphus	682	2		8	10
	Lestidae	Chalcolestes viridis	2612	3			3
	Platycnemididae	Platycnemis	657	6			6
MEGALOPTERA	Sialidae	Sialis	704		1		1
CRUSTACEA	Gammaridae	Gammarus	892	2640	1260	2040	5940
	Corbiculidae	Corbicula	1051			3	3
BIVALVIA		Pisidium	1043		1	1	2
	Sphaeriidae	Sphaeriidae	1042	1	5	3	9
	Ancylidae	Ancylus fluviatilis	1029	17	10	40	67
		Belgrandia	982		2		2
GASTROPODA	Hydrobiidae	Potamopyrgus antipodarum	979	84	10	55	149
	Neritidae	Theodoxus fluviatilis	968	7	1	39	47
	Planorbidae	Planorbidae	1009		1	1	
HIRUDINEA	Hirudinae	Piscicola geometra	920	1	<u> </u>		1
		Dugesiidae	1055	347	70	98	515
IURBELLARIA	Turbellaria	Planariidae	1061	15	2	9	26
OLIGOCHAFTA	Oligochaeta	Oligochaeta	933	2	9	16	27
	Cladocères	Cladocères	3127	1	-		1
CRUSTACEA	Copépodes	Copépodes	3206	1	1	1	3
	Ostracodes	Ostracodes	3170	1	1	1	
HYDRACAPINIA	Hydracarina	Hydracarina	906	1	1	1	
III DIVACAIVINA	Hydrozoa	Hydrozoa	3168	1	-	1	2
HVDPOZOA	u ivuiuz ud	ji iyuluzua				'	
HYDROZOA NEMEDTEA		Proctomo	2110	4			
HYDROZOA NEMERTEA	Prostomatidae	Prostoma	3110	1	27	20	
		cont	3110 rôle nb taxon nb individus	51	37 1541	38	1 126 7696

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou

juvéniles

Commentaire hors accréditation:

RAPPORT D'ESSAI n°« Inv-DCE-16- M8 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département - 1000 rue d'Alco - 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
13/07/2016	Foux à Brissac (FO1)	06184640

Opérateur(s) terrain : Aurélia MARQUIS

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Aurélia MARQUIS Date début laboratoire : 29/11/2016

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

☑ Il s'agit de la première version de ce rapport d'essai

CODE STATION	COURS D'EAU	SITE	DATE	X AMONT	Y AMONT	X AVAL	Y AVAL	PRELEVE- MENT	SUBSTRAT	CLASSE VITESSE	BOCAL ou PHASE	HAUTEUR D'EAU	SUBSTRAT SECONDAIRE	COLMATAGE (intensité/nature)	MATERIEL PRELEVEMENT	COMMENTAIRE
6184640	FOUX	RUISSEAU DE BRISSAC A BRISSAC	09/06/2015	756963	6307610	756899	6307555	P1	S 2	N1	Α	20		0	surber	
Lpb (largeur plei	n-bord moyenne, en m)		6,5	Localisation du site, impérative si absence X, Y :			P2	S3	N3	Α	40		0	surber		
Lt (longueur totale de la station en m) 115					P3	S9	N3	Α	30		0	surber				
Lm (largeur mou	illée moyenne, en m)		5	Visibilité des fonds 1					S10	N1	Α	25		0	surber	
Sm (surface mou		575	1% Sm = 5,75	Hydrologie apparente 3				P5	S1	N6	В	10		0	surber	
Smarg (= surf. n		D	29	Tendance du dél	bit les jours préc	édents	stable	P6	S28	N3	В	20		0	surber	
Photos / Cartogra	aphie (facultatif)	(DUI	Matériel ☑	Durée terrain	H déb. :	H fin:	P7	S24	N5	В	30		0	surber	
Commentaires su	r le prélèvement (difficultés ? c	onformité ?) (50 carac	tères max) :	Bon état vérifié (cocher)	Surber N°:	Tamis Nº:	Haveneau N°:	P8	S30	N5	В	30		0	surber	
Cours d'eau très or	mbragé				•	•	•	P9	S24	N3	С	40		1	surber	
								P10	S24	N6	С	20		0	surber	
								P11	S24	N1	С	5		1	surber	
								P12	S24	N5	С	20		0	surber	

				.0					PLAN D'ECHANTILLO	NNAGE				
ję.	SUBSTRATS			THESE										
Habitabilité	Code Sandre - Nature du Substrat	Statut (D, M, MNR, P)	% de recouvrement	,	> 75 cm/s N° prélèvement	Présence (x; xx; xxx)	26 à 75 cm/s N° prélèvement	Présence (x ; xx ; xxx)	6 à 25 cm/s N° prélèvement	Présence (x; xx; xxx)	0 à 5 cm/s N° prélèvement	Présence (x; xx; xxx)	Nombre de prélèvements définitifs réalisés	
11	S1 - Bryophytes	D	6		5	xxx		xx					1	
10	S2 - Spermaphytes immergés (hydrophytes)	М	1								1	XX	1	
9	S3 - Débris organiques grossiers (litières)	м	1						2	x		х	1	
8	S28 - Chevelus racinaires libres dans l'eau, substrats ligneux (branchages)	D	5					х	6	xx		xx	1	
7	S24 - Sédiments minéraux de grande taille (pierres, galets - 25 à 250 mm)	D	72		10	х	7 12	XXX	9	xx	11	х	5	
6	S30 - Blocs facilement déplaçables (> 250 mm)	D	7				8	xxx		xx		xx	1	
5	S9 - Granulats grossiers (graviers 2 à 25 mm)	м	2					х	3	xx		х	1	
4	S10 - Spermaphytes émergents (hélophytes)	М	1							х	4	xx	1	
3	S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins													
2	S25 - Sables et limons (< 2 mm)	М	1							х		XX		
1	S18 - Algues													
	S29 - Surfaces uniformes dures naturelles et artificielles (roches, dalles, blocs non facilement déplaçables, marnes et argiles compactes)	М	4			х		х		х				
			100	Nomb	re de prélèvements	2	3		4		3		12	

Phase A: substrats marginaux (M) selon ordre d'I	nabitabilité		STATUT	Dominant (D), Marginal (M), Marginal non représnetatif (MNR) ou Présent (P)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)		
Phase B: substrats dominants (D) selon ordre d'I	nabitabilité		SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0-inconnu ; 1-bonne visibilité ; 2-visibilité mayenne; 3-visibilité faible; 4-fonds non visibles		
Phase C: substrats dominants (D) en privilégiant	la représentativité des substrats		CLASSE VITESSE	Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0-inconnu ; 1-pas d'eau ; 2-trous d'eau; 3-basses eaux; 4- moyennes eaux; 5- hautes eaux; 6- crue débordante		
ODC ANISME - ACHASCOD	SANISME: AQUASCOP N° CONTRAT: 9227		BOCAL/PHASE	Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»		
ORGANISWE . AQUASCOP	N CONTRAL. 9221		HAUTEUR D'EAU	Pour chaque microprélèvement, en cm	Lpb	Largeur au débit de Plein Bord (en m)		
PRELEVEUR: Aurélia MARQUIS	ASSISTANT: Manon JEZEQUEL		SUBSTRAT SECONDAIRE	Pour chaque microprélèvement, utiliser les codes SANDRE	Lt Lm	Longueur totale de la station (en m) Largeur mouillée moyenne quand prélèvement (en m avec 1 décimale si <5m)		
FRELEVEUR : Autelia MANQUIS	ASSISTANT: WATON SEZEGOEE		COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)	Sm Smarg	Superficie mouillée de la station (m²) Superficie maximale d'un substrat marginal (Sm²0.05; m²)		
Regroupement effectué sur le terrain :	oui ☑	non 🗆	MATERIEL	Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Dominant / Marginal / marginal Non Représentatif (suivant le protocole)		
Regroupement enectue sur le terrain .			COMMENTAIRE	Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) ; 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)		

DATE DE PRELEVEMENT: 13/07/2016

COURS D'EAU : Foux

SITE (STATION/COMMUNE): Brissac

CODE STATION: 06184640

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
PLECOPTERA	Leuctridae	Leuctra	69		1	33	34
. 2200 2		Leuctra geniculata	33830		1	4	5
TRICHOPTERA EPHEMEROPTERA HETEROPTERA COLEOPTERA	Brachycentridae	Micrasema	268	2	4	1	7
	Goeridae	Silo	292	36	2		38
	Coondao	Goeridae	286	5			5
	Hydropsychidae	Hydropsyche	212		2	8	10
TRICHOPTERA	Hydroptilidae	Hydroptila	200	1		3	4
TRIOTION TERM	Leptoceridae	Adicella	320		2		2
	Polycentropodidae	Polycentropus	231			2	2
	Psychomyiidae	Lype	241	5			5
	r sycholliylidae	Tinodes	245		1	1	2
	Rhyacophilidae	Rhyacophila lato-sensu	183		3	4	7
		Baetis lato sensu	9794	9	32	246	287
	Baetidae	Centroptilum luteolum	384	6			6
		Baetidae	363	2			2
EPHEMEROPTERA	Ephemerellidae	Ephemerella ignita	451	3	1	19	23
	Ephemeridae	Ephemera	502	1		1	
		Habrophlebia	491	28	2	40	70
	Leptophlebiidae	Leptophlebiidae	473	13	1	5	19
HETEROPTERA	Gerridae	Gerris	735	2	1	·	3
TIETEROI TETOR	Comado	Elmis	618	50	45	12	107
		Esolus	619	12	70	1	13
	Elmidae	Limnius	623	22	6	1	29
COLEOPTERA	Liiiiidae	Oulimnius	622	8	•	2	10
		Riolus	625	17	98	5	120
	Hydraenidae	Hydraena	608	17	1	5	120
	Athericidae	Athericidae	838	2		6	13
					5 1	10	64
	Chironomidae Dixidae	Chironomidae	807	53	1	10	
DIDTEDA		Dixidae	793	11		_	11
DIPTERA	Empididae	Empididae	831		6	3	9
	Limoniidae	Limoniidae	757	2	4	44	50
	Psychodidae	Psychodidae	783		1		1
	Simuliidae	Simuliidae	801	5	38	6	49
ODONATA	Calopterygidae	Calopteryx	650	6	2		8
	Gomphidae	Onychogomphus	682			1	1
	Gammaridae	Gammarus	892	907	131	113	1151
CRUSTACEA		Gammaridae	887			13	13
	Cambaridae	Orconectes	870	2			2
BIVAI VIA	Sphaeriidae	Pisidium	1043	2			2
	Sphaeriidae	Sphaeriidae	1042	2			2
	Ancylidae	Ancylus fluviatilis	1029	12	12	100	124
CASTROPODA	Hydrobiidae	Potamopyrgus antipodarum	979	396	161	51	608
GASTROPODA	Tiyurobiidae	Hydrobiidae	973	156	37	93	286
	Neritidae	Theodoxus fluviatilis	968	1			1
TUDDELL ADIA	Turbellaria	Dugesiidae	1055	1	2	2	5
IUNDELLAKIA	rurpellaria	Planariidae	1061		1	8	9
OLIGOCHAETA	Oligochaeta	Oligochaeta	933	16	21	71	108
	Hydracarina	Hydracarina	906	1	1	1	3
-	Prostomatidae	Prostoma	3110			1	1
			rôle nb taxon	35	32	34	101
			nb individus	1797	626	911	3334
			- His individus		020	311	3334

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou

juvéniles

Commentaire hors accréditation :

RAPPORT D'ESSAI n°« Inv-DCE-16- M16 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département - 1000 rue d'Alco - 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
20/07/2016	Lergue à Lodève (LER2)	06300053

Opérateur(s) terrain : Antoine ROBE

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Aurélia MARQUIS Date début laboratoire : 20/03/2017

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

Il s'agit de la première version de ce rapport d'essai

CODE STATION	COURS D'EAU	SITE	DATE	X AMONT	Y AMONT	X AVAL	Y AVAL	PRELEVE- MENT	SUBSTRAT	CLASSE VITESSE	BOCAL ou PHASE	HAUTEUR D'EAU	SUBSTRAT SECONDAIRE	COLMATAGE (intensité/nature)	MATERIEL PRELEVEMENT	COMMENTAIRE
6300053	LERGUE A LODEVE	LODEVE	20/07/2016	727372	6288644	727526	6288462	P1	S1	N5	Α	5		0	surber	
Lpb (largeur plei	n-bord moyenne, en m)		16	Localisation du site, impérative si absence X, Y :			P2	S2	N1	Α	90		0	surber		
Lt (longueur totale de la station en m) 250						P3	S28	N5	Α	25		0	surber			
Lm (largeur mou	illée moyenne, en m)		15	Visibilité des fon	sibilité des fonds 1				S9	N3	Α	10		0	surber	
Sm (surface mou	illée de la station en m²)	3750	1% Sm = 38 m ²	Hydrologie appa	ydrologie apparente				S24	N5	В	10	algues	0	surber	
Smarg (= surf. m	nax substrat marginal=Smx0,0		190	Tendance du déb			stable	P6	S30	N5	В	20	algues	0	surber	
Photos / Cartogra	aphie (facultatif)		OUI	Matériel ☑	Durée terrain	H déb. : 9H45	H fin :	P7	S18	N5	В	20		0	surber	
Commentaires sur	le prélèvement (difficultés ? co	onformité ?) (50 carac	tères max) :	Bon état vérifié (cocher)	Surber N°:	Tamis N°:		P8	S29	N1	В	20		0	surber	
Développement alg								P9	S18	N1	С	20		0	surber	
	ouille à l'amont non prélevable. nont station difficile d'accés (profondeur + embâcles)							P10	S18	N3	С	20		0	surber	
								P11	S18	N6	С	5		0	surber	
								P12	S18	N5	С	40		0	surber	

									PLAN D'ECHANTILLON	IAGE			
īté	SUBSTRATS			1110551	N6		N5		N3		N1		
Habitabilité		Ct-t-t		7.	> 75 cm/s N°	Rapide Présence	26 à 75 cm/s I N°	Moyenne Présence	6 à 25 cm/s N°	Présence	0 à 5 cm/s N°	Nulle Présence	Nombre de prélèvements définitifs réalisés
Hab	Code Sandre - Nature du Substrat	Statut (D, M, MNR, P)	% de recouvrement		prélèvement	(x;xx;xxx)	prélèvement	(x;xx;xxx)	prélèvement	(x;xx;xxx)	prélèvement	(x;xx;xxx)	dennitirs realises
11	S1 - Bryophytes	м	1				1	х					1
10	S2 - Spermaphytes immergés (hydrophytes)	м	1								2	х	1
9	S3 - Débris organiques grossiers (litières)												
8	S28 - Chevelus racinaires libres dans l'eau, substrats ligneux (branchages)	м	1				3	х					1
7	S24 - Sédiments minéraux de grande taille (pierres, galets - 25 à 250 mm)	D	6				5	xx		х			1
6	S30 - Blocs facilement déplaçables (> 250 mm)	D	5			х	6	xx		х			1
5	S9 - Granulats grossiers (graviers 2 à 25 mm)	м	3						4	xx		х	1
4	S10 - Spermaphytes émergents (hélophytes)	м	1							х			
3	S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins												
2	S25 - Sables et limons (< 2 mm)	м	4							х		х	
1	S18 - Algues	D	68		11	х	7 12	xxx	10	х	9	xx	5
0	S29 - <u>Surfaces</u> uniformes <u>dures</u> naturelles et artificielles (roches, dalles, blocs non facilement déplaçables, mames et argiles compactes)	D	10			х		х		xx	8	XXX	1
			100	Nombi	re de prélèvements	1	6		2		3		12

Phase A: substrats marginaux (M) selon ordre d'	habitabilité		STATUT	Dominant (D), Marginal (M), Marginal non représnetatif (MNR) ou Présent (P)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)
Phase B : substrats dominants (D) selon ordre d'	habitabilité		SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0-inconnu ; 1-bonne visibilité ; 2-visibilité moyenne; 3-visibilité faible; 4-fonds non visibles
Phase C : substrats dominants (D) en privilégiant	la représentativité des substrats		CLASSE VITESSE	Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0-inconnu ; 1-pas d'eau ; 2-trous d'eau; 3-basses eaux; 4- moyennes eaux; 5- hautes eaux; 6- crue débordante
RGANISME: AQUASCOP N° CONTRAT: 9227			BOCAL/PHASE	Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»
ORGANISME: AQUASCOP N. CONTRAT: 9221			HAUTEUR D'EAU	Pour chaque microprélèvement, en cm	Lpb	Largeur au débit de Plein Bord (en m)
PRELEVEUR : Antoine ROBE	ASSISTANT : Mailis CROIZER	Mailie CROIZER		Pour chaque microprélèvement, utiliser les codes SANDRE	Lt Lm	Longueur totale de la station (en m) Largeur mouillée moyenne quand prélèvement (en m avec 1 décimale si «5m)
TREET TON TO A TROUB TROOP	ALGORITHM I MIGHIO OTTOILENT		COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)	Sm Smarg	Superficie mouitée de la station (m²) Superficie maximate d'un substrat marginal (Sm²0.05 : m²)
Regroupement effectué sur le terrain :	oui 🗹	non 🗆	MATERIEL	Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Dominant / Marginal / marginal Non Représentatif (suivant le protocole)
Regroupement enectue sur le terrain .			COMMENTAIRE	Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) ; 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)

DATE DE PRELEVEMENT : 20/07/2016

COURS D'EAU : Lergue

SITE (STATION/COMMUNE): Lodève

CODE STATION: 06300053

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
PLECOPTERA	Leuctridae	Leuctra	69	1			1
I EEGOI TETOT	Loudinado	Leuctra geniculata	33830	4			4
	Brachycentridae	Oligoplectrum maculatum	264	1			1
	Hydropsychidae	Cheumatopsyche lepida	222	30	1		31
	riyaropoyomaao	Hydropsyche	212	570	30	10	610
TRICHOPTERA	Hydroptilidae	Hydroptila	200	289	667	369	1325
	Polycentropodidae	Polycentropus	231	1		2	3
	i oiyeenaopouluae	Polycentropodidae	223		2		2
	Rhyacophilidae	Rhyacophila lato-sensu	183	4	23	18	45
	Baetidae	Baetis lato sensu	9794	262	1500	235	1997
	Daeliuae	Cloeon	387	20		10	30
EPHEMEROPTERA	Caenidae	Caenis	457	282	48	58	388
EPHEWEROPIERA	Ephemerellidae	Ephemerella ignita	451	2	2	6	10
		Ecdyonurus	421		1		1
	Heptageniidae	Heptageniidae	399		2		2
	Corixidae	Corixinae	5196	1			1
HETEROPTERA	Gerridae	Gerris	735			1	1
	Dryopidae	Dryops	613	208	5	15	228
	Dytiscidae	Hydroporinae	2393		1	3	4
		Elmis	618	18	5	10	33
		Esolus	619	8	6	4	18
COLEOPTERA	Elmidae	Limnius	623	2	•	-	2
00220112101		Oulimnius	622	46	11	22	79
		Riolus	625	6	5	16	27
	Haliplidae	Haliplus	518	1	1	10	2
	Hydraenidae	Hydraena	608		1		1
	Anthomyidae	Anthomyidae	847	84	3	3	90
	Athericidae	Athericidae	838	3	3	2	5
	Chironomidae	Chironomidae	807	3000	1200	4800	9000
	Empididae	Empididae	831	9	3	17	29
	Emplaidae Ephydridae	Ephydridae	844	9	2	17	3
DIPTERA	1 7	1 /	757			1	<u> </u>
	Limoniidae	Limoniidae		_	1		5
	Psychodidae	Psychodidae	783	2	2	1	
	Simuliidae	Simuliidae	801	88	153	5	246
	Stratiomyidae	Stratiomyidae	824	1		1	2
	Tipulidae	Tipulidae	753	6	3	1	10
ODONATA	Gomphidae	Onychogomphus	682	1			1
CRUSTACEA	Gammaridae	Gammarus	892	176	7	8	191
		Gammaridae	887			3	3
	Ancylidae	Ancylus fluviatilis	1029	62	100	4	166
	Hydrobiidae	Potamopyrgus antipodarum		1200	36	160	1396
GASTROPODA	Lymnaeidae	Radix	1004	4	4		8
	Neritidae	Theodoxus fluviatilis	968		1		1
	Physidae	Physa lato-sensus	997	18	5	9	32
HIRUDINEA	Hirudinae	Erpobdellidae	928	3	8		11
TURBELLARIA	Turbellaria	Dugesiidae	1055	800	28	40	868
OLIGOCHAETA	Oligochaeta	Oligochaeta	933	42	26	278	346
NEMATHELMINTHA	Nemathelmintha	Nemathelmintha	3111	1	1	1	3
CRUSTACEA	Ostracodes	Ostracodes	3170	1	1	1	3
HYDRACARINA	Hydracarina	Hydracarina	906	1	1	1	3
HYDROZOA	Hydrozoa	Hydrozoa	3168	1	1	1	3
NEMERTEA	Prostomatidae	Prostoma	3110	1	1		2
		con	trôle nb taxon	42	40	35	117

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou juvéniles

Commentaire hors accréditation :

RAPPORT D'ESSAI n°« Inv-DCE-16- M71 »

Méthode d'essai : Prélèvement des macro-invertébrés aquatiques en rivières peu profondes

AFNOR XP T90-333

Traitement au laboratoire d'échantillons contenant des macro-invertébrés

de cours d'eau - AFNOR XP T90-388

Circulaire DCE 2007/22 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en œuvre du

programme de surveillance sur cours d'eau

Client : Conseil départemental de l'Hérault

Adresse: Hôtel du Département - 1000 rue d'Alco - 34087 MONTPELLIER CEDEX 4

Identification de l'échantillon :

Date de prélèvement	Nom station	Code station
24/06/2016	Thongue à Servian (TH1)	06183840

Opérateur(s) terrain : Aurélia MARQUIS

Lieu de réalisation de l'essai : laboratoire Aquascop « Montpellier »

Opérateur(s) laboratoire : Aurélia MARQUIS Date début laboratoire : 02/12/2016

Commentaires : Rien à signaler

Date d'édition	Version	Approuvé par	
13/04/2017	1	Nom : Vincent BOUCHAREYCHAS Fonction : Responsable Technique Signature	Nom : Antoine ROBE Fonction : Responsable Laboratoire Signature

Ce rapport contient 3 pages et ne peut être reproduit partiellement sans autorisation du laboratoire. La marque d'accréditation ne peut être reproduite en dehors de ce rapport d'essai. Les résultats d'analyses ne concernent que l'échantillon soumis à l'essai. Une note sur les incertitudes des valeurs fournies est disponible sur demande auprès du laboratoire.

Analyses effectuées par un laboratoire agréé le 10 janvier 2012 par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27 octobre 2011. Liste des laboratoires publiée sur <u>www.labeau.ecologie.gouv.fr</u>

Il s'agit de la première version de ce rapport d'essai

COD								DDELEVE.			BOCAL		SUBSTRAT	COLMATAGE	MATERIEL	
E	COURS D'EAU		DATE	X AMONT		X AVAL	Y AVAL	PRELEVE- MENT		CLASSE VITESSE	ou PHASE	HAUTEUR D'EAU	SECONDAIRE	(intensité/nature)	PRELEVEMENT	
6E+06	THONGUE	THONGUE A SERVIAN	24/06/2016	725446	6260213	711712	6260130	P1	S28	N1	Α	10		0	surber	
Lpb (largeur ple	ein-bord moyenne, en m)	7,7		Localisation				P2	S30	N1	Α	20		2	surber	
Lt (longueur tota	ale de la station en m)	50						P3	S9	N3	Α	5		0	surber	
Lm (largeur mo	uillée moyenne, en m)	2,7		Visibilité des fon			1	P4	S11	N1	Α	10		0	surber	
Sm (surface mo	(surface mouillée de la station en m²) 135			Hydrologie appar			3	P5	S24	N1	В	10		2	surber	
Smarg (= surf.	max substrat marginal=Smx0,0	6,7		Tendance du débit les jours précédents stable					S18	N1	В	10		0	surber	Vaucheria
Photos / Cartog	raphie (facultatif)	OUI		Matériel ☑	Durée terrain	H déb. : 14H15	H fin: 16H30	P7	S24	N3	В	10		0	surber	
Commentaires su	ur le prélèvement (difficultés ? co	onformité ?) (50 carac	tères max) :	Bon état vérifié (cochet)	Surber N°: M3	Tamis Nº:	Haveneau N°:	P8	S24	N1	В	20		2	surber	
Tr7s basses eaux	, en limite de rupture d'écoulement							P9	S24	N3	С	5		2	surber	
								P10	S24	N1	С	20		2	surber	
								P11	S24	N3	С	5		2	surber	
								P12	S24	N1	С	10		2	surber	

-					. 0	1/2°E@HARNTILLONI	NAGE		•	•		<u> </u>	
B bit	SUBSTRA				1	N6 > 75 cm/s	N5 26 à 75 cm/s	N3 6 à 25 cm/s			N1 0 à 5 cm/s		Nombre de prélèvements
	Code	Statut	% de recouvrement			N°	Présence N°	Présence N°		Présence	N°	Présence	
							, , <u>, , , , , , , , , , , , , , , , , </u>	, , , , , , ,		`		'	
	S1 - Bryophyte												
	s												
10	S2 - Spermaph												
	ytes												
0	S3 - Débris	Р											
	organique	•											
	S28 - Chevelus	м	1								1	x	1
	racinaires	IWI									'	^	'
-	S24 - Sédiments	D						7 9		х	5 8 10 12	xx	7
′	minéraux	b	82					11		^	10 12		,
	S30 -											.,	
6	Blocs facilement	М	1								2	Х	1
_	S9 -												
5	Granulats grossiers	P	2					3		Х			1
	S10 -												
4	Spermaph ytes												
	S11 -												
3	Vases : Sédiments	М	2								4	Х	1
	S25 -												
2	Sables et limons (<	М	1									Х	
1	S18 - Algues	D	11							Х	6	Х	1
	S29 - Surface												
0	Surface												
	<u>S</u>												
				100	Nomb re de			4			8		12

Phase A: substrats marginaux (M) selon ordre d'habitabilité	STATUT	Dominant (D), Marninal (M)	X Y AMONT et AVAL (facultatif)	Latitude, longitude des limites du site de prélèvement (en m et en Lambert 93)
Phase B : substrats dominants (D) selon ordre d'habitabilité	SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	Visibilité des fonds	0-inconnu ; 1-bonne visibilité ; 2-visibilité mayenne; 3-visibilité faible; 4-fonds non visibles
Phase C: substrats dominants (D) en privilégiant la représentativité des substrats	CLASSE VITESSE	Pour chaque microprélèvement (µpt), utiliser les codes SANDRE	Hydrologie apparente	0-inconnu ; 1-pas d'eau ; 2-trous d'eau; 3-basses eaux, 4- moyennes eaux, 5- hautes eaux, 6- crue débordante
GANISME: AQUASCOP N° CONTRAT: 9227	BOCAL/PHASE	Affecter chaque µpt à B1 phase A, B2 phase B ou B3 phase C (sans case vide)	Tendance du débit jours précédents	« débit stable » ; «événement hydrologique modéré» ; «événement hydrologique important» ; «évén. hydrologique exceptionnel»
	HAUTEUR D'EAU	Pour chaque microprélèvement, en cm	Lpb	Largeur au débit de Plein Bord (en m)
PRELEVEUR : Aurélia MARQUIS ASSISTANT : Maïlis CROIZER	SUBSTRAT SECONDAIRE	Pour chaque microprélèvement, utiliser les codes SANDRE	Lt Lm	Longueur totale de la station (en m)
	COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)	Sm Smarg	Superficie mouilée de la station (m²)
effectué sur le terrain : oui ☑ non	MATERIEL	Pour chaque microprélèvement, surber, haveneau (selon protocole)	D/M/MNR/P	Dominant / Marginal / marginal Non Représentatif (suivant le protocole)
1	COMMENTAIRE	Pour chaque microprélèvement, libre (sous-type substrat, végétation,)	N° Prélèvements	Dans le tableau d'échantillonnage prélèvements à noter de 1 à 4 (Bocal 1/phase A) ; 5 à 8 (Bocal 2/ph B) et 9 à 12 (Bocal 3/ph C)

DATE DE PRELEVEMENT : 24/06/2016

COURS D'EAU: Thongue

SITE (STATION/COMMUNE): Servian

CODE STATION: 06183840

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
TRICHOPTERA	Hydroptilidae	Hydroptila	200		2		2
TRIOTIOI TERM	Leptoceridae	Mystacides	312	1			1
EPHEMEROPTERA	Baetidae	Baetis lato sensu	9794	2	1	1	4
LFIILIVILINOFILINA	Caenidae	Caenis	457	1320	700	102	2122
	Elmidae	Oulimnius	622	80	33	49	162
COLEOPTERA	Haliplidae	Haliplus	518	4		1	5
COLEOFTERA	папрпиае	Haliplidae	517		1		1
	Hydrophilidae	Hydrophilinae	2517		1	1	2
	Chironomidae	Chironomidae	807	1416	3360	344	5120
	Dixidae	Dixidae	793	2		1	3
DIPTERA	Simuliidae	Simuliidae	801	1	60	12	73
	Tabanidae	Tabanidae	837	2	1		3
	Tipulidae	Tipulidae	753	2	1	1	4
ODONATA	Libellulidae	Sympetrum	699		1		1
	0	Gammarus	892	25	28	6	59
CRUSTACEA	Gammaridae	Gammaridae	887	5			5
	Asellidae	Asellidae	880	180	19	78	277
BIVALVIA	Sphaeriidae	Sphaeriidae	1042	28	1	1	30
	Ancylidae	Ancylus fluviatilis	1029	89	24	17	130
0.4070.0000.4	Hydrobiidae	Potamopyrgus antipodarum	979	235	261	52	548
GASTROPODA	Physidae	Physa lato-sensus	997	13	63	34	110
	Planorbidae	Planorbidae	1009	1	3		4
		Erpobdellidae	928	97	16	63	176
HIRUDINEA	Hirudinae	Glossiphoniidae	908	252	69	42	363
		Dendrocoelidae	1071	1		7	8
TURBELLARIA	Turbellaria	Dugesiidae	1055	16	16	10	42
		Planariidae	1061	1		- 10	1
OLIGOCHAETA	Oligochaeta	Oligochaeta	933	28	94	30	152
NEMATODA	Nematoda	Nematoda	1089	1	1	1	3
	Cladocères	Cladocères	3127	1	1	1	3
CRUSTACEA	Copépodes	Copépodes	3206	1	1	1	3
	Ostracodes	Ostracodes	3170	1	1	1	3
HYDRACARINA	Hydracarina	Hydracarina	906		1	1	2
HYDROZOA	Hydrozoa	Hydrozoa	3168	1	1	1	3
BRYOZOA	Bryozoa	Bryozoa	1087	1	1	·	2
NEMERTEA	Prostomatidae	Prostoma	3110	•	•	1	1
	colomalado		rôle nb taxon	30	29	27	86
			nb individus	3807	4762	859	9428
		e chili cie	- His individus	3007	77.02	000	3420

Tendance de variation de débit les jours précédents : stable

Type de conservation avant tri : formol 4%

Méthodes de traitement, de pré-traitement : tamisage (tamis 8 mm) et élutriation

Grossissement utilisé pour le tri sur les plus petits tamis : x7

Taxons pours lesquels le niveau de détermination requis n'a pas pu être atteint et justification : individus abimés ou

juvéniles

Commentaire hors accréditation :

8.6.2. Plan d'échantillonnage et listes faunistiques macro-invertébrés grands cours d'eau

COURS D'	'EAU	SITE		CODE	STATION	D.F	ATE	х амо	NT	Y AI	MONT	Х	AVAL	Y A	VAL
HERAUI	LT	GIGNAC		618	82400	15/07	7/2016	74276	59	628	33217	74	12478	628	2897
Heure (début-fin)	10h20 /	Pourcentage de recouve	rement de chaque z	one:		PRELEVEMENT	TECHNIQUE PRELEVEMENT	SUBSTF	AT	VITESSE	PROFONDEUR (m)	BOCAL	COLMATAGE	STABILITE	TYPE VEGETAL
Débit estimé (m3) / tendance		Zone de berge :	,	%		P1	Surber	S2		N1	0,5	PhA			
Debit estime (m3) / tendance		Zone de berge :	3	170		P2	Surber	S 1		N1	0,3	PhA		·	
Photos / Cartographie	oui	Zone intermédiaire :		%		P3	Surber	S28		N1	0,3	PhA			
Filotos / Cartographie	Oui	Zone intermediane .	•	170		P4	Surber	S3		N1	0,4	PhA			
Lpb (m)	73	Zone profonde :				P5	Drague	S24		N1	3,5	PhB		i	
Lbp (III)	73	·	0.5	3 70		P6	Drague	S9		N1	3,5	PhB		i	
Lt (m)	402	Remarques/commentaires : Accés mise à l'eau en rive gauche par			L EIGHE 04 67 57	P7	Drague	S9		N1	2,5	PhB		i	
Lt (III)	402	88 60	ie was d'Avellan - p	prevenir avant wime	LEIGUE au 04 67 57	P8	Drague	S25		N1	2,5	PhB		L	
Lm (m)	67					P9	Drague	S24		N1	1,5	PhC		L	
-m (m)	07					P10	Drague	S24		N1	1,5	PhC		L	
Surf. mouillée Sm (m²)	26934					P11	Haveneau	S2				PhC		i	
ouri. mounice on (iii-)	20934					P12	Haveneau	S2				PhC		1	
										classes de vitesses					
Substrats			N6			N5			N	.1	<i>.</i>				

	·																
													e vitesses	-			
Substrats									N > 74	6 cm/s		15 4 cm/s		13 1 cm/s	N 0 à 4	I1 cm/s	Nb de prél.
				% réel de	ZONE	% réel de		% réel de	Rap			enne		nte		ılle	réalisés
Nature du Substrat	Substrat (Sandre)	SANDRE	ZONE DE BERGE	recouvrement	INTERMEDIAIRE	recouvrement	CHENAL PROFOND	recouvrement	Prélèvement	Présence	Prélèvement	Présence	Prélèvement	Présence	Prélèvement	Présence	
Bryophytes	Bryophytes	S 1	Х	1											2		1
Spermaphytes immergés	Hydrophytes	S 2	х	1	х	2									1 11 12		3
Débris organiques grossiers (litières)	Litières	S3		1											4		1
Chevelus racinaires, supports ligneux	Branchage, racines	S28	х	30											3		1
Sédiments minéraux de grande taille (pierres, galets) (25 à 250 mm)	Pierres, galets	S24	х	20	х	50	х	25							5 9 10		3
Blocs (> 250 mm) inclus dans une matrice d'éléments minéraux de grande taille (25 à 250 mm)	Blocs	S30		2													
Granulats grossiers (graviers) (2,5 à 25 mm)	Granulats	S 9			х	48	Х	50							6 7		2
Spermaphytes émergents de strate basses	Helophytes	S10	Х	2													
Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins	Vases	S11															
Sables et limons (< 2 mm)	Sables, limons	S25	х	23			Х	25							8		1
Algues	Algues	S18	Х	10													
Surfaces uniformes dures naturelles et artificielles (roches, dalles, marnes et argiles compactes)	Dalles, argiles	S29	Х	10													
Non déterminé en chenal profond	Non déterminé	S31															
								Nb de prél. réalisés							1	2	12

								LEGENDE		
Lpb	1:	Lm	1:	Classe	<1 m	M6	SUBSTRAT	Pour chaque microprélèvement, utiliser les codes SANDRE	X AMONT	Latitude de la limite amont du site de prélèvement (en mètres et en Lambert II étendu)
Largeur Plein Bord	2:	Largeur mouillée	2:	Profondeur	1 à 2 m	M4	CLASSE VITESSE	Pour chaque microprélèvement, utiliser les codes SANDRE		Longitude de la limite amont du site de prélèvement (en mètres et en Lambert II étendu)
	3:		3:		2 à 4 m	M7	TECHNIQUE PRELEVEMENT	Pour chaque microprélèvement, utiliser les codes Surber, Drague, Substrat artificiel, Haveneau	X AVAL	Latitude de la limite aval du site de prélèvement (en mètres et en Lambert II étendu)
	4:		4 :		4 à 8 m	M8	BOCAL	Affecter chaque microprélèvement à B1, B2 ou B3 (case vide interdite)		Longitude de la limite aval du site de prélèvement (en mètres et en Lambert II étendu)
	5:		5 :		8 à 16 m	M9	HAUTEUR D'EAU	Pour chaque microprélèvement, en m		Largeur au débit de Plein Bord (en m)
	6:		6 :		> 16 m	M10	COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)		Longueur totale de la station (en m)
	7:		7:				STABILITE	Pour chaque microprélèvement, stabilité du substrat (Instable ou Stable)		Largeur mouillée moyenne au moment du prélèvement (en m avec 1 décimale)
	8:		8 :				NATURE VEGETATION	Pour chaque microprélèvement, nature de la végétation de recouvrement (selon protocole IBGN)		Superficie mouillée de la station (m²)
	9:		9:				ABONDANCE VEGETATION	Pour chaque microprélèvement, abondance du recouvrement par la végétation de 0 à 5 (0 = nul 5 = très important)		Superficie maximale d'un substrat marginal (Sm*0.05; m²)
	10 :		10 :							Dominant / Marginal (suivant le protocole)
	Moyenne :		Moyenne :	1					Superficie relative des substrats dominants	1 = entre 5 et 25% ; 2 = entre 25 et 50% ; 3 = supérieure à 50%
		→	<u> </u>	<u> </u>				,		

Composition des peuplements d'invertébrés benthiques des bassins versants de l'Hérault Echantillonnages et déterminations AQUASCOP

Date: 15/07/2016 Cours d'eau : Hérault Code station: 06182400Code CG: H14

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	phC'	TOTAL
PLECOPTERA	Leuctridae	Leuctra	69		1			20
	Ecnomidae	Ecnomus	249	1	10	3	5	21
		Agraylea	201		2			31
	Hydroptilidae	Hydroptila	200	1	4	4	20	344
	Tiyaropiiilaae	Orthotrichia	197	34	11	10	260	318
		Hydroptilidae	193		2	1		4
		Ceraclea	313				1	3
		Homilia	20556		2			11
	Lantagaridaa	Mystacides	312	4	4		1	10
TRICHOPTERA	Leptoceridae	Setodes	318		1			2
		Triaenodes	314	1				3
		Leptoceridae	310		1	1		4
		Cyrnus	224	1	1			20
	Polycentropodidae	Polycentropus	231	1	8	3	6	20
		Polycentropodidae	223	1			1	5
		Lype	241	1		2		4
	Psychomyiidae	Paduniella vandeli	20557			1		46
	, ,	Tinodes	245	19	21	5		47
		Baetis lato sensu	9794	.0			2	12
		Centroptilum luteolum	384	1	2	1	6	47
		Cloeon	387	7	4	3	23	47
	Baetidae	Procloeon	390	7	1	J	23	34
		Procloeon bifidum	390	1	7	2	16	61
EPHEMEROPTERA				4		3		
	0	Baetidae	363		10		18	1546
	Caenidae	Caenis	457	47	840	360	264	1512
	Ephemerellidae	Ephemerella ignita	451	_			1	190
	Leptophlebiidae	Choroterpes picteti	475	2	150	31	6	559
	Polymitarcyidae	Ephoron virgo	497		230	140		371
HETEROPTERA	Corixidae	Micronecta	719	1				2
	Dryopidae	Dryops	613		1			2
	Dytiscidae	Colymbetinae	2395	1				11
COLEODIEDA		Esolus	619		7	3		11
COLEOPTERA	Elmida -	Limnius	623		1			6
	Elmidae	Normandia	624	1	4			8
		Oulimnius	622		2	1		4
	Ceratopogonidae	Ceratopogonidae	819		1			1243
	Chironomidae	Chironomidae	807	377	105	100	660	1244
DIPTERA	Ephydridae	Ephydridae	844	• • • • • • • • • • • • • • • • • • • •			2	3
	Tipulidae	Tipulidae	753	1				41
	Coenagrionidae	Coenagrionidae	658	28		1	11	42
ODONATA	Gomphidae	Gomphidae	678	1		'	1	9
ODONATA		<u> </u>	657	5	1	1	ı	
MEGALOPTERA	Platycnemididae Sialidae	Platycnemis		1		'		8
MEGALOPTERA		Sialis	704					3
	Gammaridae	Gammarus	892	1	1			32
CRUSTACEA	Asellidae	Asellidae	880	6	24			35
	Atyidae	Atyaephyra desmarestii	862	5				6
	Cambaridae	Procambarus clarkii	2028			1		582
	Corbiculidae	Corbicula	1051	120	410	46	5	753
BIVALVIA	Sphaeriidae	Pisidium	1043	160	2	10		212
	opridoriidae	Sphaeriidae	1042	40				55
	Ancylidae	Ancylus fluviatilis	1029		15			57
	Bithyniidae	Bithynia	994	41	1			45
	Ferrissiidae	Ferrissia	1030	2	1			1295
	Hudrob iida a	Potamopyrgus antipodarum	979	960	240	80	12	1296
GASTROPODA	Hydrobiidae	Hydrobiidae	973			4		69
	Lymnaeidae	Radix	1004	1	3	1	60	88
	Neritidae	Theodoxus fluviatilis	968	6	15	2		518
	Physidae	Physa lato-sensus	997	480	11	2	2	668
	Planorbidae	Planorbidae	1009	141	24	7	1	206
	, iditorbiddo	Erpobdellidae	928	141	16	16	•	42
HIRUDINEA	Hirudinae						4	11
INICUMEN	, ill uuli lae	Glossiphoniidae	908 920		7	1	1	
TUDDEL! AC'A	Tunkall- ::-	Piscicola geometra		0.40	1	^	1	266
TURBELLARIA	Turbellaria	Dugesiidae	1055	240	18	6		348
OLIGOCHAETA	Oligochaeta	Oligochaeta	933	21	6	5	52	85
NEMATHELMINTH/		Nemathelmintha	3111		1			5
	Cladocères	Cladocères	3127	1	1	1	1	6
CRUSTACEA	Copépodes	Copépodes	3206			1	1	6
	Ostracodes	Ostracodes	3170	1	1	1	1	8
HYDRACARINA	Hydracarina	Hydracarina	906	1	1	1	1	7
HYDROZOA	Hydrozoa	Hydrozoa	3168	1		1	1	6
NEMERTEA	Prostomatidae	Prostoma	3110	1	1	1		5
ROTIFERA	Flosculariidae	Sinantherina	5240	1			1	172
		1			_			
		contrôl	e nb taxon	47	51	40	32	170

COURS D'E	EAU	SITE		CODE	E STATION	DA	ATE	X AMONT	Y	AMONT	х	AVAL	Y A	VAL
HERAUL	.т	SAINT PONS DE MAUC	CHIENS	61	183685	13/07	7/2016	738135	62	268678	7:	38135	626	8581
Heure (début-fin)	10h30 /	Pourcentage de recouve	rement de chaque zo	one :		PRELEVEMENT	TECHNIQUE PRELEVEMENT	SUBSTRAT	VITESSE	PROFONDEUR (m)	BOCAL	COLMATAGE	STABILITE	TYPE VEGETAL
Débit estimé (m3) / tendance		Zone de berge :	59	2/		P1	Surber	S28	N1	0,25	PhA	0		
Debit estime (ms) / tendance		Zone de berge .	,	76		P2	Surber	S2	N1	0,3	PhA	0		
Photos / Cartographie		Zono intermédiaire :	se intermédiaire : 50%			P3	Surber	S24	N1	0,2	PhA	1		
Priotos / Cartographie		Zone intermediane .	Zone intermédiaire : 50%			P4	Surber	S9	N1	0,3	PhA	1		
Lpb (m)	70	Zone profonde :	45	0/		P5	Drague	S9	N1	2,5	PhB	0		
Lpb (m)	70	Zone protonue .	45	176		P6	Drague	S9	N1	3	PhB	0		
1.6 ()	250	Remarques/commentaires :				P7	Drague	S9	N1	1,5	PhB	0		
Lt (m)	230					P8	Drague	S9	N1	2	PhB	0		
1 m (m)	55					P9	Surber	S24	N1	0,5	PhC	1		
Lm (m)	55					P10	Surber	S30	N1	0,6	PhC	1		
Surf. mouillée Sm (m²)	13750					P11	Surber	S18	N1	0,15	PhC	0		
Suri. Mountee Stil (III-)	13/30					P12	Surber	S2	N1	0,6	PhC	1		
										de vitesses				
Substrats							N6 > 74 c		N5 25 à 74 cm/s		N3 4 cm/s	0 à 4	l1 .cm/s	Nb de prél.

			1						Cuiboi				0,0		1		
													le vitesses		,		
Substrats			<u> </u>	•		:	_		N > 74	cm/s	25 à 1	N5 74 cm/s	N3 5 à 24 c		0 à 4	I1 cm/s	Nb de prél. réalisés
Nature du Substrat	Substrat (Sandre)	SANDRE	ZONE DE BERGE	% réel de recouvrement	ZONE INTERMEDIAIRE	% réel de recouvrement	CHENAL PROFOND	% réel de recouvrement	Rap Prélèvement	Présence	Prélèvement	yenne Présence	Lent Prélèvement	Présence	Prélèvement	ılle Présence	reanses
Bryophytes	Bryophytes	S1															
Spermaphytes immergés	Hydrophytes	S2	Х	1	X	2									2 12		2
Débris organiques grossiers																	
(litières)	Litières	S3															
Chevelus racinaires,	Branchage,	S28	х	2											1		1
supports ligneux	racines	526	^	2											!		l
Sédiments minéraux de grande taille (pierres, galets)	Pierres, galets	S24	x	70	X	94									3 9		2
(25 à 250 mm)	r icrres, gaicis	324	^	70	^	34									3 3		2
Blocs (> 250 mm) inclus dans une matrice d'éléments	Blocs	S30			x	1									10		1
minéraux de grande taille (25 à 250 mm)																	·
Granulats grossiers (graviers) (2,5 à 25 mm)	Granulats	S9	х	20			×	100							4 5 6 7 8		5
(graviers) (2,5 a 25 mm)																	
Spermaphytes émergents de strate basses	Helophytes	S10	х	1													
Vases : Sédiments fins (< 0,1 mm) avec débris	Vases	S11															
organiques fins																	
Sables et limons (< 2 mm)	Sables, limons	S25	Х	3													
Algues	Algues	S18	Х	3	Х	3									11		1
Surfaces uniformes dures																	
naturelles et artificielles (roches, dalles, marnes et argiles compactes)	Dalles, argiles	S29															
	_																
Non déterminé en chenal profond	Non déterminé	S31															
	I		1	I	1	I	1	Nb de prél. réalisés		i		1			1	2	12
								The do profit realises							·	_	12

					LEGENDE											
Lpb	1:	Lm	1:	Classe	<1 m	M6		Pour chaque microprélèvement, utiliser les codes SANDRE	X AMONT	Latitude de la limite amont du site de prélèvement (en mètres et en Lambert II étendu)						
Largeur Plein Bord	2:	Largeur mouillée	2:	Profondeur	1 à 2 m	M4	CLASSE VITESSE	Pour chaque microprélèvement, utiliser les codes SANDRE		Longitude de la limite amont du site de prélèvement (en mètres et en Lambert II étendu)						
	3:		3:		2 à 4 m	M7	TECHNIQUE PRELEVEMENT	Pour chaque microprélèvement, utiliser les codes Surber, Drague, Substrat artificiel, Haveneau	X AVAL	Latitude de la limite aval du site de prélèvement (en mètres et en Lambert II étendu)						
	4:		4:		4 à 8 m	M8	BOCAL	Affecter chaque microprélèvement à B1, B2 ou B3 (case vide interdite)		Longitude de la limite aval du site de prélèvement (en mètres et en Lambert II étendu)						
	5:		5:		8 à 16 m	M9	HAUTEUR D'EAU	Pour chaque microprélèvement, en m		Largeur au débit de Plein Bord (en m)						
	6:		6 :		> 16 m	M10	COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)		Longueur totale de la station (en m)						
	7:		7:				STABILITE	Pour chaque microprélèvement, stabilité du substrat (Instable ou Stable)		Largeur mouillée moyenne au moment du prélèvement (en m avec 1 décimale)						
	8:		8:				NATURE VEGETATION	Pour chaque microprélèvement, nature de la végétation de recouvrement (selon protocole IBGN)		Superficie mouillée de la station (m²)						
	9:		9:				ABONDANCE VEGETATION	Pour chaque microprélèvement, abondance du recouvrement par la végétation de 0 à 5 (0 = nul 5 = très important)		Superficie maximale d'un substrat marginal (Sm*0.05 ; m²)						
	10:		10 :							Dominant / Marginal (suivant le protocole)						
	Moyenne :		Moyenne :						Superficie relative des substrats dominants	1 = entre 5 et 25% ; 2 = entre 25 et 50% ; 3 = supérieure à 50%						

Code station: 06183685 **Code CG**: H18 **Date**: 13/07/2016

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
PLECOPTERA	Leuctridae	Leuctra	69		1		1
	Ecnomidae	Ecnomus	249	1	3	6	10
		Hydroptila	200		1		1
	Hydroptilidae	Orthotrichia	197	110	5	43	158
		Hydroptilidae	193		1		1
		Homilia	20556		32		32
TRICHOPTERA	Leptoceridae	Mystacides	312	39		3	42
	'	Triaenodes	314	3			3
		Leptoceridae	310	1	2		3
	Polycentropodidae	Polycentropus	231	5	7	4	16
		Polycentropodidae	223		2		2
	Psychomyiidae	Paduniella vandeli	20557	2			2
		Tinodes	245	3			3
		Baetis lato sensu	9794	1			1
	5 44	Cloeon	387	_		18	18
	Baetidae	Procloeon	390	5	8	24	37
		Procloeon bifidum	391	8		61	69
	0 11	Baetidae	363			5	5
EPHEMEROPTER <i>A</i>		Caenis	457	120	25	8	153
	Ephemerellidae	Ephemerella ignita	451	_	1		1
	Heptageniidae	Ecdyonurus	421	2	40		2
	Leptophlebiidae	Choroterpes picteti	475	58	46	2	106
		Leptophlebiidae	473	51 	71		122
	Polymitarcyidae	Ephoron virgo	497	57	1000	3	1060
HETEROPTERA	Corixidae	Micronecta	719	1			1
	Gerridae	Gerris	735		1		1
	Dryopidae	Dryops	613	1	40	4	1
001 5057554		Esolus	619	5	49	1	55
COLEOPTERA	Elmidae	Limnius	623	•	1		1
		Oulimnius	622	2	6	2	10
	*** * * * *	Elmidae	614	2			2
DIDTEDA	Athericidae	Athericidae	838	1			1
DIPTERA	Ceratopogonidae	Ceratopogonidae	819	400	400	2	2
	Chironomidae	Chironomidae	807	120	400	2480	3000
	Aeshnidae	Boyeria irene	671	2			2
	Calopterygidae	Calopteryx	650	1	•		1
ODONATA	Coenagrionidae	Coenagrionidae	658	21	3	52	76
ODONATA	Corduliidae	Oxygastra curtisii	692	4			4
	Comphidos	Comphus	690	4		4	4
	Gomphidae	Gomphus	679	1		1	2
	Platycnemididae	Platycnemis	657 892	74 5	1		75 5
	Gammaridae	Gammarus					
CRUSTACEA	Asellidae	Gammaridae Asellidae	887 880	1			1
		Atyaephyra desmarestii	862	1			1
	Atyidae Corbiculidae	Corbicula		69	60	42	151
BIVALVIA	Sphaeriidae	Pisidium	1051 1043	69	69	13 2	2
	Ancylidae	Ancylus fluviatilis	1043	3	2	1	6
	Bithyniidae	Bithynia	994	153	1	8	162
	Ferrissiidae	Ferrissia	1030	133		1	102
	i errissiluae	Potamopyrgus antipodarum	979	15		8	23
GASTROPODA	Hydrobiidae	Hydrobiidae	973	1		0	1
GASTROPODA		Radix	1004	1		27	28
	Lymnaeidae	Lymnaeidae	998		2	21	
	Dhuaidea	•	997	1 71	2	220	401
	Physidae	Physa lato-sensus				330	
	Planorbidae	Planorbidae	1009	5	4	4	9
HIDI IDINE A	Hirudinaa	Erpobdellidae Glossiphopiidae	928 908		1	1	24
HIRUDINEA	Hirudinae	Glossiphoniidae				24	
		Piscicola geometra Dendrocoelidae	920 1071	1		1	1
TURBELLARIA	Turbellaria				•		
OLICOCUAETA	Oligophasts	Dugesiidae	1055	52	3	26	81
OLIGOCHAETA	Oligochaeta	Oligochaeta	933	9	5	14	28
NEMATODA	Nematoda	Nematoda	1089		1	4	1
CRUSTACEA	Copépodes	Copépodes	3206			1	1
IIVDD A C A D.:: :	Ostracodes	Ostracodes	3170	1	1		2
HYDRACARINA	Hydracarina	Hydracarina	906	1	1	1	3
HYDROZOA	Hydrozoa	Hydrozoa	3168			1	1
NEMERTEA	Prostomatidae	Prostoma	3110	-10		1	1
		contr	ôle nb taxon	48	32	36	116
			nb individus	1096	1752	3180	6028

COURS D'E		SITE			E STATION	D#	DATE		ONT	Y AMONT		X AVAL		Y AVAL		
HERAUL	т.	PEZENAS		61	183820	12/07	7/2016	7352	279	626	1219	7:	35082	626	61108	
Heure (début-fin)	17h30 /	Pourcentage de recouvr	rement de chaque zo	one :		PRELEVEMENT	TECHNIQUE PRELEVEMENT	SUBST	RAT	VITESSE	PROFONDEUR (m)	BOCAL	COLMATAGE	STABILITE	TYPE VEGETAL	
Dábit a stimá (m. 2) / tamalama		Town do house.	5%	,		P1	Surber	S1	1	N1	0,1	PhA	1			
Débit estimé (m3) / tendance		Zone de berge :	5%	7 0		P2	Surber	S	2	N1	0,2	PhA	0			
Photos / Cartographie	oui	Zone intermédiaire :	34%	0/		P3	Surber	S2	8	N1	0,2	PhA	2			
Filotos / Cartographie	oui	Zone intermediane .	347	/0		P4	Surber	S2	4	N1	0,15	PhA	0			
Lpb (m)	72	Zone profonde :	61%	0/_		P5	Drague	S2	4	N1	2	PhB	0			
Lbp (iii)			017	70		P6	Drague	S2	4	N1	1,5	PhB	0			
Lt (m)	220	Remarques/commentaires :				P7	Drague	S)	N1	2	PhB	0			
Lt (III)	220					P8	Drague	S2	5	N1	2	PhB	0			
Lm (m)	35					P9	Haveneau	S2	4	N1	0,6	PhC	0			
L-111 (III)	35					P10	Haveneau	S2	4	N1	0,8	PhC	0			
Surf. mouillée Sm (m²)	7700					P11	Haveneau	S2	-	N1	1,6	PhC	0			
Surr mounts on (iii)						P12	Haveneau	S2	5	N1	1,5	PhC	0			
										classes o	le vitesses					
Substrats							N6		N5		N:		N O è 4		Nh de prél	

												classes d	e vitesses				
Substrats									No > 74 (cm/s		15 4 cm/s	N3 5 à 24 cm/s			cm/s	Nb de prél. réalisés
Nature du Substrat	Substrat (Sandre)	SANDRE	ZONE DE BERGE	% réel de	ZONE INTERMEDIAIRE	% réel de	CHENAL PROFOND	% réel de	Rap		Moy			nte		ille	realises
	` ′			recouvrement	INTERMEDIAIRE	recouvrement		recouvrement	Prélèvement	Présence	Prélèvement	Présence	Prélèvement	Présence	Prélèvement	Présence	
Bryophytes	Bryophytes	S 1	Х	1											1		1
Spermaphytes immergés	Hydrophytes	S2	Х	2											2		1
Débris organiques grossiers (litières)	Litières	S3															
Chevelus racinaires, supports ligneux	Branchage, racines	S28	Х	2											3		1
Sédiments minéraux de grande taille (pierres, galets) (25 à 250 mm)	Pierres, galets	S24	Х	44	х	50	Х	50							4 9 5 10 6		5
Blocs (> 250 mm) inclus dans une matrice d'éléments minéraux de grande taille (25 à 250 mm)		S30	Х	1													
Granulats grossiers (graviers) (2,5 à 25 mm)	Granulats	S9					Х	25							7		1
Spermaphytes émergents de strate basses	Helophytes	S10															
Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins	Vases	S11															
Sables et limons (< 2 mm)	Sables, limons	S25	Х	40	х	50	Х	25							8 11 12		3
Algues	Algues	S18															
Surfaces uniformes dures naturelles et artificielles (roches, dalles, marnes et argiles compactes)	Dalles, argiles	S29	Х	10													
Non déterminé en chenal profond	Non déterminé	S31															
								Nb de prél. réalisés							7	7	12

					LEGENDE											
Lpb	1:	Lm	1:	Classe	<1 m	M6		Pour chaque microprélèvement, utiliser les codes SANDRE	X AMONT	Latitude de la limite amont du site de prélèvement (en mètres et en Lambert II étendu)						
Largeur Plein Bord	2:	Largeur mouillée	2:	Profondeur	1 à 2 m	M4	CLASSE VITESSE	Pour chaque microprélèvement, utiliser les codes SANDRE		Longitude de la limite amont du site de prélèvement (en mètres et en Lambert II étendu)						
	3:		3:		2 à 4 m	M7	TECHNIQUE PRELEVEMENT	Pour chaque microprélèvement, utiliser les codes Surber, Drague, Substrat artificiel, Haveneau	X AVAL	Latitude de la limite aval du site de prélèvement (en mètres et en Lambert II étendu)						
	4:		4:		4 à 8 m	M8	BOCAL	Affecter chaque microprélèvement à B1, B2 ou B3 (case vide interdite)		Longitude de la limite aval du site de prélèvement (en mètres et en Lambert II étendu)						
	5:		5:		8 à 16 m	M9	HAUTEUR D'EAU	Pour chaque microprélèvement, en m		Largeur au débit de Plein Bord (en m)						
	6:		6 :		> 16 m	M10	COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)		Longueur totale de la station (en m)						
	7:		7:				STABILITE	Pour chaque microprélèvement, stabilité du substrat (Instable ou Stable)		Largeur mouillée moyenne au moment du prélèvement (en m avec 1 décimale)						
	8:		8:				NATURE VEGETATION	Pour chaque microprélèvement, nature de la végétation de recouvrement (selon protocole IBGN)		Superficie mouillée de la station (m²)						
	9:		9:				ABONDANCE VEGETATION	Pour chaque microprélèvement, abondance du recouvrement par la végétation de 0 à 5 (0 = nul 5 = très important)		Superficie maximale d'un substrat marginal (Sm*0.05 ; m²)						
	10:		10 :							Dominant / Marginal (suivant le protocole)						
	Moyenne :		Moyenne :						Superficie relative des substrats dominants	1 = entre 5 et 25% ; 2 = entre 25 et 50% ; 3 = supérieure à 50%						

Composition des peuplements d'invertébrés benthiques des bassins versants de l'Hérault Echantillonnages et déterminations AQUASCOP

Hérault Code station: 06183820 Code CG: H20 Cours d'eau : Date: 12/07/2016

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
	Ecnomidae	Ecnomus	249		4		4
	Hydropsychidae	Hydropsyche	212		1		1
	Hydroptilidae	Hydroptila	200		4		4
	Туаторинаас	Orthotrichia	197	2	2		4
		Homilia	20556		28	5	33
TRICHOPTERA		Mystacides	312	10	4	4	18
TRICITOT TERM	Leptoceridae	Oecetis	317	2			2
		Triaenodes	314	1			1
		Leptoceridae	310	1	4		5
	Polycentropodidae	Polycentropus	231			1	1
	Dovohomvijdoo	Lype	241	1			1
	Psychomyiidae	Psychomyia pusilla	240		2		2
		Baetis lato sensu	9794	5		18	23
	Baetidae	Cloeon	387	4			4
		Procloeon	390	9	4		13
	Caenidae	Caenis	457	11	12	8	31
EPHEMEROPTERA	Heptageniidae	Ecdyonurus	421			1	1
		Choroterpes picteti	475	9	20	10	39
	Leptophlebiidae	Leptophlebiidae	473	Ū	7	2	9
	Polymitarcyidae	Ephoron virgo	497	2	162	22	186
	Aphelocheiridae	Aphelocheirus aestivalis	2714		102	1	100
HETEROPTERA	Corixidae	Micronecta	719			1	1
	Dytiscidae	Hydroporinae	2393			1	1
COLEOPTERA	Dyliscidae	Esolus	619	3	53	25	81
COLLOI ILIXA	Elmidae	Oulimnius	622	1	6	5	12
	Athericidae	Athericidae	838	1	1	3	12
DIPTERA			819	1			1
DIFTERA	Ceratopogonidae Chironomidae	Ceratopogonidae Chironomidae	807		05	25	133
				13	95	25	133
	Coenagrionidae	Coenagrionidae	658	1			1
ODONATA	Corduliidae	Oxygastra curtisii	692	1	4		1
ODONATA	Gomphidae	Gomphus	679		1	2	3
	·	Gomphidae	678	_	1		1
	Platycnemididae	Platycnemis	657	3	1		4
CRUSTACEA	Gammaridae	Gammarus	892	22			22
		Gammaridae	887	4			4
BIVALVIA	Corbiculidae	Corbicula	1051	8	11	20	39
	Ancylidae	Ancylus fluviatilis	1029		8	22	30
	Bithyniidae	Bithynia	994	4			4
	Hydrobiidae	Potamopyrgus antipodarum	979		1		1
GASTROPODA	_	Hydrobiidae	973			1	1
	Neritidae	Theodoxus fluviatilis	968	12	4	1	17
	Physidae	Physa strico-sensu	30103	7	1		8
	Planorbidae	Planorbidae	1009	2		1	3
TURBELLARIA	Turbellaria	Dugesiidae	1055	4	4		8
OLIGOCHAETA	Oligochaeta	Oligochaeta	933		5	1	6
NEMATHELMINTHA	Nemathelmintha	Nemathelmintha	3111		1		1
HYDRACARINA	Hydracarina	Hydracarina	906	1	1	1	3
BRYOZOA	Bryozoa	Bryozoa	1087		1		1
NEMERTEA	Prostomatidae	Prostoma	3110			1	1
			ôle nb taxon	28	30	24	82
			nb individus	144	449		

COURS D'	EAU	SITE		CODE	STATION	DA	DATE		A Y	MONT		AVAL	Y AVAL	
HERAUL	т.	AGDE		61	84200	12/07	7/2016	736561	62	48860	73	36935	6248707	
Heure (début-fin)	11H45/	Pourcentage de recouvr	rement de chaque zo	one :	1	PRELEVEMENT	TECHNIQUE PRELEVEMENT	SUBSTRAT	VITESSE	PROFONDEUR (m)	BOCAL	COLMATAGE	STABILITE	TYPE VEGETAL
Débit estimé (m3) / tendance	STABLE	Zone de berge :	5%	<i>L</i>		P1	Surber	S28	N1	0,2	PhA	2	STABLE	
Debit estille (1113) / telidance	OTABLE	Zone de berge .	37	·0		P2	Surber	S 1	N1	0,1	PhA	0		
Photos / Cartographie	OUI	Zone intermédiaire :	309	0/2		P3	Surber	S2	N1	0,5	PhA	0		
1 Hotos / Cartographic		Zone mermediane .	30	70		P4	Surber	S24	N1	0,4	PhA	0		
Lpb (m)	67	Zone profonde :	659	0/2		P5	Drague	S25	N1	5	PhB	0		
Eps (iii)	U 1		00	70		P6	Drague	S9	N1	5	PhB	0		
Lt (m)	400	Remarques/commentaires :				P7	Drague	S9	N1	5	PhB	0		
Lt (III)	400					P8	Drague	S9	N1	7	PhB	0		
Lm (m)	64					P9	Drague	S2	N1	1,5	PhC	0		
-III (III)	04					P10	Drague	S25	N1	5	PhC	0		
Surf. mouillée Sm (m²)	25600					P11	Drague	S2	N1	1,8	PhC	0		
ouri. mounice on (iii')	23000					P12	Drague	S25	N1	4	PhC	0		
										de vitesses				
Substrats							N6 > 74 cr		N5 25 à 74 cm/s		13 4 cm/s	0 à 4	l1 .cm/s	Nb de prél.

												classes d	e vitesses				
Substrats									Ni > 74 (cm/s		15 4 cm/s	N3 5 à 24 cm/s			cm/s	Nb de prél. réalisés
Nature du Substrat	Substrat (Sandre)	SANDRE	ZONE DE BERGE	% réel de recouvrement	ZONE INTERMEDIAIRE	% réel de recouvrement	CHENAL PROFOND	% réel de recouvrement	Rap		Моу			nte		ille	realises
				recouvrement	INTERMEDIAIRE	recouvrement		recouvrement	Prélèvement	Présence	Prélèvement	Présence	Prélèvement	Présence	Prélèvement	Présence	
Bryophytes	Bryophytes	S1	Х	1											2		1
Spermaphytes immergés	Hydrophytes	S 2	Х	1	х	5									3 9 11		3
Débris organiques grossiers (litières)	Litières	S 3															
Chevelus racinaires, supports ligneux	Branchage, racines	S28	Х	5											1		1
Sédiments minéraux de grande taille (pierres, galets) (25 à 250 mm)	Pierres, galets	S24	Х	2											4		1
Blocs (> 250 mm) inclus dans une matrice d'éléments minéraux de grande taille (25 à 250 mm)		S30	Х	10													
Granulats grossiers (graviers) (2,5 à 25 mm)	Granulats	S9					Х	75							6 7 8		3
Spermaphytes émergents de strate basses	^e Helophytes	S10	Х														
Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins	Vases	S11															
Sables et limons (< 2 mm)	Sables, limons	S25	Х	50	Х	95	х	25							5 10 12		3
Algues	Algues	S18	Х	5													
Surfaces uniformes dures naturelles et artificielles (roches, dalles, marnes et argiles compactes)	Dalles, argiles	S29	Х	26	Х												
Non déterminé en chenal profond	Non déterminé	S31															
								Nb de prél. réalisés							1	2	12

					LEGENDE										
Lpb	1:	Lm	1:	Classe	<1 m	M6		Pour chaque microprélèvement, utiliser les codes SANDRE	X AMONT	Latitude de la limite amont du site de prélèvement (en mètres et en Lambert II étendu)					
Largeur Plein Bord	2:	Largeur mouillée	2:	Profondeur	1 à 2 m	M4	CLASSE VITESSE	Pour chaque microprélèvement, utiliser les codes SANDRE		Longitude de la limite amont du site de prélèvement (en mètres et en Lambert II étendu)					
	3:		3:		2 à 4 m	M7	TECHNIQUE PRELEVEMENT	Pour chaque microprélèvement, utiliser les codes Surber, Drague, Substrat artificiel, Haveneau	X AVAL	Latitude de la limite aval du site de prélèvement (en mètres et en Lambert II étendu)					
	4:		4 :		4 à 8 m	M8	BOCAL	Affecter chaque microprélèvement à B1, B2 ou B3 (case vide interdite)		Longitude de la limite aval du site de prélèvement (en mètres et en Lambert II étendu)					
	5:		5 :		8 à 16 m	M9	HAUTEUR D'EAU	Pour chaque microprélèvement, en m		Largeur au débit de Plein Bord (en m)					
	6:		6 :		> 16 m	M10	COLMATAGE	Pour chaque microprélèvement, de 0 à 5 (0 = nul 5 = très important)		Longueur totale de la station (en m)					
	7:		7:				STABILITE	Pour chaque microprélèvement, stabilité du substrat (Instable ou Stable)		Largeur mouillée moyenne au moment du prélèvement (en m avec 1 décimale)					
	8:		8:				NATURE VEGETATION	Pour chaque microprélèvement, nature de la végétation de recouvrement (selon protocole IBGN)		Superficie mouillée de la station (m²)					
	9:		9:				ABONDANCE VEGETATION	Pour chaque microprélèvement, abondance du recouvrement par la végétation de 0 à 5 (0 = nul 5 = très important)		Superficie maximale d'un substrat marginal (Sm*0.05 ; m²)					
	10:		10 :							Dominant / Marginal (suivant le protocole)					
	Moyenne :		Moyenne :						Superficie relative des substrats dominants	1 = entre 5 et 25% ; 2 = entre 25 et 50% ; 3 = supérieure à 50%					
		_		_											

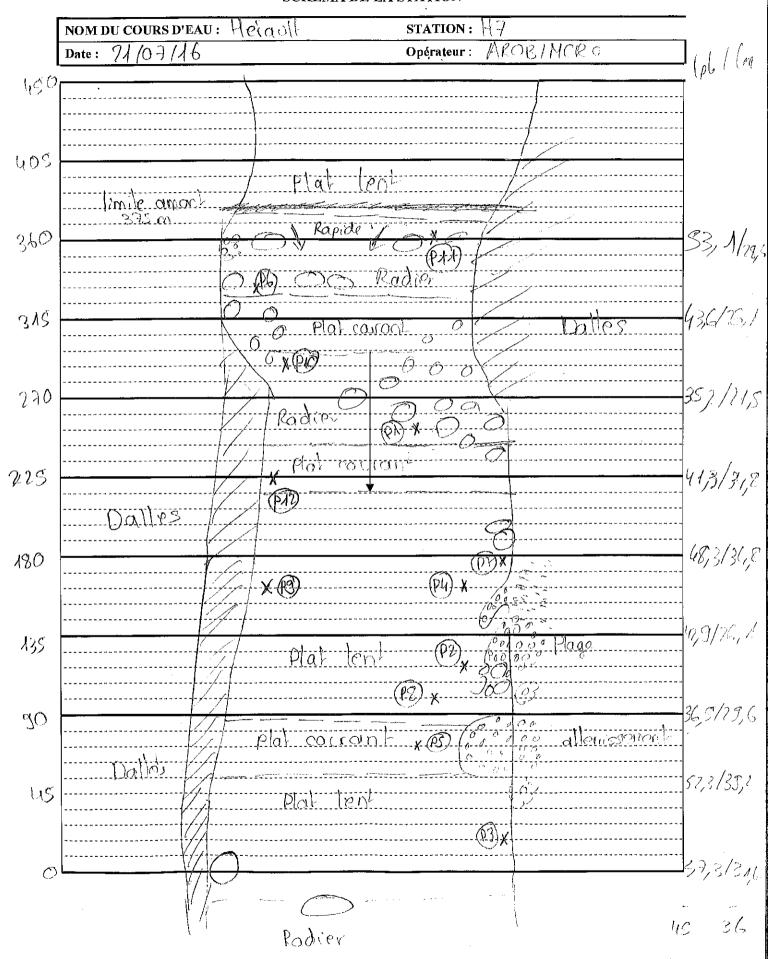
Composition des peuplements d'invertébrés benthiques des bassins versants de l'Hérault Echantillonnages et déterminations AQUASCOP

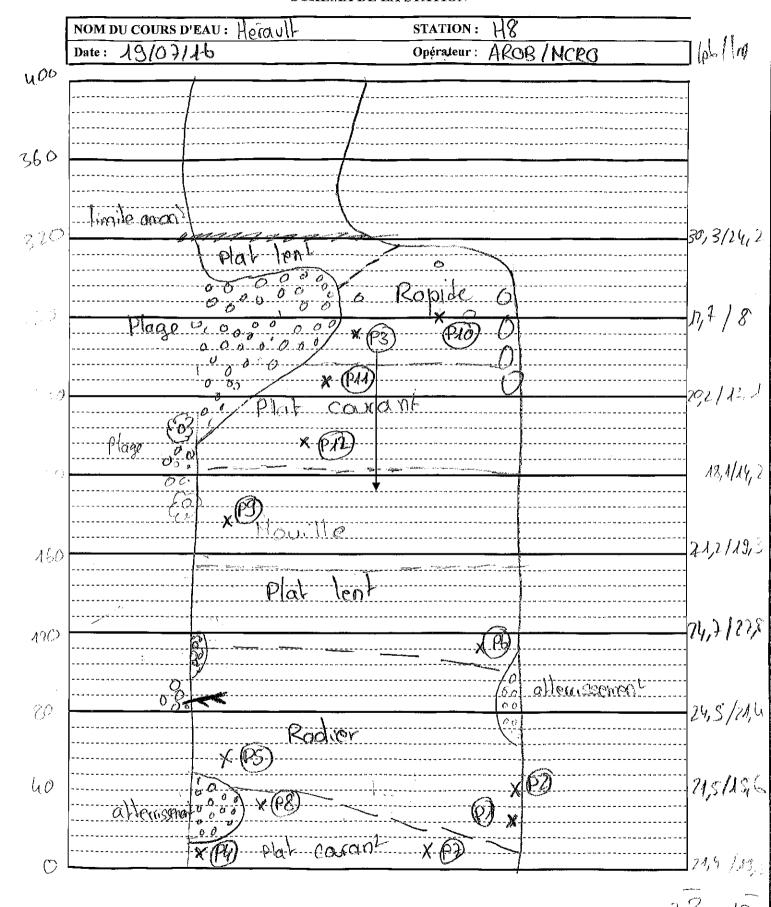
Cours d'eau : Hérault Code station : 06184200 Code CG : H23 Date : 12/07/2016

Groupes	Familles	TAXON SANDRE	CODE SANDRE	phA	phB	phC	TOTAL
PLECOPTERA	Leuctridae	Leuctra geniculata	33830		3		3
	Hydroptilidae	Hydroptila	200			1	1
	Leptoceridae	Mystacides	312			2	2
TRICHOPTERA	Loptocorrado	Leptoceridae	310	1			1
	Psychomyiidae	Lype	241			1	1
	r eyerieinyiidae	Tinodes	245			1	1
		Baetis lato sensu	9794		1	2	3
	Baetidae	Cloeon	387	1		10	11
EPHEMEROPTER <i>A</i>	,	Procloeon	390			1	1
ETTIEMENOT TEN	Caenidae	Caenis	457		3	3	6
	Leptophlebiidae	Choroterpes picteti	475		1		1
		Ephoron virgo	497		203	5	208
HETEROPTERA	Naucoridae	Naucoridae	722			8	8
	Dryopidae	Dryops	613	2			2
COLEOPTERA		Esolus	619	1			1
JOLLOI ILNA	Elmidae	Oulimnius	622	14			14
		Riolus	625	1			1
	Chironomidae	Chironomidae	807	153	141	533	827
DIPTERA	Limoniidae	Limoniidae	757		2		2
	Tipulidae	Tipulidae	753	5			5
ODONATA	Coenagrionidae	Coenagrionidae	658	13		155	168
ODONATA	Platycnemididae	Platycnemis	657			1	1
	Crangonyctidae	Crangonyx pseudogracilis	5117		4	2	6
	0	Echinogammarus	888	1		3	4
CRUSTACEA	Gammaridae	Gammaridae	887	5		2	7
	Asellidae	Asellidae	880	2		7	9
	Atyidae	Atyaephyra desmarestii	862	12		27	39
DIV (ALV) (IA	Corbiculidae	Corbicula	1051	7	173	14	194
BIVALVIA	Dreissenidae	Dreissena polymorpha	1047	7	1	2	10
	Ancylidae	Ancylus fluviatilis	1029	2		7	9
	Bithyniidae	Bithynia	994	10			10
	Ferrissiidae	Ferrissia	1030			15	15
	Hydrobiidae	Potamopyrgus antipodarum		4		2	6
GASTROPODA	Neritidae	Theodoxus fluviatilis	968	49		1	50
	<u></u>	Physa lato-sensus	997	17		54	71
	Physidae	Physella	19280	5			5
	Planorbidae	Planorbidae	1009	72		30	102
		Glossiphoniidae	908		3	2	5
HIRUDINEA	Hirudinae	Piscicola geometra	920			7	7
TURBELLARIA	Turbellaria	Dugesiidae	1055	1		35	36
OLIGOCHAETA	Oligochaeta	Oligochaeta	933	4	76	223	303
NEMATODA	Nematoda	Nematoda	1089		1		1
	Cladocères	Cladocères	3127	1	-	1	2
CRUSTACEA	Copépodes	Copépodes	3206	1		1	2
· · · ·	Ostracodes	Ostracodes	3170	1	1	1	3
HYDRACARINA	Hydracarina	Hydracarina	906		•	1	1
HYDROZOA	Hydrozoa	Hydrozoa	3168			1	1
BRYOZOA	Bryozoa	Bryozoa	1087	1		1	2
DITTOLOA	D. y 0200	•	trôle nb taxon		14	36	78
			le nb individus	393	613	1162	2168
		Control	C 115 IIIGIVIGUS	333		1102	

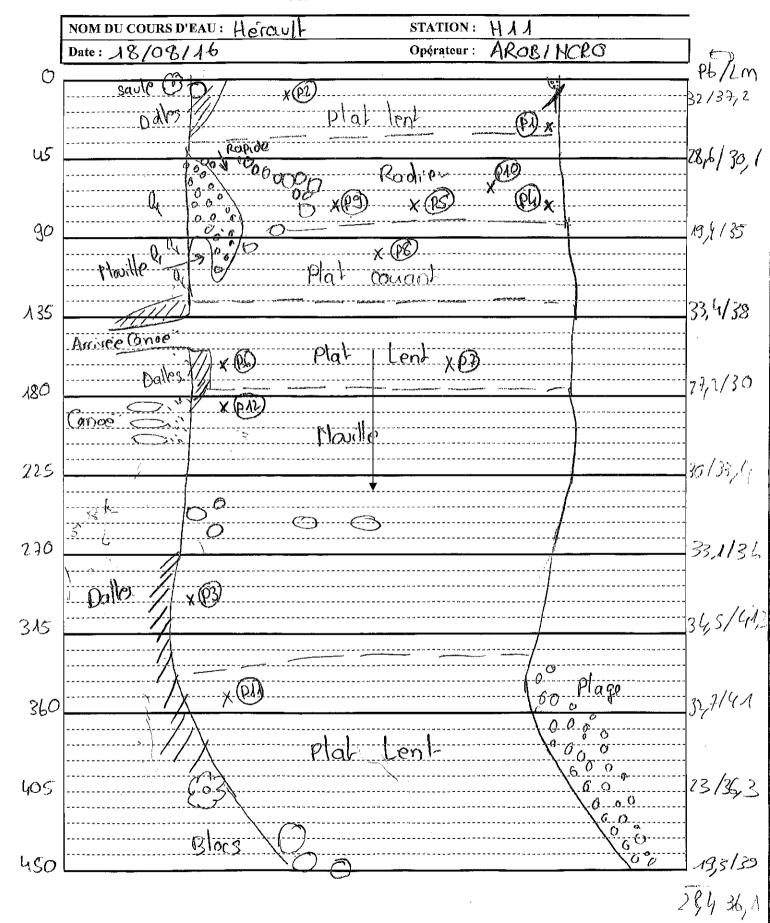
8.6.3. Schémas d'échantillonnage des macro-invertébrés

Date: 10	COURS D'EAU:	Herault STATION: HS Opérateur: AROB IMCRO	(₎ /
		Seul en amon	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		(33
	limik arm	Plat lent	33
		Radin Too	约
		Plat caron 0 0 1 [Marin]	
		(STD) (3) (a) (a) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	 75 ₂
		2 Kapide 10 D	
		(S)X (S) Littaican	39
		Plat canoni ()	3-7
		(M)	 29,
		plat tent veg	······································
		Plat tent x(9)	
	Q		35/
	Ğ	Radicer (8)	
	Ψ		33,
		x (06) alterisionent	
	100	(p.x) * (7.2)	34
	MIR		MAUE
	1//	Plat 180° PDX THAISON VETER	
		Radier	52.


Pont

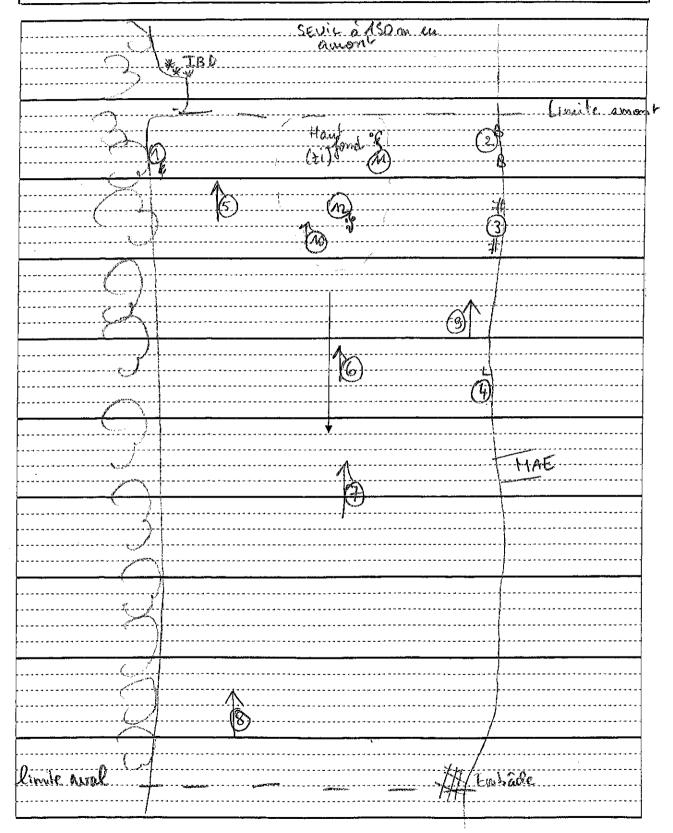

7150

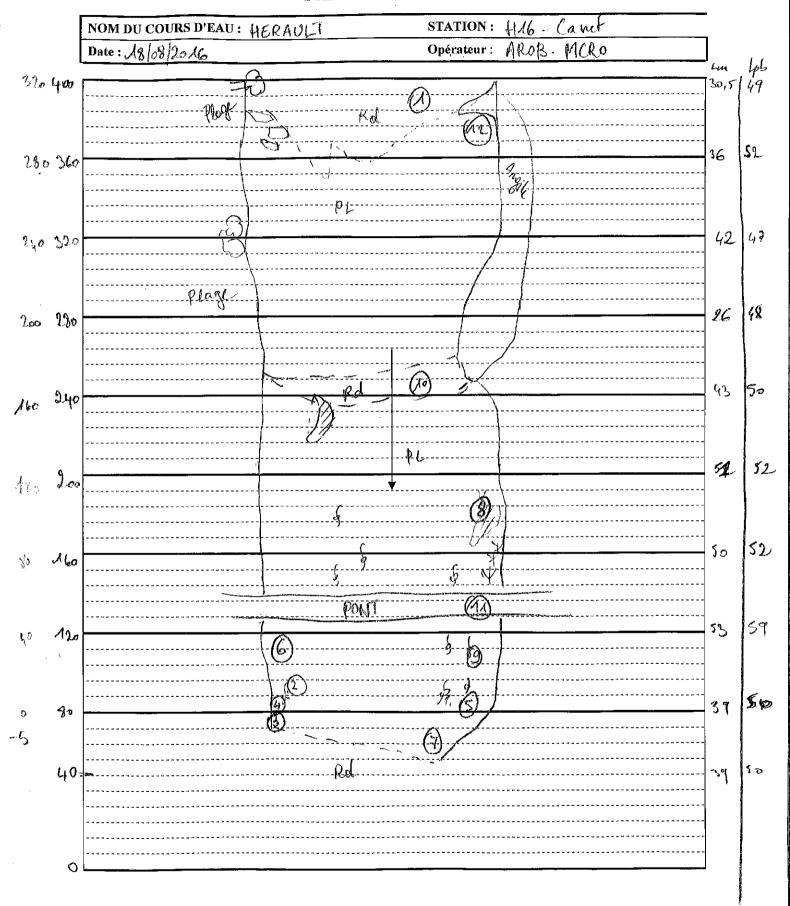
55-1

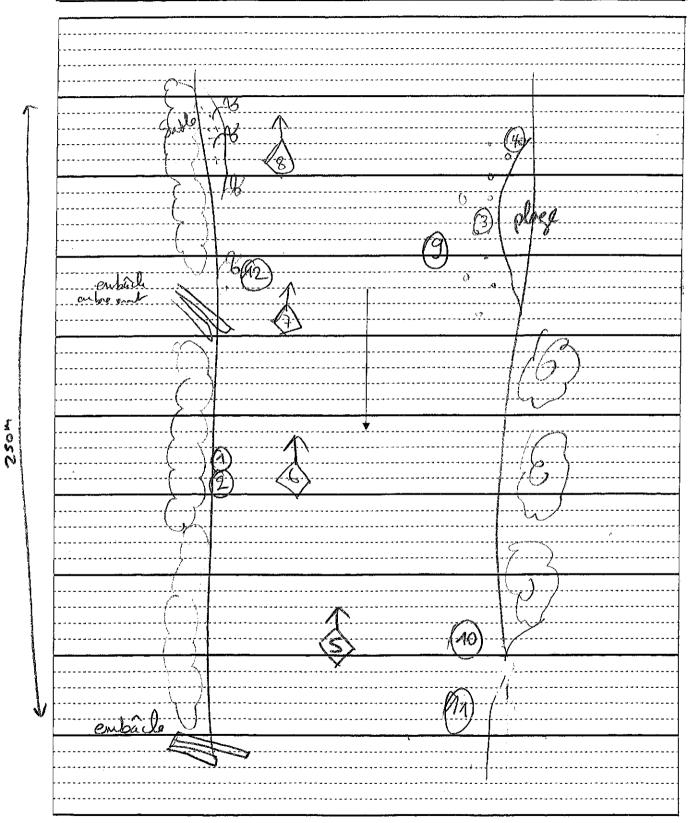

Da	om du cours d'ea ite: 19107/16	(STATION: H6 Opératéur: AROB	MCRO	
					_\`\p'
				·	
					-
				- 4	-
	timite arro				-
		~ 1	10		31,0
		Plat tent	000		
		0.0	Plago		41
		VVV o Radier	x(011)(0000)	Commence	'
			1.100	lamping	-
		1	Rapido	ATTENDED TO THE PARTY OF THE PA	49
		Way, o/R	X (20)		
		X(P)			
• • • • •		V O	-x(P3)		够
		Y Play of		Management (2) by an an analysis (1) for the second of the	
		00/	x(0)		4)
		× 0/ × 0			47

	- \ \ / 		gataven	(MARININA)	59
	Chemia	xpg Plat tent		Hise a'].
		X-fry L. W.r. IX-11:		A CARROLL DEBALLS .]
:41/-					52,
. 		X (3)			
		_ v (P8)		-chare-	1
			a.		SO
	(3) x	(P2)			
			1:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	44

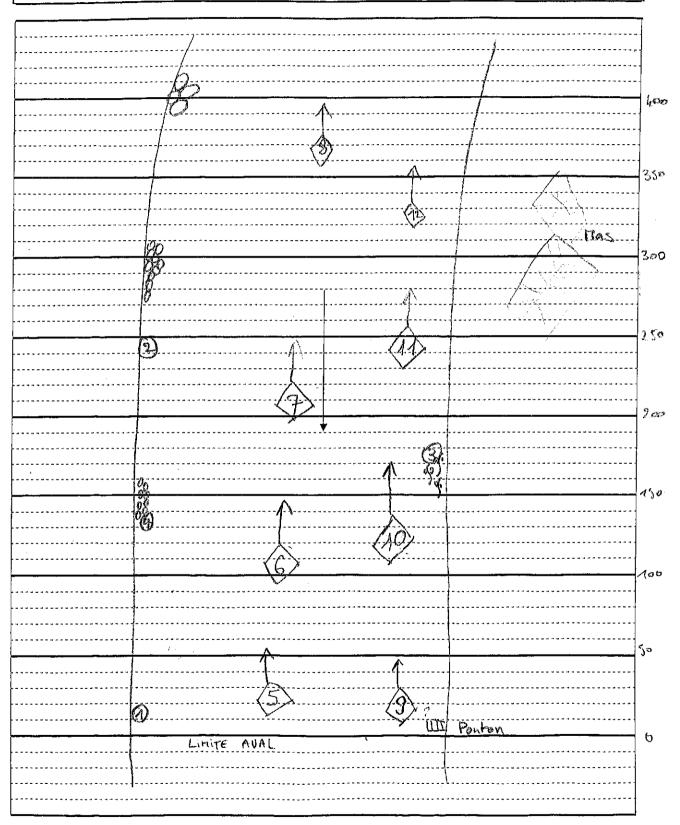
48 38,

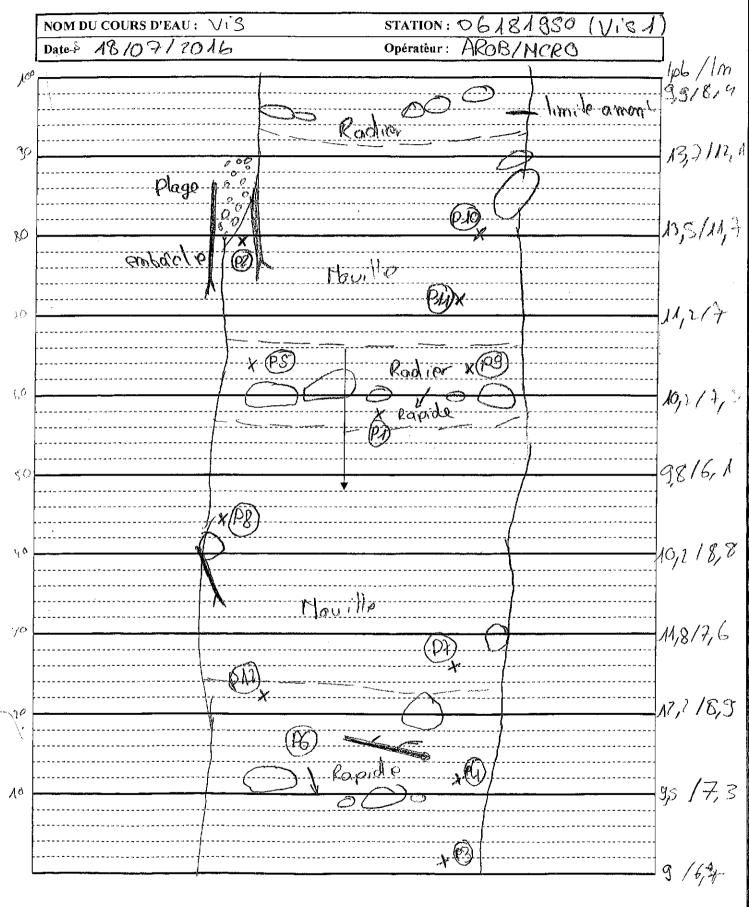



NOM DU COURS D'EAU Date: 21/07/146	Opérateur: AKOR/MCRO	
	o x(Ps) Radier (P) x o	39,6
1	Pont	
	x@D Plat lent Base de	\lagb
6	X (QG)	41,
9		40,
	Padir r X(P3) X(P3)	32,
	Rapide 1	28, 4 <i>1</i>
	(A)	28,5
	Mouilly D	18/
	Plat leat (3) x	39,5
		<u></u> } ₃₀ /
	XPO D Imite ou	$a \mid 22$

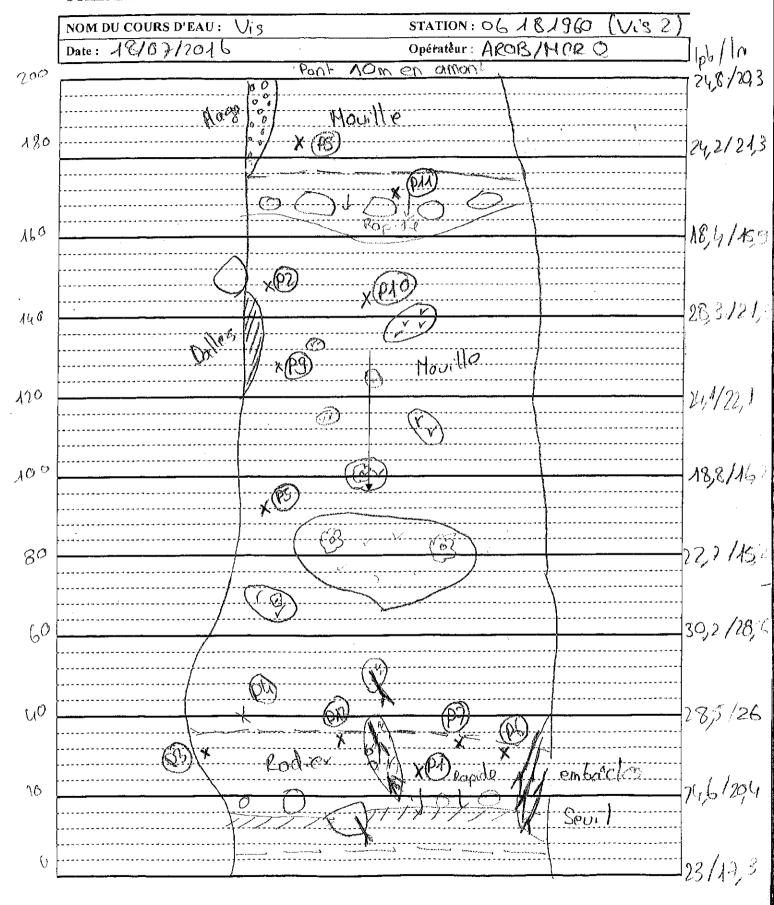

NOM DU COURS D'EAU: HERAULT STATION: 4/14

Date: 15/07/2016 Opérateur: AROB - MCRO

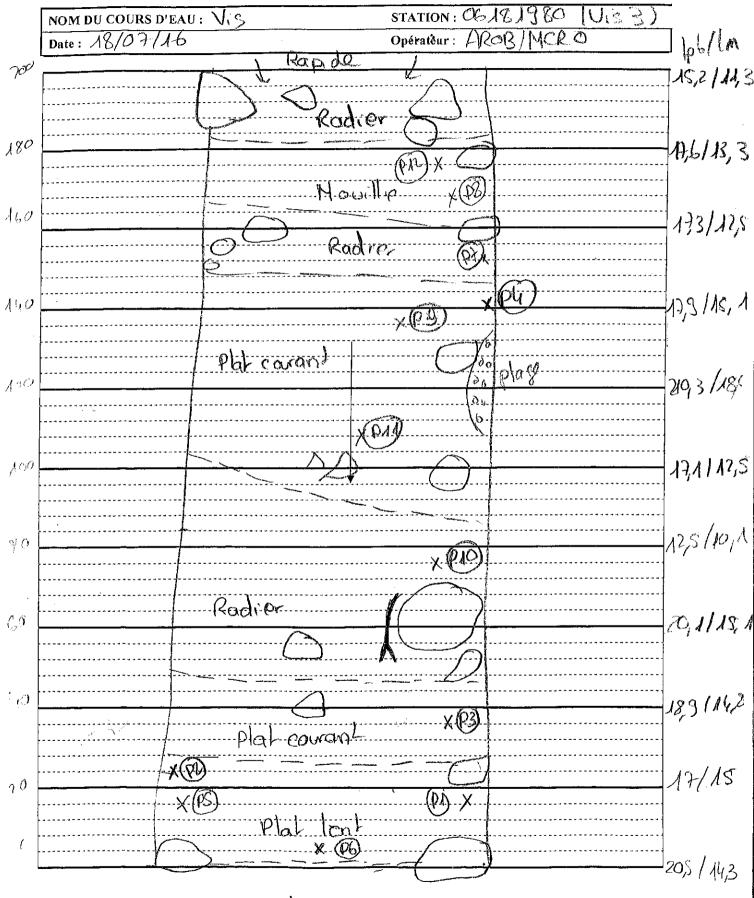

STATION: H18 Opératéur: SIAL /AROB/MCRB NOM DU COURS D'EAU: He roull-



NOM DU COURS D'EAU: Herault	STATION: H2O	-4
Date: 12/07/16	Opérateur: AROB/SDAL/NCRO]
		72 ^C
		138
90) (8)	(2)	13
		15
	[]	13 2
		zλ
		88
		66
	9 9	ų,
		44
52) Routh		22
	<u> </u>	0

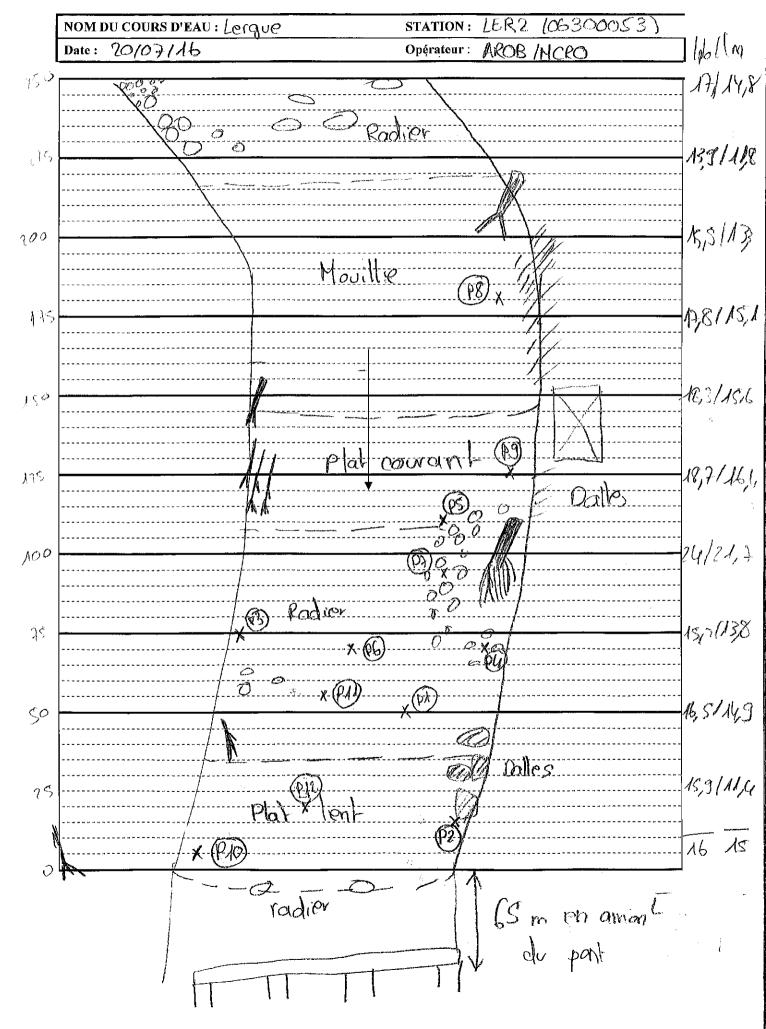

NOM DU COURS D'EAU: HERAULT STATION: H23

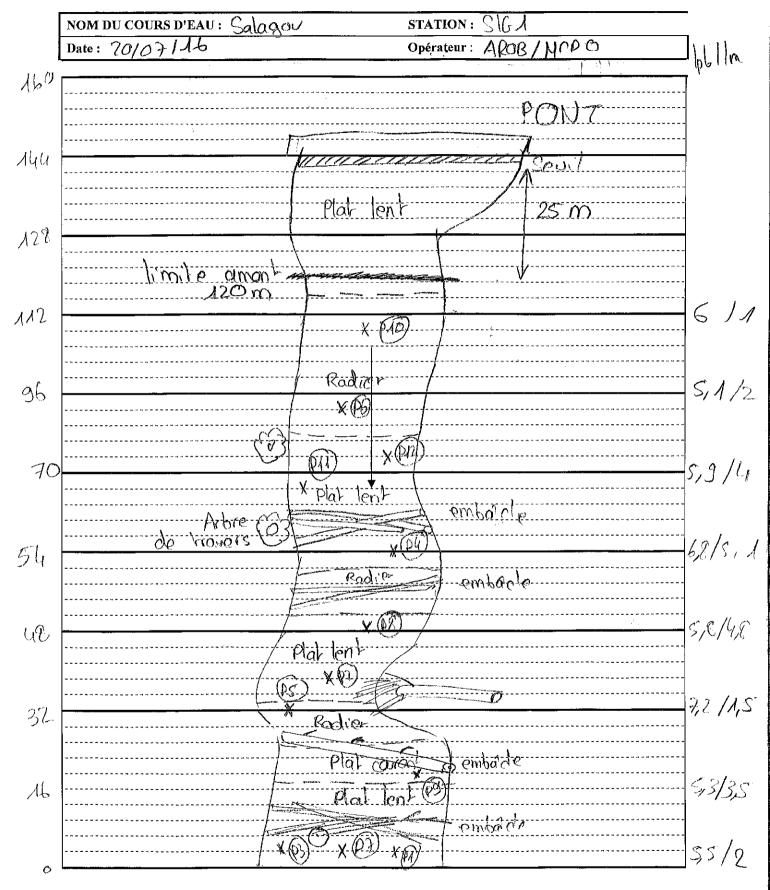
Date: 12/07/2016 Opératéur: AROB - SDAL - MCRO



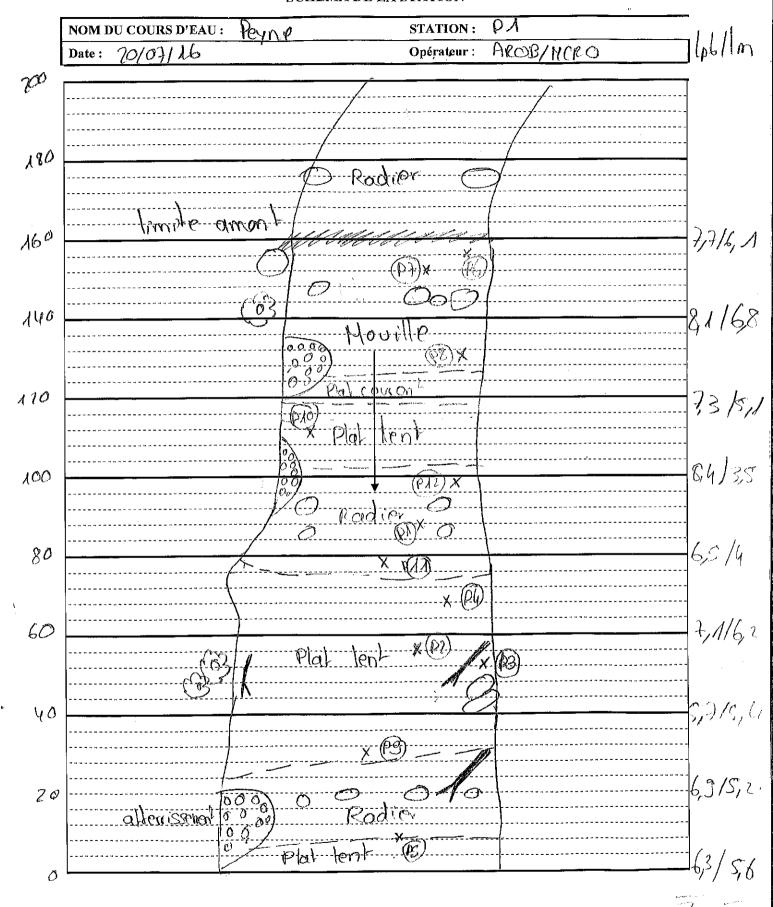
11 8,4

22 20


4000



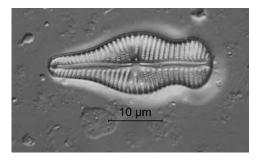
Radiev


Date: 13/07/16 Operatur: Griss /1752_ So close and /n Jan de la lande, accord An 5,3 cm / ph 7,7 m In 1/10 / ph 1/8 m Part / 10 / ph 1/8 m In 1/3 m / ph 5,6 In 1/3 m / ph 5,2 m	NOM DU COURS D'EAU: LA FOUX	STATION: Fod
10054 1pb 53 nr. 10054 1pb 53		
In 5,4 1 pb 5,3 on In 5,4 1 pb 5,3 on In 5,10 1 pb 5,3 on In 5,10 1 pb 5,5 on In 5,10 1 pb 5,6 In 1,3 on 1 pb 5,6 In 1,3 on 1 pb 5,6 In 1,3 on 1 pb 5,5 on In 1,3 on 1 pb 5,5 o	ADIO IV	
In 1/10 /po 1/10 m PC 3)	4m544 Lpb 5.3m	
/m 4,2m /pb 3,2m (pd 3)	mille (P3)	
/m 4,0 /ph 4,8 m	(69) 9	
/m 4,0 m /pb 5,2 m		(5,3m Lpb 7,7m
/m 4,0 m /pb 5,2 m	(odves	
/m 4,10 /ph 48 m @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	(612)	
Im 5,0 In 5 m (2) Im 5,0 In 5 m (2) Im 3,1 m In In 5,0 Im 1,3 m In 5,0	mounte	
Im 5:0 Lpm 5m (2) Im 8:1m lph 9m maille Mary 1:2m lph 5:6 Im 1:3m lph 5:5m Im 1:3m lph 3:7m Im 1	- /man a app sam -	A
Im 5:0 Lpm 5m (2) Im 8:1m lph 9m maille Mary 1:2m lph 5:6 Im 1:3m lph 5:5m Im 1:3m lph 3:7m Im 1		
Im 5:0 Lpm 5m (2) Im 8:1m lph 9m maille Mary 1:2m lph 5:6 Im 1:3m lph 5:5m Im 1:3m lph 3:7m Im 1		
Im 5:0 Lpn 5m (2) Im 3:1m Lph 9m (2) Im 3:600 Lph 5:6 Im 4:3m Lph 5:8m (2) Im 4:3m Lph 5:8m (2) Im 4:3m Lph 5:7 m (2) Im 5:m 5:m (2) Im 6:m (2)	(m/40 400 48m))-/
In 1,2m /pb 3,7 m In 1,2m /pb 3,7 m And 1,2m /pb 3,7 m		
In 1,2m /pb 3,7 m In 1,2m /pb 3,7 m And 1,2m /pb 3,7 m		1
In 1,2m /pb 3,7 m In 1,2m /pb 3,7 m And 1,2m /pb 3,7 m	and the second s	N
In 1,2m 1,0b 3,1 m In 1,2m 1,0b 3,1 m An 1,2m 1,2m 1,2b 3,1 m An 3,5m 1,2m 1,2m 1,2b 3,1 m An 3,5m 1,2m 1,2m 1,2b 3,1 m An 3,5m 1,2b 3,1 m An 1,2m 1,2b 3,1 m An 3,5m 1,2b 3,2m 1,2b 3,2	LM 5,0 LM 5M (2)	(C) (2)
/m 3,6m /pb 5,6 /m 3,6m /pb 5,6 /m 4,3m /pb 5,8m /m 4,3m /pb 3,7 m /m 1,3m /pb 3,7 m PB (2) 3 contines		
/m 3,6m /pb 5,6 /m 3,6m /pb 5,6 /m 4,3m /pb 5,8m /m 4,3m /pb 3,7 m /m 1,3m /pb 3,7 m PB (2) 3 contines	1.—	
/m 3,6m /pb 5,6 /m 4,3m /pb 5,8m /m 4,3m /pb 7,7 m (AB) /m 4,3m /pb 7,7 m (AB) (AB) (AB) (ACCES)		
/m / 2m / pb 5.8m (PB) /m / 2m / pb 5.8m (PB) /m / 2m / pb 3.7 m (PB) /m / 2m / pb 3.7 m (PB) /m / 2m / pb 3.7 m (PB)	m x12m pp 1M mails	
/m 3,6m /p 5.6 /m 4,3m /p 5.8m /m 4,3m /p 5.8m /m 4,3m /p 5.8m /m 4,3m /p 6.8m /m 4,3m /p 7.7 m @8 @8 @acces	\	
In 43m 402 5.8m In 43m 402 5.8m In 43m 400 68m In 43m 400 7.7 m PB Queen 3 contres	(MO)	
In 43m 402 5.8m In 43m 402 5.8m In 43m 400 68m In 43m 400 7.7 m PB Queen 3 contres	(m 36m 100 5.6	
In 43m App 5.8m In 43m App 68m An 43m App 7.7 m PB QB QCCC 3 coulnes	'	
In 13 m 100 5.8 m (2) In 1,2 m 100 7.7 m Page 23 coulines	f $\delta \tilde{q}_{dc}$	
In 13 m 100 5.8 m (2) In 1,2 m 100 7.7 m Page 23 coulines		(P6) 2
/m/3m /pb 377 m PB QCCCS 3 coul ness	In 13 m love 5.8 m	
/m/3m /pb 377 m PB QCCCS 3 coul ness		
/m 1, 2 m 1 pb 7,7 m (P8) QCCC 3 coul nes		(III)
/m 1, 2 m 1 pb 7,7 m (P8) QCCC 3 coul nes		
Po acces	~ (PM)	
Po acces		<u></u>
Po acces		
Po acces	1.1.2m Lar 7.7 m	
Que 3 coul nes		
3 authors		N. accis
2m 6,2m lob 7,2m	PC	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	2m 6,2m lob 7,2m.	

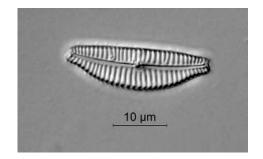
NOM DU COURS D'EAU	: Bueges		STATION:	Bu-1
Date : 13/07/16			Opérateur : f	AMAR/113EZ
Lm 6,5 m cubae m	10°1-	PC (PIZ)	W aboves n	holo-14. Gin
(m 4,3+5,5 = 9,8	g)n	S chube		Upb 13,6 m
Lm 2+4,3+2,=8,3		(C)		600 44.6m
Im 1+ 1,3 + 2,4=7.		M ((kg))	Løb 12,9m
/pn 4, 9 + 3 = 7,90	\ \			Lob 1014
Lm 4:1-	So			ζρ5 10, L
GN SIF	lom	(3) PC		Upb 9,2m
Zm 6,7-	30 M	(5 pl	(E)	600 7,7 m
Zm 8,lim	don			1pb 816m
Lm 7,5m	figures.	3	<u>(2)</u>	13 datare Gob Ban
/m 9m				20h 8 j4 m

NOM DU COURS D'EAU: BOYNE	STATION: Bold
Date: 24/06/16	Opérateur : AMAR/NCRO
	150
UDm. 6	n and do bout
Lm=4,1m	138
atterossement	(10)
Lm=5m	PZ (0)
0 0	110 ×(P7)
	0 1 1 1 1 1 1 1
Lm=2,8m 0 18 9	Rodier
Lin = Lisin 1	105
0 1	X (0)) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
2	PC O3 Figuros
Lm = 2 m 27	30
	radier
Lm=45 m of	V
?	Crand 75
50	Molare Autare
Lm-5,5m	60 x (0) (30 Compared to 100 C
2.0	50
	X (PA2) (P3 X \
1 11 .	Teman a Autores
(M = C/JIII)	adult of Author
0	100/08
1 m=7,8m (F	
77-1760	20
	X
	Way of a
m=3,1m0	7 (18)
0	15
00	
Lm=3m	0 0 0 X

NOM DU COURS D'EAU:	Jongue	STATION:	THA	
Date: 24 108 12016			HAR/HERE	
1 m - 1 c m	(P12			<u> </u>
Lm=1,5 m	1 5 3 T	2		
	Radia	000		
1m=2m	MX-0	0.2		<u> </u>
/ ~ a	1 PC		Lpb 11m	
(m = 3,9m				- 4 <i>0</i>
	\X(F7)			
7/2				
Lm = 3,6 m				30
	X (P1	9		
1 20.		X (B)		
Lm = 2,8m		X (9)	· · · · · · · · · · · · · · · · · · ·	<u> </u>
	<i>J</i>			
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			Lob Jam	
Cm-1,9m	(PS)	/		25
	Rodier	00		
Ω	Kadier	2/,		
	V*	mer.		12 C
(0)	^ (PY)\		
	X(Pg)		*	
		· (2)		15
	PC			
(m=33m603	· · · · · · · · · · · · · · · · · · ·	3)		
(03/1				
	Maxille	£	Lpb=S,9m	
6m-37m	A STATE OF THE PROPERTY OF THE			ž
			~	
	M. P. P.	800×(P)		
	1111	0000		
	A 100	50 ~ % O⊘ ∅		
	(e),.	12		



8.7. DIATOMÉES


8.7.1. Spécificités des diatomées

Le périphyton est l'ensemble des algues microscopiques fixées sur divers substrats immergés. Les algues périphytiques, en particulier les diatomées qui colonisent tous les substrats, permettent une estimation de la qualité biologique des eaux.

Les diatomées (encore appelées Diatomophycées ou Bacillariophycées) appartiennent à l'embranchement des Chromophytes (« algues brunes ») qui regroupe plus de 7000 espèces dans les eaux douces et saumâtres. Ce sont des algues unicellulaires qui peuvent vivre en solitaire (cellules isolées) ou former des colonies libres ou fixées par accolement des cellules. Elles peuvent vivre à l'état planctonique (en pleine eau) ou benthique (c'est à dire fixées ou posées sur des supports variés). Chaque cellule est entourée d'un frustule siliceux composé de deux valves dont l'ornementation permet l'identification. Cette thèque ou frustule leur confère une grande résistance face à la putréfaction ce qui permet une plus longue conservation (groupe fréquemment utilisé en paléolimnologie).

Frustule de Gomphonema

Frustule de Cymbella

Les diatomées présentent l'avantage d'être facilement prélevées, stockées et conservées. De plus, elles sont capables de coloniser tous les biotopes aquatiques continentaux, marins ou saumâtres, même les plus hostiles et les plus pollués (cours inférieurs des fleuves, canaux...).

La rapidité de leur cycle de développement (de quelques heures à quelques jours) en fait des organismes intégrateurs de brusques changements physico-chimiques des milieux (COSTE, 1978). Ces algues sont très sensibles aux pollutions notamment organiques, azotées et phosphorées (VAN DAM et coll., 1994).

Ces caractéristiques rendent donc ces organismes très intéressants pour la caractérisation de la qualité des milieux lotiques et lentiques.

8.7.2. Traitement des échantillons de diatomées

Au laboratoire, après les opérations de traçabilité habituellement mises en œuvre à Aquascop, les échantillons ont été traités à l'eau oxygénée à chaud afin de détruire la matière organique et rendre apparent le frustule siliceux (valves entourant la cellule) qui sert de base à l'identification des diatomées.

Une fois ce traitement effectué, les échantillons ont été rincés plusieurs fois à l'eau déminéralisée grâce à des phases successives de décantation et d'élimination du surnageant.

Une fraction de chaque échantillon a été montée entre lame et lamelle dans une résine réfringente, le Naphrax. Au moins 400 diatomées ont ensuite été comptées et déterminées à l'espèce, afin de calculer les indices diatomiques.

8.7.3. Calcul et grille de valeurs des indices diatomiques

Les listes floristiques ont été saisies dans le logiciel Omnidia (version 5.3), à l'aide de leur codification à 4 lettres, afin d'obtenir le résultat des indices IPS et IBD.

La détermination de <u>l'Indice de Polluo-sensibilité Spécifique</u> (IPS) repose sur l'abondance des taxons, la sensibilité globale aux pollutions (S), évaluée à 5 pour les espèces les plus sensibles et à 1 pour les moins sensibles et l'amplitude écologique (V) dont les valeurs varient de 1 à 3 (1 pour les espèces à distribution restreinte). Toutes les espèces rencontrées sont prises en compte.

Le calcul de l'<u>Indice Biologique Diatomées</u> (IBD) implique la prise en compte de 1478 taxons, incluant 476 synonymes anciens et 190 formes tératogènes. Son calcul diffère notablement de celui de l'IPS. La méthodologie s'appuie sur l'analyse de la co-structure des tableaux de chimie et biologie et sur l'utilisation de profils écologiques en fréquence et en probabilité de présence.

La valeur de ces indices varie de 0 à 20 avec une seule décimale. Cinq classes de qualité associées à cinq couleurs ont été définies :

Classes de qualité selon la norme NF T 90-354

IBD/IPS	IBD < 5,0	5,0≤IBD<9,0	9,0≤IBD<13,0	13,0≤IBD<17,0	17,0≤IBD
Qualité	très mauvaise	mauvaise	passable	bonne	très bonne

Toutefois, ces limites ont été réévaluées dans l'arrêté du 25/01/2010, modifié par l'arrêté de juillet 2015, relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface, afin de prendre en compte les variabilités spécifiques de chaque hydroécorégion. Les classes d'état écologique, liées aux résultats des valeurs d'EQR obtenues, sont présentées dans le tableau ci-dessous.

Classes d'état écologique selon l'arrêté du 25/01/2010 modifié juillet 2015

IBD	EQR < 0,3	0,3 ≤ EQR < 0,55	0,55 ≤ EQR < 0,78	0,78 ≤ EQR < 0,94	0,94 ≤ EQR
Classe d'état écologique	mauvais	médiocre	moyen	bon	très bon

8.7.4. Classification écologique de Van Dam et al. (1994)

рН	Catégories		Intervalles de v	ariations du pH
1	acidobionte		pH optimum	< 5,5
2	acidophile		pH optimum	5,5 < pH < 7
3	neutrophile		pH optimum	voisin de 7
4	alcaliphile		pH optimum	>7
5	alcalibionte		pH exclusivement	>7
6	indifférent		optimum	non défini
Salin	ité des eaux		CI- (mg/l)	Salinité (‰)
1	douces		< 100	< 0,2
2	douces à légèrement saumâtres		< 500	< 0,9
3	moyennement saumâtres		500 à 1000	0,9 à 1,8
4	saumâtres		1000 à 5000	1,8 à 9
Sapr	obies (charge organique)	Sat. Oxyg. (%)		DBO ₅ (mg/l)
1	oligosaprobe	> 85		< 2
2	béta-mésosaprobe	70 - 85		2 - 4
3	alpha-mésosaprobe	25 - 70		4 - 13
4	alpha-mésosaprobe-polysaprobe	10 - 25		13 - 22
5	polysaprobe		< 10	> 22
Statu	ıt trophique	Oxyg	jénation	
1	oligotrophe	1	élevée (100% sati	uration)
2	oligo-mésotrophe	2	plutôt forte (>75%	sat.)
3	mésotrophe	3	modérée (>50% s	<i>'</i>
4	méso-eutrophe	4	basse (>30% sat.)	
5	eutrophe	5	très basse (~10%	sat.)
6	hyper-eutrophe	Aéro	philie	
	indifférent	1 aquatique strict		
N-hé	térotrophie	2	aquatique ou suba	aérien
1	N-autotrophe sensible à faibles [C] N orga.	3	subaérien (suinter	,
2	N-autotrophe tolérant [C] N orga. élevées	4	4 aérophile supportant des assecs	
3	N-hétérotrophe facultatif	5	terrestre	
4	N-hétérotrophe obligatoire			

8.7.5. Fiches de prélèvement des diatomées

Limpide / Légèrement trouble / Trouble

FICHE DESCRIPTIVE DU PRELEVEMENT DIATOMEES IBD (NFT 90-354)

Code station : 06183200 (H16)Cours d'eau : HéraultN° contrat : 9227Commune : CanetDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N° carte I.G.N) : (en grisé = optionnel)

X: Y: Altitude:

Date: 18/08/2016 Heure: 15H30

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant Plat lent 80% Blocs Sables Faible = semi-ouvert Radier 20% Rapide Pierres, Galets Limons Important = fermé

Mouille Graviers Argiles

<u>Largeur mouillée (m) : 25</u> <u>Recouvrement macrophytes</u> 1 - 2 Inconnu

(dont algues) 25 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée

Moyennes eaux Basses eaux En diminution En augmentation
Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Cote échelle (1429):

DESCRIPTION DU PRELEVEMENT

Morphodynamique :Colmatage :Eclairement :

Plat courant Plat lent **Absence** Très léger Très ombragé Ombragé **Radier** Rapide Léger Moyen Peu ombragé Eclairé

Autre : Important Très important **Très éclairé**

Profondeur prélèvement : 0,2 m algues fil./ pierres >75% Matériel utilisé

OUI NON Description OUI Supposed Brosse / Binette / Expression

<u>Vérif. bon état matériel</u> oui ☑ Si oui, prélev. sur pierres avec algues ☐

 Code Omnidia
 : 1 / 1 / 0 / 2
 bryophytes/ pierres >75%

 OUI
 NON
 ✓

<u>Conservateur</u>: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

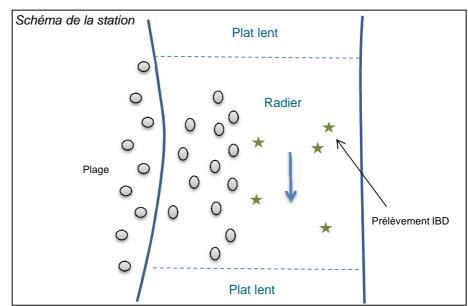
Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 5

Localisation


Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Mesures in situ (optionnelles)

pH: Saturation: % Conductivité: µS/cm

FICHE DESCRIPTIVE DU PRELEVEMENT DIATOMEES IBD (NFT 90-354)

Code station : 06182120 (H11)Cours d'eau : HéraultN° contrat : 9227Commune : PuechabonDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N° carte I.G.N) : (en grisé = optionnel)

X: Y: Altitude:

Date: 18/08/2016 Heure: 11h00

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant 30%Plat lent 40%BlocsSablesFaible = semi-ouvertRadier 10%RapidePierres, GaletsLimonsImportant = fermé

Mouille 20% Graviers Argiles

Inconnu <u>Profondeur moyenne</u> (m) : **0.1 - 0.5** 0.5 - 1

<u>Largeur mouillée (m) : 28 Recouvrement macrophytes</u> 1 - 2 Inconnu

(dont algues) 2 - 3 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée Moyennes eaux Basses eaux En diminution En augmentation

Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Limpide / Légèrement trouble / Trouble

Cote échelle (1429):

DESCRIPTION DU PRELEVEMENT

Morphodynamique : Colmatage : Eclairement :

Plat courantPlat lentAbsenceTrès légerTrès ombragéOmbragéRadierRapideLégerMoyenPeu ombragéEclairé

Autre : Important Très important **Très éclairé**

Profondeur prélèvement : 0,1 m algues fil./ pierres >75% Matériel utilisé

OUI NON Drosse / Binette / Expression

<u>Vérif. bon état matériel</u> oui ☑ Si oui, prélev. sur pierres avec algues ☐

 Code Omnidia
 : 1 / 1 / 0 / 2
 bryophytes/ pierres >75%

 OUI
 NON
 ✓

Conservateur: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

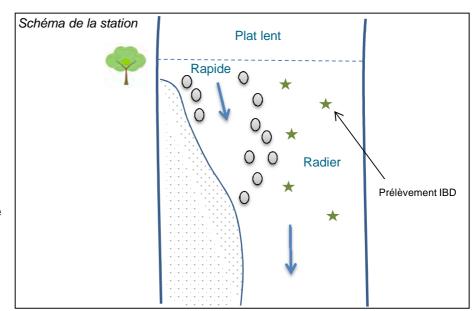
Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 5

Localisation


Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Mesures in situ (optionnelles)

Température : $\ \ \, \mathbb{C} \$ Oxygène dissous : $\ \ \, \text{mg O2/I}$

pH: Saturation: % Conductivité: µS/cm

Limpide / Légèrement trouble / Trouble

FICHE DESCRIPTIVE DU PRELEVEMENT DIATOMEES IBD (NFT 90-354)

Code station : 06182020 (H7)Cours d'eau : HéraultN° contrat : 9227Commune : AgonesDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N° carte I.G.N) : (en grisé = optionnel)

X: Y: Altitude:

Date: 21/07/2016 Heure: 10h20

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant 10%Plat lent 60%BlocsSablesFaible = semi-ouvertRadier 30%RapidePierres, GaletsLimonsImportant = fermé

Mouille Graviers Argiles

Inconnu <u>Profondeur moyenne</u> (m) : 0,1 - 0,5 **0,5 - 1**

Largeur mouillée (m): 36 Recouvrement macrophytes 1 - 2 Inconnu

(dont algues) <5 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée Moyennes eaux Basses eaux En diminution En augmentation

Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Cote échelle (1429):

DESCRIPTION DU PRELEVEMENT

Morphodynamique : Colmatage : Eclairement :

Plat courant Plat lent **Absence** Très léger Très ombragé Ombragé **Radier** Rapide Léger Moyen Peu ombragé **Eclairé**

Autre : Important Très important Très éclairé

<u>Profondeur prélèvement</u> : 0,1 m <u>algues fil./ pierres >75%</u> <u>Matériel utilisé</u>

OUI NON Brosse / Binette / Expression

 Code Omnidia
 : 1 / 1 / 0 / 2
 bryophytes/ pierres >75%

 OUI
 NON
 ✓

<u>Conservateur</u>: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

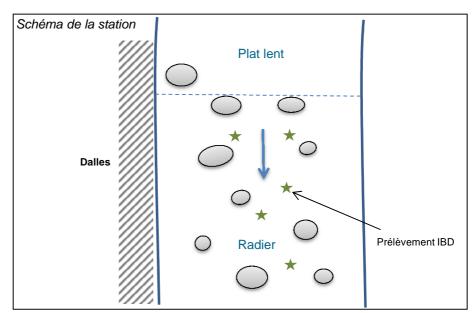
Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 5

Localisation


Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Mesures in situ (optionnelles)

Température : ℃ Oxygène dissous : mg O2/l

pH: Saturation: % Conductivité: μS/cm

Profondeur moyenne (m):

Att.

Accès

Inconnu

FICHE DESCRIPTIVE DU PRELEVEMENT DIATOMEES IBD (NFT 90-354)

Code station : 06182030 (H8)Cours d'eau : HéraultN° contrat : 9227Commune : Saint Bauzille de PutoisDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N°carte I.G.N): (en grisé = optionnel)

X: Y: Altitude:

Date: 19/07/2016 Heure: 17h15

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant 30%Plat lent 10%BlocsSablesFaible = semi-ouvertRadier 50%RapidePierres, GaletsLimonsImportant = fermé

Mouille 10% Graviers Argiles

0,1 - 0,5 0,5 - 1

<u>Largeur mouillée (m): 17</u> <u>Recouvrement macrophytes</u> 1 - 2

Inconnu

(dont algues) <5 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée

Moyennes eaux Basses eaux En diminution En augmentation
Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Limpide / Légèrement trouble / Trouble

<u>Cote échelle</u> (1429) :

DESCRIPTION DU PRELEVEMENT

Morphodynamique : Colmatage : Eclairement :

Plat courant Plat lent Absence **Très léger** Très ombragé Ombragé **Radier** Rapide Léger Moyen Peu ombragé **Eclairé**

Autre : Important Très important Très éclairé

Profondeur prélèvement : 0,2 m algues fil./ pierres >75% Matériel utilisé

OUI NON Brosse / Binette / Expression

Schéma de la station

Plat lent

Radier

Att.

 Code Omnidia
 : 1 / 1 / 0 / 2
 bryophytes/ pierres >75%

 OUI
 NON
 ✓

<u>Conservateur</u>: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 5

Localisation

Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Périphyton abondant

 Mesures in situ (optionnelles)

 Température :
 C
 Oxygène dissous :
 mg O2/l

 pH :
 Saturation :
 %
 Conductivité :
 μS/cm

Prélèvement IBD

Mouille

FICHE DESCRIPTIVE DU PRELEVEMENT DIATOMEES IBD (NFT 90-354)

Code station : 06300051 (H10)Cours d'eau : HéraultN° contrat : 9227Commune : Causse de la SelleDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N° carte I.G.N) : (en grisé = optionnel)

X: Y: Altitude:

Date: 21/07/2016 Heure: 14h30

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant Plat lent 50% Blocs Sables Faible = semi-ouvert Radier 50% Rapide Pierres, Galets Limons Important = fermé

Graviers Argiles

Inconnu <u>Profondeur moyenne</u> (m) :

0,1 - 0,5 **0,5 - 1**

<u>Largeur mouillée (m): 29</u> <u>Recouvrement macrophytes</u> 1 - 2 Inconnu

(dont algues) 50 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée

Moyennes eaux Basses eaux En diminution En augmentation
Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Limpide / Légèrement trouble / Trouble

Cote échelle (1429):

DESCRIPTION DU PRELEVEMENT

 Morphodynamique
 Colmatage:
 Eclairement

 Plat courant
 Plat lent
 Absence
 Très léger
 Très ombragé

Plat courant Plat lent Absence **Très léger** Très ombragé Ombragé **Radier** Rapide Léger Moyen Peu ombragé **Eclairé**

Autre : Important Très important Très éclairé

<u>Profondeur prélèvement</u> : 0,15 m <u>algues fil./ pierres >75%</u> <u>Matériel utilisé</u>

OUI NON Brosse / Binette / Expression

 Code Omnidia
 : 1 / 1 / 0 / 2
 bryophytes/ pierres >75%

 OUI
 NON
 ✓

<u>Conservateur</u>: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

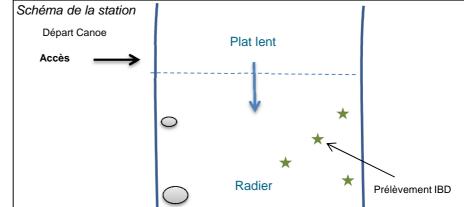
Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 6

Localisation


Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Pont

pH: Saturation: % Conductivité: µS/cm

embâcle

Radier

FICHE DESCRIPTIVE DU PRELEVEMENT DIATOMEES IBD (NFT 90-354)

Code station : 06300053 (LER2)Cours d'eau : LergueN° contrat : 9227Commune : LodèveDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N° carte I.G.N) : (en grisé = optionnel)

X: Y: Altitude:

Date: 20/07/2016 Heure: 10h50

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant 25%Plat lent 25%BlocsSablesFaible = semi-ouvertRadier 50%RapidePierres, GaletsLimonsImportant = fermé

Mouille Graviers Argiles

<u>Largeur mouillée (m):</u> 15 <u>Recouvrement macrophytes</u> 1 - 2 Inconnu

(dont algues) 70 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée

Moyennes eaux Basses eaux En diminution En augmentation
Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Limpide / Légèrement trouble / Trouble

Cote échelle (1429):

DESCRIPTION DU PRELEVEMENT

Morphodynamique :Colmatage :Eclairement :

Plat courantPlat lentAbsenceTrès légerTrès ombragéOmbragéRadierRapideLégerMoyenPeu ombragéEclairé

Autre : Important Très important **Très éclairé**

Profondeur prélèvement : 0,2 m algues fil./ pierres >75% Matériel utilisé

OUI NON Drosse / Binette / Expression

Schéma de la station

Accès

Prélèvement IBD

<u>Vérif. bon état matériel</u> oui ✓ Si oui, prélev. sur pierres avec algues ☐

 Code Omnidia
 : 1 / 1 / 0 / 2
 bryophytes/ pierres >75%

 OUI
 NON
 ✓

Conservateur: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 5

Localisation

Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Développement algal important sur dalles

 Mesures in situ (optionnelles)

 Température :
 C
 Oxygène dissous :
 mg O2/l

 pH :
 Saturation :
 %
 Conductivité :
 μS/cm

FICHE DESCRIPTIVE DU PRELEVEMENT DIATOMEES IBD (NFT 90-354)

Code station : 06182600 (SLG1)Cours d'eau : SalagouN° contrat : 9227Commune : Le BoscDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N° carte I.G.N): (en grisé = optionnel)

X: Y: Altitude:

Date: 20/07/2016 Heure: 14h30

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant Plat lent 50% Blocs Sables Faible = semi-ouvert Radier 50% Rapide Pierres, Galets Limons Important = fermé

Mouille Graviers Argiles

Inconnu <u>Profondeur moyenne</u> (m):

Largeur mouillée (m): 3Recouvrement macrophytes1 - 2Inconnu

(dont algues) <5 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée

Moyennes eaux Basses eaux En diminution En augmentation

Trous d'eau, flaques Pas d'eau **Inconnu** <u>Limpidité</u> (1422): **Limpide /** Légèrement trouble / Trouble

<u>Cote échelle</u> (1429) :

DESCRIPTION DU PRELEVEMENT

Morphodynamique : Colmatage : Eclairement :

Plat courant Plat lent **Absence** Très léger Très ombragé **Ombragé Radier** Rapide Léger Moyen Peu ombragé Eclairé

Autre: Important Très important Très éclairé

<u>Profondeur prélèvement</u>: 0,1 m <u>algues fil./ pierres >75%</u> <u>Matériel utilisé</u>

OUI NON I Brosse / Binette / Expression

<u>Vérif. bon état matériel</u> oui ☑ Si oui, prélev. sur pierres avec algues ☐

 Code Omnidia
 : 1 / 1 / 0 / 2
 bryophytes/ pierres >75%

 OUI
 NON
 ✓

<u>Conservateur</u>: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 11

Localisation

Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Mesures in situ (optionnelles)

pH: Saturation: % Conductivité: µS/cm

FICHE DESCRIPTIVE DU PRELEVEMENT DIATOMEES IBD (NFT 90-354)

Code station : 06183750 (P1)Cours d'eau : PeyneN° contrat : 9227Commune : RoujanDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N°carte I.G.N): (en grisé = optionnel)

X: Y: Altitude:

Date: 20/07/2016 Heure: 17h00

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant Plat lent 60% Blocs Sables Faible = semi-ouvert Radier 15% Rapide Pierres, Galets Limons Important = fermé

Mouille 25% Graviers Argiles

Inconnu <u>Profondeur moyenne</u> (m): **0,1 - 0,5** 0,5 - 1

<u>Largeur mouillée (m):</u> 3 <u>Recouvrement macrophytes</u> 1 - 2 Inconnu

(dont algues) <5 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée

Moyennes eaux Basses eaux En diminution En augmentation
Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

rous d'eau, flaques Pas d'eau **Inconnu** <u>Limpidité</u> (1422): **Limpide** / Légèrement trouble / Trouble

Cote échelle (1429) :

DESCRIPTION DU PRELEVEMENT

Morphodynamique : Colmatage : Eclairement :

Plat courant Plat lent **Absence** Très léger Très ombragé **Ombragé Radier** Rapide Léger Moyen Peu ombragé Eclairé

Autre : Important Très important Très éclairé

Profondeur prélèvement : 0,1 m algues fil./ pierres >75% Matériel utilisé

OUI NON Description OUI Supposed Brosse / Binette / Expression

<u>Vérif. bon état matériel</u> oui ☑ Si oui, prélev. sur pierres avec algues ☐

 Code Omnidia
 : 1 / 1 / 0 / 2
 bryophytes/ pierres >75%

 OUI
 NON
 ✓

<u>Conservateur</u>: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

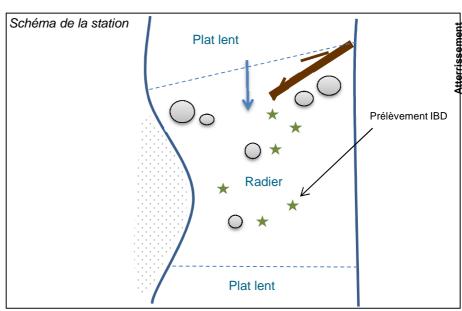
Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 6

Localisation


Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Mesures in situ (optionnelles)

pH: Saturation: % Conductivité: μ S/cm

Profondeur moyenne (m):

Inconnu

Limpide / Légèrement trouble / Trouble

1 - 2

FICHE DESCRIPTIVE DU PRELEVEMENT DIATOMEES IBD (NFT 90-354)

Code station : 06181990 (H5)Cours d'eau : HéraultN° contrat : 9227Commune : CazilhacDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N° carte I.G.N) : (en grisé = optionnel)

X: Y: Altitude:

Date: 19/07/2016 Heure: 11h00

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant20%Plat lent 40%BlocsSablesFaible = semi-ouvertRadier 35%Rapide 5%Pierres, GaletsLimonsImportant = fermé

Mouille Graviers Argiles

Inconnu

0,1 - 0,5 0,5 - 1

Recouvrement macrophytes

(dont algues) <5 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée

Moyennes eaux Basses eaux En diminution En augmentation
Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Cote échelle (1429) :

Largeur mouillée (m): 26

DESCRIPTION DU PRELEVEMENT

Morphodynamique : Colmatage : Eclairement :

Plat courant Plat lent **Absence** Très léger Très ombragé Ombragé **Radier** Rapide Léger Moyen Peu ombragé **Eclairé**

Autre : Important Très important Très éclairé

Profondeur prélèvement : 0,2 m algues fil./ pierres >75% Matériel utilisé

OUI NON Brosse / Binette / Expression

<u>Vérif. bon état matériel</u> oui ☑ Si oui, prélev. sur pierres avec algues ☐

 Code Omnidia
 : 1 / 1 / 0 / 2
 bryophytes/ pierres >75%

 OUI
 NON
 ✓

<u>Conservateur</u>: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

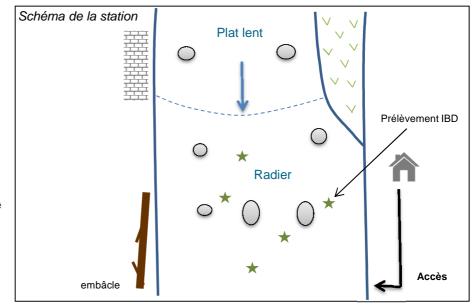
Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 5

Localisation


Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Mesures in situ (optionnelles)

Température : $\ \ \, \mathbb{C} \$ Oxygène dissous : $\ \ \, \text{mg O2/I}$

pH: Saturation: % Conductivité: µS/cm

Limpide / Légèrement trouble / Trouble

Plage

Rapide

Plat lent

Radier

Plage

Accès

Tivoli

camping

FICHE DESCRIPTIVE DU PRELEVEMENT DIATOMEES IBD (NFT 90-354)

Code station: 06182000 (H6) Cours d'eau : Hérault N°contrat: 9227 Commune: Laroque Département: 34 Nom préleveur : AROB

(en grisé = optionnel) Coordonnées Lambert (N°carte I.G.N):

Y: Altitude:

Date: 19/07/2016 Heure: 14h20

DESCRIPTION GENERALE DE LA STATION

Diversité faciés écoulement (%) : Granulométrie dominante : Ombre (1415): absent = ouvert

Plat lent 80% Plat courant **Blocs** Sables Faible = semi-ouvert Radier 15% Rapide 5% Pierres, Galets Limons Important = fermé

Mouille Graviers **Argiles**

Inconnu Profondeur moyenne (m): 0.1 - 0.50.5 - 1

Largeur mouillée (m): 38 Recouvrement macrophytes 1 - 2 Inconnu

> (dont algues) <5%

CONDITIONS ENVIRONNEMENTALES

Tendance débit (1724) depuis 15j : Situation hydro. apparente (1726): Coloration (1428):

Incolore / Légèr. colorée / très colorée Crue débordante Lit plein ou presque Irrégulier Stable

Basses eaux En diminution Moyennes eaux En augmentation Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Cote échelle (1429) :

DESCRIPTION DU PRELEVEMENT

Eclairement : Morphodynamique: Colmatage:

Plat courant Très ombragé Plat lent Ombragé Absence Très léger Radier Peu ombragé Eclairé Rapide Léger Moyen

Autre: **Important** Très important Très éclairé

Profondeur prélèvement: 0,15 m algues fil./ pierres >75% Matériel utilisé

NON Brosse / Binette / Expression OUI 🔲

Schéma de la station

Prélèvement IBD

Vérif. bon état matériel oui 1 Si oui, prélev. sur pierres avec algues

bryophytes/ pierres >75% **Code Omnidia**: 1/1/0/2 OUI 🗌 NON

Conservateur: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 5

Localisation

Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Baigneurs + Canoë

Mesures in situ (optionnelles) Température : Oxygène dissous: mg O2/I Saturation: Conductivité: pH: % µS/cm

Prélèvement conforme √ oui non, Pourquoi?:

Saisie: 12.10.2016/JGST

Vérification saisie : date/opérateur

Code station : 06181950 (VIS1)Cours d'eau : VisN° contrat : 9227Commune : Saint Maurice de NavacellesDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N° carte I.G.N) : (en grisé = optionnel)

X: Y: Altitude:

Date: 18/07/2016 Heure: 11h15

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant Plat lent Blocs Sables Faible = semi-ouvert Radier 35% Rapide 5% Pierres, Galets Limons Important = fermé

Mouille 60% Graviers Argiles

Inconnu <u>Profondeur moyenne</u> (m) : 0,1 - 0,5 **0,5 - 1**

<u>Largeur mouillée (m) :</u> 8,4 <u>Recouvrement macrophytes</u> 1 - 2 Inconnu

(dont algues) <5 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée Moyennes eaux Basses eaux En diminution En augmentation

Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Limpide / Légèrement trouble / Trouble

<u>Cote échelle</u> (1429) :

DESCRIPTION DU PRELEVEMENT

Morphodynamique : Colmatage : Eclairement :

Plat courantPlat lentAbsenceTrès légerTrès ombragéOmbragéRadierRapideLégerMoyenPeu ombragéEclairé

Autre: Important Très important Très éclairé

Profondeur prélèvement : 0,25 m algues fil./ pierres >75% Matériel utilisé

OUI NON Brosse / Binette / Expression

<u>Vérif. bon état matériel</u> oui ☑ Si oui, prélev. sur pierres avec algues ☐

 Code Omnidia
 : 1 / 1 / 0 / 2
 bryophytes/ pierres >75%

 OUI
 NON
 ✓

<u>Conservateur</u>: Ethanol / Formol Si oui, prélev. sur pierres avec bryo □

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 5

Localisation


Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Mesures in situ (optionnelles)

Température : $\ \ \, \mathbb{C} \$ Oxygène dissous : $\ \ \, \text{mg O2/I} \$

pH: Saturation: % Conductivité: µS/cm

Code station : 06181960 (VIS2)Cours d'eau : VisN° contrat : 9227Commune : GorniesDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N° carte I.G.N) : (en grisé = optionnel)

X: Y: Altitude:

Date: 18/07/2016 Heure: 15h00

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant Plat lent Blocs Sables Faible = semi-ouvert Radier 35% Rapide 5% Pierres, Galets Limons Important = fermé

Mouille 60% Graviers Argiles
Inconnu Profondeu

<u>Largeur mouillée (m):</u> 8,4 <u>Recouvrement macrophytes</u> 1 - 2 Inconnu

(dont algues) <5 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée Moyennes eaux Basses eaux En diminution En augmentation

Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Limpide / Légèrement trouble / Trouble

Cote échelle (1429) :

DESCRIPTION DU PRELEVEMENT

Morphodynamique : Colmatage : Eclairement :

Plat courantPlat lentAbsenceTrès légerTrès ombragéOmbragéRadierRapideLégerMoyenPeu ombragéEclairé

Autre : Important Très important Très éclairé

<u>Profondeur prélèvement</u>: 0,25 m <u>algues fil./ pierres >75%</u> <u>Matériel utilisé</u>

OUI NON War Brosse / Binette / Expression

<u>Vérif. bon état matériel</u> oui ☑ Si oui, prélev. sur pierres avec algues ☐

 Code Omnidia
 : 1 / 1 / 0 / 2
 bryophytes/ pierres >75%

 OUI
 NON
 ✓

Conservateur: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

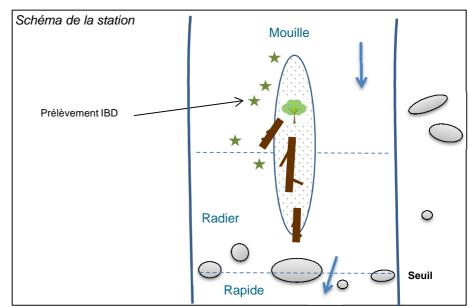
Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 5

Localisation


Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Mesures in situ (optionnelles)

Température : ℃ Oxygène dissous : mg O2/l

pH: Saturation: % Conductivité: µS/cm

Code station : 06181980 (VIS3)Cours d'eau : VisN° contrat : 9227Commune : St Laurent Le MinierDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N° carte I.G.N): (en grisé = optionnel)

X: Y: Altitude:

Date: 18/07/2016 Heure: 17h00

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant50%Plat lent10%BlocsSablesFaible = semi-ouvertRadier 35%RapidePierres, GaletsLimonsImportant = fermé

Mouille 5% Graviers Argiles

<u>Largeur mouillée (m): 14</u>
<u>Recouvrement macrophytes</u>
1 - 2 Inconnu

(dont algues) <5 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée Moyennes eaux Basses eaux En diminution En augmentation

Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Limpide / Légèrement trouble / Trouble Cote échelle (1429) :

DESCRIPTION DU PRELEVEMENT

Morphodynamique : Colmatage : Eclairement :

Plat courant Plat lent **Absence** Très léger Très ombragé Ombragé **Radier** Rapide Léger Moyen Peu ombragé **Eclairé**

Autre : Important Très important Très éclairé

<u>Profondeur prélèvement</u>: 0,25 m <u>algues fil./ pierres >75%</u> <u>Matériel utilisé</u>

OUI NON Brosse / Binette / Expression

<u>Conservateur</u>: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

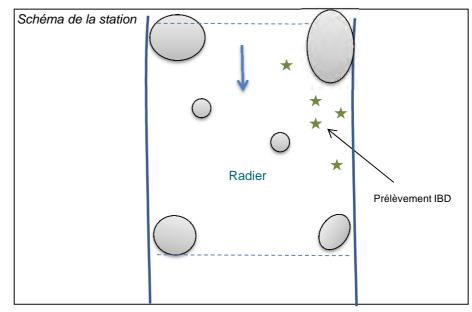
Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 5

Localisation


Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Mesures in situ (optionnelles)

pH: Saturation: % Conductivité: µS/cm

Code station : 06182400 (H14)Cours d'eau : HéraultN° contrat : 9227Commune : GignacDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N° carte I.G.N) : (en grisé = optionnel)

X: Y: Altitude:

Date: 15/07/2016 Heure: 10h50

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courantPlat lent 100%BlocsSablesFaible = semi-ouvertRadierRapidePierres, GaletsLimonsImportant = fermé

Mouille Graviers Argiles
Inconnu Profondeur moyenne (m):

0,1 - 0,5 0,5 - 1

<u>Largeur mouillée (m) :</u> 67 <u>Recouvrement macrophytes</u> 1 - 2 Inconnu

(dont algues) <1 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée

Moyennes eaux Basses eaux En diminution En augmentation
Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Limpide / Légèrement trouble / Trouble

Cote échelle (1429) :

DESCRIPTION DU PRELEVEMENT

Morphodynamique : Colmatage : Eclairement :

Plat courant Plat lent Absence Très léger Très ombragé Ombragé Radier Rapide Léger Moyen Peu ombragé Eclairé

Autre : Important Très important Très éclairé

Profondeur prélèvement : 0,4 m algues fil./ pierres >75% Matériel utilisé

OUI NON Drosse / Binette / Expression

bryophytes/ pierres >75%

<u>Vérif. bon état matériel</u> oui ☑ Si oui, prélev. sur pierres avec algues ☐

OUI NON

<u>Conservateur</u>: Ethanol / Formol
Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

Code Omnidia: 1/1/0/4

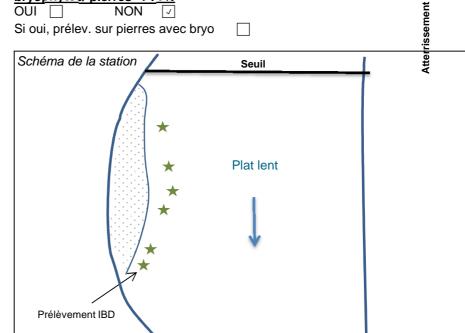
Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 6

Localisation


Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Mesures in situ (optionnelles)

Température : ℃ Oxygène dissous : mg O2/l

pH: Saturation: % Conductivité: µS/cm

Code station : 06183685 (H18)Cours d'eau : HéraultN° contrat : 9227Commune : Saint Pons de MauchiensDépartement : 34Nom préleveur : SDAL

Coordonnées Lambert (N°carte I.G.N): (en grisé = optionnel)

X: Y: Altitude:

Date: 13/07/2016 Heure: 11h15

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courantPlat lent 90%BlocsSablesFaible = semi-ouvertRadierRapidePierres, GaletsLimonsImportant = fermé

Mouille 10% Graviers Argiles

Inconnu <u>Profondeur moyenne</u> (m) : 0,1 - 0,5 0,5 - 1

<u>Largeur mouillée (m):</u> 55 <u>Recouvrement macrophytes</u> 1 - 2 Inconnu

(dont algues) <5 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée

Moyennes eaux Basses eaux En diminution En augmentation
Trous d'eau, flagues Pas d'eau Inconnu Limpidité (1422):

rous d'eau, flaques Pas d'eau **Inconnu** <u>Limpidité</u> (1422):
Limpide / **Légèrement trouble** / Trouble

Cote échelle (1429) :

DESCRIPTION DU PRELEVEMENT

Morphodynamique : Colmatage : Eclairement :

Plat courant Plat lent Absence Très léger Très ombragé Ombragé Radier Rapide Léger Moyen Peu ombragé Eclairé

Autre: Important Très important Très éclairé

Profondeur prélèvement : 0,3 m algues fil./ pierres >75% Matériel utilisé

OUI NON Brosse / Binette / Expression

<u>Vérif. bon état matériel</u> oui ☑ Si oui, prélev. sur pierres avec algues ☐

 Code Omnidia
 : 1 / 1 / 0 / 3
 bryophytes/ pierres >75%

 OUI
 NON
 ✓

<u>Conservateur</u>: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

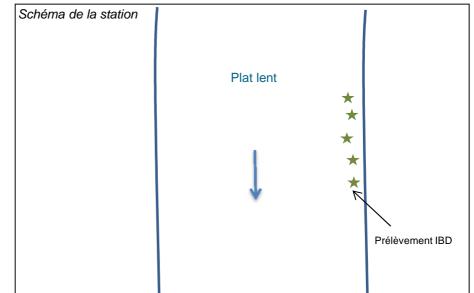
Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 5

Localisation


Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Mesures in situ (optionnelles)

pH: Saturation: % Conductivité: µS/cm

Code station: 06184640 (FO1) Cours d'eau : Foux N°contrat: 9227 Commune: Brissac Département: 34 Nom préleveur : MJEZ

Coordonnées Lambert (N°carte I.G.N): (en grisé = optionnel)

Y: Altitude:

Date: 13/07/2016 Heure: 11h30

DESCRIPTION GENERALE DE LA STATION

Diversité faciés écoulement (%) : Granulométrie dominante : Ombre (1415): absent = ouvert

Plat courant 40% Plat lent 10% **Blocs** Sables Faible = semi-ouvert Important = fermé Radier 47% Rapide Pierres, Galets Limons

Mouille 3% Graviers **Argiles**

Inconnu Profondeur moyenne (m): 0.1 - 0.50.5 - 1

Largeur mouillée (m): 5,5 Recouvrement macrophytes 1 - 2 Inconnu

(dont algues) 7 %

CONDITIONS ENVIRONNEMENTALES

Tendance débit (1724) depuis 15j : Situation hydro. apparente (1726): Coloration (1428):

Incolore / Légèr. colorée / très colorée Crue débordante Lit plein ou presque Irrégulier Stable Basses eaux En diminution Moyennes eaux En augmentation

Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Limpide / Légèrement trouble / Trouble

Cote échelle (1429) :

DESCRIPTION DU PRELEVEMENT Morphodynamique: Eclairement : Colmatage:

Plat courant Très ombragé Plat lent Absence

Ombragé Très léger Radier Peu ombragé Eclairé Rapide Léger Moyen

Autre: **Important** Très important Très éclairé

Profondeur prélèvement : 0,2 m algues fil./ pierres >75% Matériel utilisé

Brosse / Binette / Expression NON OUI 🔲 oui 1

Vérif. bon état matériel Si oui, prélev. sur pierres avec algues

bryophytes/ pierres >75% **Code Omnidia**: 1/1/0/1 OUI 🗌 NON

Conservateur: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 6

Localisation

Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où? Rejet pluvial RG

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Schéma de la station ajer. Rejet pluvial Radier Prélèvement IBD

Mesures in situ (optionnelles)

Température : 14,3 ℃ Oxygène dissous: 10,0 mg O2/I

pH: Saturation: 98 % Conductivité: 414 µS/cm

Prélèvement conforme √ oui non, Pourquoi?:

Code station: 06184620 (BU1) Cours d'eau : Buèges N°contrat: 9227 Commune : St Jean de Buèges Département: 34 Nom préleveur : MJEZ

Coordonnées Lambert (N° carte I.G.N): (en grisé = optionnel)

Altitude:

Date: 13/07/2016 Heure: 15h00

DESCRIPTION GENERALE DE LA STATION

Diversité faciés écoulement (%) : Granulométrie dominante : Ombre (1415): absent = ouvert Plat courant 40% Plat lent 30% **Blocs** Sables Faible = semi-ouvert

Important = fermé Radier 30% Rapide Pierres, Galets Limons

Mouille Graviers **Argiles** Inconnu Profondeur moyenne (m):

0.1 - 0.50.5 - 1Largeur mouillée (m): 7 1 - 2 Recouvrement macrophytes Inconnu

(dont algues) 45 %

CONDITIONS ENVIRONNEMENTALES

Tendance débit (1724) depuis 15j : Situation hydro. apparente (1726): Coloration (1428):

Incolore / Légèr. colorée / très colorée Crue débordante Lit plein ou presque Irrégulier Stable

Basses eaux En diminution Moyennes eaux En augmentation Pas d'eau Inconnu

Trous d'eau, flaques Limpidité (1422): Limpide / Légèrement trouble / Trouble

Cote échelle (1429) :

DESCRIPTION DU PRELEVEMENT Morphodynamique: Eclairement : Colmatage:

Plat courant Très ombragé Plat lent Très léger Absence

Ombragé Radier Peu ombragé **Eclairé** Rapide Léger Moyen

Autre: **Important** Très important Très éclairé

Profondeur prélèvement: 0,3 m algues fil./ pierres >75% Matériel utilisé

Brosse / Binette / Expression NON OUI 🔲

Vérif. bon état matériel oui 1 Si oui, prélev. sur pierres avec algues

bryophytes/ pierres >75% **Code Omnidia**: 1/1/0/2

OUI 🗌 NON

Conservateur: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 5

Localisation

Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où? STEP en amont

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Schéma de la station Plat lent Prélèvement IBD Radier

Mesures in situ (optionnelles)

Température : 17,5 ℃ Oxygène dissous: 10,6 mg O2/I

pH: 8,2 Saturation: 113 % Conductivité: 392 µS/cm

Prélèvement conforme √ oui non, Pourquoi?:

Code station : 06183820 (H20)Cours d'eau : HéraultN° contrat : 9227Commune : PézenasDépartement : 34Nom préleveur : SDAL

Coordonnées Lambert (N° carte I.G.N) : (en grisé = optionnel)

X: Y: Altitude:

Date: 12/07/2016 Heure: 17h55

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant 100%Plat lentBlocsSablesFaible = semi-ouvertRadierRapidePierres, GaletsLimonsImportant = fermé

Mouille Graviers Argiles

Inconnu <u>Profondeur moyenne</u> (m) : 0,1 - 0,5 0,5 - 1

<u>Largeur mouillée (m) :</u> 40 <u>Recouvrement macrophytes</u> 1 - 2 Inconnu

(dont algues) <10 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée

Moyennes eaux Basses eaux En diminution En augmentation

Trous d'eau, flaques Pas d'eau **Inconnu** <u>Limpidité</u> (1422): **Limpide /** Légèrement trouble / Trouble

Cote échelle (1429) :

DESCRIPTION DU PRELEVEMENT

Morphodynamique : Colmatage : Eclairement :

Plat courant Plat lent Absence Très léger Très ombragé Ombragé Radier Rapide Léger Moyen Peu ombragé Eclairé

Autre : Important Très important Très éclairé

Profondeur prélèvement : 0,3 m algues fil./ pierres >75% Matériel utilisé

OUI NON I Brosse / Binette / Expression

<u>Vérif. bon état matériel</u> oui ✓ Si oui, prélev. sur pierres avec algues ☐

 Code Omnidia
 : 0 / 2 / 0 / 3
 bryophytes/ pierres >75%

 OUI
 NON
 ✓

<u>Conservateur</u>: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

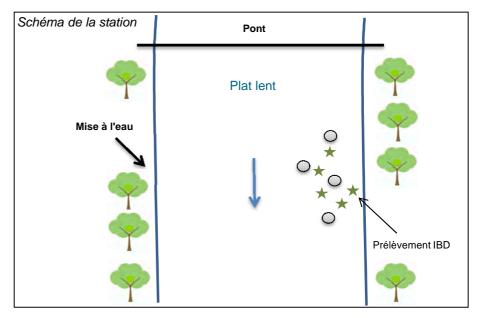
Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 5

Localisation


Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Mesures in situ (optionnelles)

Température : $\ \ \, \mathbb{C} \$ Oxygène dissous : $\ \ \, \text{mg O2/I}$

pH: Saturation: % Conductivité: µS/cm

Ligne

électrique

FICHE DESCRIPTIVE DU PRELEVEMENT DIATOMEES IBD (NFT 90-354)

Code station : 06184200 (H23)Cours d'eau : HéraultN° contrat : 9227Commune : AgdeDépartement : 34Nom préleveur : SDAL

Coordonnées Lambert (N° carte I.G.N) : (en grisé = optionnel)

X: Y: Altitude:

Date: 12/07/2016 Heure: 15h00

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant Plat lent Blocs Sables Faible = semi-ouvert Radier Rapide Pierres, Galets Limons Important = fermé

Mouille Chenal 100% Graviers Argiles

Inconnu <u>Profondeur moyenne</u> (m) : 0,1 - 0,5 0,5 - 1

Chenal

<u>Largeur mouillée (m) :</u> 65 <u>Recouvrement macrophytes</u> 1 - 2 Inconnu

(dont algues) 75 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée Moyennes eaux Basses eaux En diminution En augmentation

Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Limpide / Légèrement trouble / Trouble

Cote échelle (1429):

DESCRIPTION DU PRELEVEMENT

Morphodynamique : Colmatage : Eclairement :

Plat courant Plat lent Absence Très léger Très ombragé **Ombragé** Radier Rapide Léger **Moyen** Peu ombragé Eclairé

Autre : ChenalImportantTrès importantTrès éclairé

Profondeur prélèvement : 0,3 m algues fil./ pierres >75% Matériel utilisé

OUI
NON
Brosse / Binette / Expression

Schéma de la station

Prélèvement IBD

<u>Vérif. bon état matériel</u> oui ✓ Si oui, prélev. sur pierres avec algues ☐

 Code Omnidia
 : 1 / 1 / 0 / 4
 bryophytes/ pierres >75%

 OUI
 NON

Conservateur: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 5

Localisation

Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où? STEP en amont

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Peu de support minéral en berge prélevable, recouvrement d'algues et de bryophytes + colmatage

1 - 2

Inconnu

FICHE DESCRIPTIVE DU PRELEVEMENT DIATOMEES IBD (NFT 90-354, décembre 2007)

Code station: 06183840 (TH1) Cours d'eau: Thongue N°contrat: 9227

Commune: Servian Département: 34 Nom préleveur : AMAR / MCRO

Coordonnées Lambert (N°carte I.G.N): (en grisé = optionnel)

Y: Altitude:

Date: 24/06/2016 Heure: 15h30

DESCRIPTION GENERALE DE LA STATION

Diversité faciés écoulement (%) : Granulométrie dominante : Ombre (1415): absent = ouvert

Plat courant 50% Plat lent **Blocs** Faible = semi-ouvert Sables Radier 50 % Rapide Pierres, Galets Limons Important = fermé

Mouille Graviers **Argiles**

Inconnu Profondeur moyenne (m): 0.1 - 0.50.5 - 1

Largeur mouillée (m): 2,7 Recouvrement macrophytes

(dont algues) 95 %

CONDITIONS ENVIRONNEMENTALES

Tendance débit (1724) depuis 15j : Situation hydro. apparente (1726) : Coloration (1428):

Incolore / Légèr. colorée / très colorée Crue débordante Lit plein ou presque Irrégulier Stable

Basses eaux En diminution Moyennes eaux En augmentation

Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422): Limpide / Légèrement trouble / Trouble

Cote échelle (1429) :

DESCRIPTION DU PRELEVEMENT

Eclairement : Morphodynamique: Colmatage:

Plat courant Très ombragé Plat lent Ombragé Absence Très léger Radier Peu ombragé **Eclairé** Rapide Léger Moyen

Autre: **Important** Très important Très éclairé

Profondeur prélèvement : algues fil./ pierres >75% Matériel utilisé 0,1 m

OUI 🗹 NON Brosse / Binette / Expression oui 1

Vérif. bon état matériel Si oui, prélev. sur pierres avec algues 🔽

bryophytes/ pierres >75% **Code Omnidia**: 1/2/0/3 OUI 🗌 NON

Conservateur: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

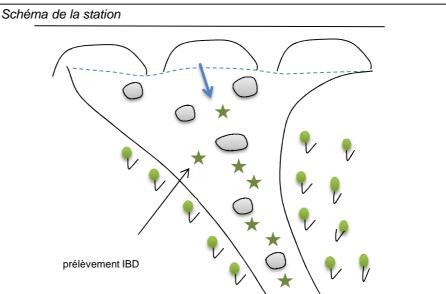
Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 7

Localisation


Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Mesures in situ (optionnelles)

Température : 24,9 ℃ Oxygène dissous: 12,0 mg O2/I

pH: 8,5 Saturation: 145 % Conductivité: 869 µS/cm

Prélèvement conforme √ oui non, Pourquoi?:

Saisie: 27.06.2016/MCRO Vérification saisie: 28.06.2016/JGST

FICHE DESCRIPTIVE DU PRELEVEMENT DIATOMEES IBD (NFT 90-354, décembre 2007)

Code station: 06183900 (BO1) Cours d'eau: Boyne N°contrat: 9227

Commune : Cazouls d'Hérault Département: 34 Nom préleveur : AMAR / MCRO

(en grisé = optionnel) Coordonnées Lambert (N°carte I.G.N):

Altitude:

Date: 24/06/2016 Heure: 11h45

DESCRIPTION GENERALE DE LA STATION

Diversité faciés écoulement (%) : Granulométrie dominante : Ombre (1415): absent = ouvert

Plat courant 20 % Plat lent 50 % **Blocs** Sables Faible = semi-ouvert Radier 30 % Rapide Pierres, Galets Limons Important = fermé

Mouille Graviers **Argiles**

Inconnu Profondeur moyenne (m): 0.1 - 0.50.5 - 1

Largeur mouillée (m): 3,6 Recouvrement macrophytes 1 - 2 Inconnu

(dont algues)

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726) : Tendance débit (1724) depuis 15j: Coloration (1428):

Incolore / Légèr. colorée / très colorée Crue débordante Lit plein ou presque Irrégulier Stable

Basses eaux En diminution Moyennes eaux En augmentation Pas d'eau

Trous d'eau, flaques Inconnu Limpidité (1422): Limpide / Légèrement trouble / Trouble

Cote échelle (1429) :

DESCRIPTION DU PRELEVEMENT

Eclairement : Morphodynamique: Colmatage:

Plat courant Très ombragé Plat lent Ombragé Absence Très léger Radier Peu ombragé Eclairé Rapide Léger Moyen

Autre: **Important** Très important Très éclairé

Profondeur prélèvement : 0,1 m algues fil./ pierres >75% Matériel utilisé

NON OUI 🔲 Brosse / Binette / Expression

Vérif. bon état matériel oui 1 Si oui, prélev. sur pierres avec algues 🔽

bryophytes/ pierres >75% **Code Omnidia**: 1/1/0/2 OUI 🗌 NON

Conservateur: Ethanol / Formol

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 6

Localisation

Rive Droite, Centre chenal, Rive Gauche

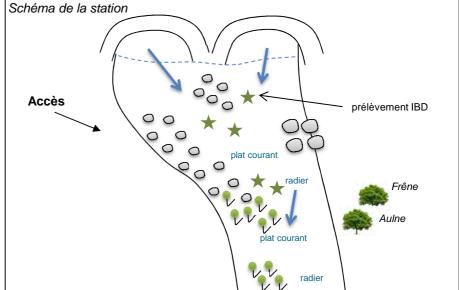

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Si oui, prélev. sur pierres avec bryo Schéma de la station

Mesures in situ (optionnelles)

Température : 21,8 ℃ Oxygène dissous: 8,13 mg O2/I

pH: 8,1 Saturation: 92 % Conductivité: 716 µS/cm

Prélèvement conforme √ oui non, Pourquoi?:

Saisie: date/opérateur Vérification saisie : date/opérateur

Limpidité (1422):

FICHE DESCRIPTIVE DU PRELEVEMENT DIATOMEES IBD (NFT 90-354)

Code station : 06184510 (H12)Cours d'eau : HéraultN° contrat : 9227Commune : St Jean de FosDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N° carte I.G.N) : (en grisé = optionnel)

X: 745185 Y: 6288867 Altitude: 50 m

Date: 08/11/2016 Heure: 10h00

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant 50%Plat lent 50%BlocsSablesFaible = semi-ouvertRadierRapidePierres, GaletsLimonsImportant = fermé

Mouille Graviers Argiles

Inconnu Profondeur moyenne (m):

United to the second se

(dont algues) 1 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée Moyennes eaux Basses eaux En diminution En augmentation

Trous d'eau, flaques Pas d'eau Inconnu

Limpide / Légèrement trouble / Trouble

Cote échelle (1429) :

DESCRIPTION DU PRELEVEMENT

Morphodynamique : Colmatage : Eclai

Morphodynamique :Colmatage :Eclairement :Plat courantPlat lentAbsenceTrès légerTrès ombragé

Plat courant Plat lent Absence Très léger Très ombragé Ombragé Radier Rapide Léger Moyen Peu ombragé Eclairé

Autre : Important Très important Très éclairé

Profondeur prélèvement : 0,3 m algues fil./ pierres >75% Matériel utilisé

OUI NON I Brosse / Binette / Expression

<u>Vérif. bon état matériel</u> oui ☑ Si oui, prélev. sur pierres avec algues ☐

 Code Omnidia
 : 1 / 1 / 0 / 3
 bryophytes/ pierres >75%

 OUI
 NON
 ✓

<u>Conservateur</u>: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

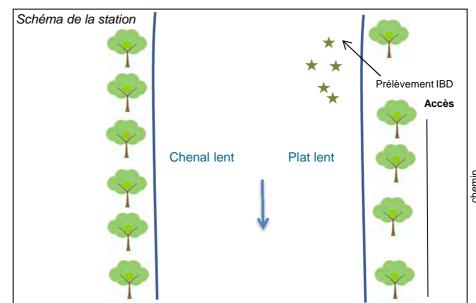
Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 5

Localisation


Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Mesures in situ (optionnelles)

Température : $\ \ \, \mathbb{C} \$ Oxygène dissous : $\ \ \, \text{mg O2/I}$

pH: Saturation: % Conductivité: µS/cm

Limpide / Légèrement trouble / Trouble

Plat lent

Accès

Prélèvement IBD

FICHE DESCRIPTIVE DU PRELEVEMENT DIATOMEES IBD (NFT 90-354)

Code station : 06182900 (H15)Cours d'eau : HéraultN° contrat : 9227Commune : PouzolsDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N° carte I.G.N) : (en grisé = optionnel)

X: 745185 Y: 6288867 Altitude: 50 m

Date: 08/11/2016 Heure: 10h45

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant Plat lent 100% Blocs Sables Faible = semi-ouvert Radier Rapide Pierres, Galets Limons Important = fermé

Mouille Graviers Argiles

Inconnu Profondeur moyenne (m):

 0,1 - 0,5
 0,5 - 1

 Largeur mouillée (m):
 20
 Recouvrement macrophytes
 1 - 2
 Inconnu

(dont algues) <1 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée Moyennes eaux Basses eaux En diminution En augmentation

Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Cote échelle (1429):

DESCRIPTION DU PRELEVEMENT

Morphodynamique : Colmatage : Eclairement :

Plat courant Plat lent Absence Très léger Très ombragé Ombragé Radier Rapide Léger Moyen Peu ombragé Eclairé

Autre: Important Très important Très éclairé

<u>Profondeur prélèvement</u> : 0,35 m <u>algues fil./ pierres >75%</u> <u>Matériel utilisé</u>

OUI NON War Brosse / Binette / Expression

Schéma de la station

<u>Vérif. bon état matériel</u> oui ☑ Si oui, prélev. sur pierres avec algues ☐

Code Omnidia: 1 / 1 / 0 / 4bryophytes/ pierres >75%OUINON✓

<u>Conservateur</u>: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 6

Localisation

Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Mesures in situ (optionnelles)

Peu de substrat minéral

Température : ℃ Oxygène dissous : mg O2/l

pH: Saturation: % Conductivité: µS/cm

Code station : 06183700 (H19)Cours d'eau : HéraultN° contrat : 9227Commune : PezenasDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N° carte I.G.N) : (en grisé = optionnel)

X: 736098 Y: 6264079 Altitude: 17 m

Date: 08/11/2016 Heure: 11h45

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant 10%Plat lent 85%BlocsSablesFaible = semi-ouvertRadier 5%RapidePierres, GaletsLimonsImportant = fermé

Mouille Graviers Argiles

Inconnu Profondeur moyenne (m):

0,1 - 0,5 0,5 - 1

<u>Largeur mouillée (m) : 25</u> <u>Recouvrement macrophytes</u> 1 - 2 <u>Inconnu</u>

(dont algues) <1 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier **Stable Incolore** / Légèr. colorée / très colorée Moyennes eaux **Basses eaux** En diminution En augmentation

Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Limpide / Légèrement trouble / Trouble

Cote échelle (1429) :

DESCRIPTION DU PRELEVEMENT

Morphodynamique :Colmatage :Eclairement :Plat courantPlat lentAbsenceTrès légerTrès ombragéOr

Plat courantPlat lentAbsenceTrès légerTrès ombragéOmbragéRadierRapideLégerMoyenPeu ombragéEclairé

Autre : Important Très important Très éclairé

<u>Profondeur prélèvement</u>: 0,2 m <u>algues fil./ pierres >75%</u> <u>Matériel utilisé</u>

OUI NON Brosse / Binette / Expression

<u>Vérif. bon état matériel</u> oui ☑ Si oui, prélev. sur pierres avec algues ☐

 Code Omnidia
 : 1 / 1 / 0 / 2
 bryophytes/ pierres >75%

 OUI
 NON
 ✓

<u>Conservateur</u>: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

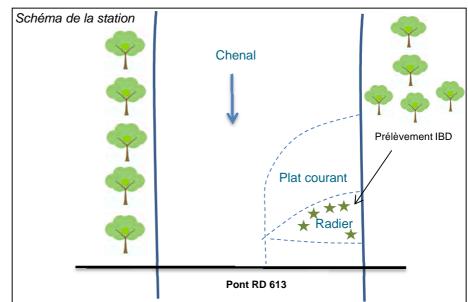
Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 5

Localisation


Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Mesures in situ (optionnelles)

Température : $\ \ \, \mathbb{C} \$ Oxygène dissous : $\ \ \, \text{mg O2/I}$

pH: Saturation: % Conductivité: μ S/cm

Profondeur moyenne (m):

FICHE DESCRIPTIVE DU PRELEVEMENT DIATOMEES IBD (NFT 90-354)

Code station : 06183835 (H21)Cours d'eau : HéraultN° contrat : 9227Commune : PezenasDépartement : 34Nom préleveur : AROB

Coordonnées Lambert (N°carte I.G.N): (en grisé = optionnel)

X: 745185 Y: 6288867 Altitude: 50 m

Date: 08/11/2016 Heure: 10h45

DESCRIPTION GENERALE DE LA STATION

<u>Diversité faciés écoulement</u> (%) : <u>Granulométrie dominante :</u> <u>Ombre</u> (1415) : absent = ouvert

Plat courant Plat lent 100% Blocs Sables Faible = semi-ouvert Radier Rapide Pierres, Galets Limons Important = fermé

Mouille Graviers Argiles
Inconnu Profondeur m

0,1 - 0,5 0,5 - 1

<u>Largeur mouillée (m) :</u> 35 <u>Recouvrement macrophytes</u> 1 - 2 <u>Inconnu</u>

(dont algues) <1 %

CONDITIONS ENVIRONNEMENTALES

Situation hydro. apparente (1726): Tendance débit (1724) depuis 15j: Coloration (1428):

Crue débordante Lit plein ou presque Irrégulier Stable Incolore / Légèr. colorée / très colorée Moyennes eaux Basses eaux En diminution En augmentation

Trous d'eau, flaques Pas d'eau Inconnu Limpidité (1422):

Limpide / Légèrement trouble / Trouble

Cote échelle (1429) :

DESCRIPTION DU PRELEVEMENT

Morphodynamique : Colmatage : Ec

Morphodynamique:Colmatage :Eclairement:Plat courantPlat lentAbsenceTrès légerTrès ombragéOmbragé

Radier Rapide **Léger** Moyen Peu ombragé **Eclairé**

Autre : Important Très important Très éclairé

<u>Profondeur prélèvement</u>: 0,30 m <u>algues fil./ pierres >75%</u> <u>Matériel utilisé</u>

OUI NON W Brosse / Binette / Expression

<u>Vérif. bon état matériel</u> oui ☑ Si oui, prélev. sur pierres avec algues ☐

Code Omnidia: 1 / 1 / 0 / 4bryophytes/ pierres >75%OUINON✓

<u>Conservateur</u>: Ethanol / Formol Si oui, prélev. sur pierres avec bryo

Support prélevé

Pierres, galets [25-250 mm] (D5)

Graviers [2,5-25 mm] (D6) Roches, dalles, blocs (D10)

Bryophytes (D1)

Algues (D11) (ou K' marne et argile)

Hydrophytes (D2)

Nombre supports (5 mini): 6

Localisation

Rive Droite, Centre chenal, Rive Gauche

Rejet: Oui / Non où?

Photo (accès, vue générale, amont,

aval et supports):

Commentaire / Difficulté ?:

Schéma de la station

Prélèvement IBD

Chenal

Mesures in situ (optionnelles)

Température : °C Oxygène dissous : mg O2/l

pH: Saturation: % Conductivité: µS/cm

CODE DES PRELEVEMENTS DE DIATOMEES

1 Bloes ou pierres 1 Cane battue par les vagues zbv 1 2 daleir d'écluse exondée 2 2 daleir d'ecluse exondée 2 2 daleir d'ecluse exondée 2 2 daleir d'ecluse inondée 3 Sables et graviers 2 Paroi d'écluse inondée 3 Sables et graviers 3 Paroi d'écluse inondée 3 Sables et graviers 6 Sature les, 1 6 Béton 6 Suintements 6 Béton 7 Béton 1 7 Brique tuile ou ardoise 7 Milieux temporaires 6 Sasiles A Métal 6 Polysthyrene, plastiques, PVC 8 Crue zone récemment inondée 9 Verre 8 Polysthyrene, plastiques, PVC 8 Crue zone récemment exondée 9 Verre 8 Crae zone récemment exondée 9 Verre 9 Verre 9 Décrue ou zone récemment exondée 9 Verre 9 Desis morts 8 Caoutchouc 8 Piles de pont 1 Bois morts 2 Bois morts 1 Bois morts 1 Bois morts 1 Bois morts 2 Bois morts 1 Bois morts 2 Bois morts 1 Bois morts 2 Bois		Prélèvement	Nature du substrat	Divers		
Epilithon 1 Blocs ou pierres 1 Zone battue par les vagues zbv 1 pipiglon 3 sables et graviers 2 Paroi d'écluse exondée 2 Epipielon 3 sables et graviers 3 Paroi d'écluse exondée 2 Epipielon 4 Vase ou sédiment 4 Zone intertidale inondée 5 Epimacrophyton 4 Vase ou sédiment 5 Zone intertidale inondée 5 Sonitements 5 Zone intertidale inondée 6 Souliveneurs 6 Suintements 6 Suintements 6 Souliveneurs 6 Souliveneurs 7 Milliaux temporaires 7 Periphyton raturel (s.l.) 6 Bélon a varioise 7 Milliaux temporaires 7 Parcton 8 Polysityvene, plastiques, PVC 8 Crue zone récemment exondée 9 Verre 7 Souliveneurs 8 Parcton 8 Polysityvene, plastiques, PVC 8 Crue zone récemment exondée 9 Diaconées fossiles A Métal A Bouse flotteur, embarcation A Bois morts 8 Contrages C Crètes de barrage, seuil déversoirs C B Bois morts 7 Hydrophytes émergés ou flottants 6 Contenus stomacaux ou intestinaux 7 Hydrophytes émergés ou flottants 7 Carottages 7 Hydrophytes émergés ou flottants 7 Carottages 8 H Algues flamenteuses 1 A Lones ombragées 1 Macrophytes ou algues 1 A Lones ombragées 1 Macrophytes ou algues 1 Macrophytes 6 Dierres+hoton 1 L Aral barrage ou écluse 7 M Pierres+hoton 1 L Aral barrage ou écluse 7 M Pierres+hoton 1 L Aral barrage ou écluse 6 M Pierres+hoton 1 L Aral barrage ou écluse 6 M Pierres+hoton 1 L Aral barrage ou écluse 7 M Pierres+hoton 1 L Aral barrage ou écluse 6 M Pierres+hoton 1 L Aral barrage ou écluse 6 M Pierres+hoton 1 L Aral barrage ou écluse 7 M Aral seuil barrage ou écluse 7 Amas d'algues flottantes 8 M Végétaux-rédiments 8 M Végétaux-rédiments 9 M Aral seuil barrage ou écluse 7 M Aral seuil barrage ou écluse 7 M Milleu canalisé ou artificialisé 9 M M Aral seuil barrage ou écluse 7 M M Aral seuil barrage ou écluse 8 M M Aral seuil barrage ou écluse 8 M M Aral seuil barrage 9 M M Aral seuil barrage 9 M M Aral seuil barrage 9 M M Aral seuil barra	0	Indéterminé	0 Indéterminé	0 R.A.S.		0 Indéterminé ou non précisé
Epipsammon 2 Galets 2 Paroi d'écluse exondée 2 Epipsammon 3 Sables et graviers 3 Paroi d'écluse inondée 3 Sables et graviers 4 Zone intertidale condée 5 Epimicrophyton 4 Vase ou sédiment 4 Zone intertidale mondée 5 Périphyton naturel (s.l.) 6 Béton 6 Béton 6 Suintements 7 Mileux temporaires 7 Mileux temporaires 7 Mileux temporaires 8 Périphyton 3 Verre anadoise 7 Mileux temporaires 7 Mileux temporaires 8 Plancton 9 Verre 9 Verre 9 Dectre ou zone récemment inondée 8 Composite B Caoutchouc B Placton C Tissus cordages C Crêtes de barrage, seul déversoirs D Bois morts 8 E Hydrophytes au lottants 6 Contenus stomacaux ou intestinaux E F Hydrophytes and fortain 8 F Carottages 1 Housses 1 Mousses 1 Mousses 1 Macrophytes ou algues 1 I Aval barrage ou écluse M Pierres+ haiton 1 L Perres+ héton M Pierres+ heton M Pierres+	-	Epilithon	1 Blocs ou pierres	1 Zone b	attue par les vagues zbv	1 Lotique (75 - 150 cm/s)
Epipélon 3 Sables et graviers 3 Parol d'écluse inondée 3 Epinicrophyton 4 Vase ou sédiment 4 Zone intertidale inondée 4 Epinicrophyton 5 Terre marne argile mollasse 5 Zone intertidale inondée 5 Périphyton naturel (s.l.) 6 Béton 6 Béton 7 Périphyton naturel (s.l.) 7 Brique tuile ou ardoise 7 Milieux temporaires 7 Plancton 9 Verre 8 Crue zone récemment inondée 8 Zoophyton 9 Verre 8 Crue zone récemment sondée 9 Datomées fossiles A Métal A Rouse 9 Datomées fossiles A Métal A Rouse 9 Composite B Caoutchouc 8 Piles de pont A Composite B Caoutchouc B Piles de pont B Composite B Cautrellos C Crètes de barrage, seuil déversoirs C Crètes de barrage, seuil déversoirs E Hydrophytes simergés ou flotants F Hydrophytes simergés ou flotants F Cantages I Macrophytes on algues I Alem zone récemment inondée I Pierres+hois mort I Amont seuil barrage ou écluse O Pierres+macolphytes I Amont seuil ba	2	Epipsammon	2 Galets	2 Paroi d	écluse exondée	2 Semi-lotíque (25 - 75 cm/s)
Epimicrophyton 4 Vase ou sédiment 4 Zone intertidale exondée 5 Terre marne argile mollasse 5 Zone intertidale inondée 5 Septimatrophyton 6 Beton 6 Suninements 6 Beton 7 Milieux temporaires 7 Milieux demporaires 7 Milieux demporaires 7 Milieux temporaires 8 Milieux temporaires 8 Milieux temporaires 8 Milieux temporaires 9 Milieux filamenteuses 9 M	3	Epipélon	3 Sables et graviers	3 Paroi d	écluse inondée	3 Semi lentique (5 - 25 cm/s)
Epimacrophyton 5 Terre marne argile mollasse 6 Suintements 6 Beion 6 Beion 7 Milieux temporaires 7 Milieux temporaires 7 Milieux temporaires 8 Polysthyrene, plastiques, PVC 8 Crue zone récemment inondée 9 Croophyton 9 Verre 9 Verre 9 Décrue ou zone récemment inondée 9 Diatomées fossiles A Métal A Métal A Bouée flotteur, embarcation A Métal B Caoutchouc B Ples de pont C Tissus cordages C Crètes de harrage, seul déversoires C Tissus cordages C Crètes de harrage, seul déversoires D Bois mort D Bois mort B P Contenus stomacaux ou intestinaux E F Hydrophytes submergés C Cretes de harrage, seul déversoires C Hélophytes submergés D Tourbières G Teuchophytes and P Ples de pont B C Tourbières C Tenteus stomacaux ou intestinaux B F Hydrophytes ou deuts contrages C Helophytes ou algues D Tourbières D Macrophytes ou algues D Tourbières D Mercrophytes ou algues D Tenters+nouses D Tenters+nouses D Mercrophytes O Pierres+nouses D P P Pierres+nouses D P P P P P P P P P P P P P P P P P P	4		4 Vase ou sédiment	4 Zone in	itertidale exondée	4 Lentique (<5 cm/s)
Périphyton naturel (s.1) 6 Béton Périphyton naturel (s.1) 7 Brique fuile ou ardoise 7 7 Milleux temporaires 7 7 Brique fuile ou ardoise 8 Crue zone récemment inondée 8 8 Pobysthyrene, plastiques, PVC 8 Crue zone récemment exondée 9 Verre 9 Verre 9 Décrue ou zone récemment exondée 9 Diatonnées fossiles A Métal A Métal Coophyton C Tissus cordages C Crêtes de barrage, seuil déversoirs C D Bois morts D Bois morts C Crêtes de barrage, seuil déversoirs C D Bois morts C M Hélophytes emergés ou flottants F C Contenus stomacaux ou intestinaux C H Hydrophytes emergés ou flottants F C Contenus stomacaux ou intestinaux C H Algues filamenteuses A M Zones ombragées 1 Avail barrage ou écluse contents a M Pierres+ algues K Zone de manage(san ecluse M Pierres+ béton M Pierres Housses+ algues M M Aval seuil barrage ou écluse M Pierres+ béton M Pierres diquents M M Aval seuil barrage ou écluse M M Pierres+ béton M Pierres diquents M M Aval seuil barrage ou écluse M M Aval seuil barrage ou éclus	5	Epimacrophyton	5 Terre marne argile mollasse	5 Zone in	itertidale inondée	5 Lotique+lentique
Périphyton artificiel 7 Brique tuile ou ardoise 7 Milieux temporaires 7 Périphyton artificiel 8 Polysthyrene, plastiques, PVC 8 Crue zone récemment inondée 8 Zoophyton 9 Verre 9 Diacomées fossiles A Métal A Métal A Bouée flotteur, embarcation A Bois morts B Caoutchouc B Piles de pont Crissus cordages C Tissus cordages C Crètes de barrage, seuil déversoirs C D Bois morts F Hydrophytes submergés C Crètes de barrage, seuil déversoirs C Helophytes G Helophytes G Tourbieres G Tourbieres G Helophytes G Tourbieres G Tourbieres G Helophytes G Tourbieres	9		6 Béton	6 Suinten	nents	6 Lotique+semi lotique
Plancton 8 Polysthyrene,plastiques, PVC 8 Crue zone récemment inondée 8 Zoophyton 9 Verre Diatomées fossiles A Métal A Bouée flotteur, embarcation A Composite B Caoutchouc B Plies de pont B B Caoutchouc B Plies de pont B B Caoutchouc B Plies de pont B B Caoutchouc B B Plies de pont B B B B B B B B B B B B B B B B B B B	7	Périphyton artificiel	7 Brique tuile ou ardoise	7 Milieux	temporaires	7 Lotique+ semi lentique
Zoophyton 9 Verre 9 Décrue ou zone récemment exondée 9 Diatomées fossiles A Métal A Bouée flotteur, embarcation A Bouée flotteur, embarcation Composite B Caoutchouc B Piles de pont B Piles de pont C Cirés de barrage, seuil déversoirs C Crétes de barrage, seuil déversoirs C Crétes de barrage, seuil déversoirs D Bois morts E Hydrophytes émergés ou flottants E Contenus stomacaux ou intestinaux E F Hydrophytes émergés ou flottants F Hydrophytes émergés ou flottants F Carottages G Tourbières J Macrophytes ou algues J Idem zone récemment inondée K Pierres + algues K Zone de marnagélesan précision) L Pierres+béton L Amont seuil barrage ou écluse N Pierres+mousses+algues N Mileu canalisé ou artificialisé O Pierres+mousses+algues N Mileu canalisé ou artificialisé Q Pierres+mousses+algues N Mileu canalisé ou artificialisé V Pierres+mousses+algues N Mileu canalisé ou artificialisé V Bactéries et champignons V Bactéries et champignons W Neige ou glace	00		8 Polysthyrene, plastiques, PVC	8 Crue zo	ne récemment inondée	8 Lentique + semi lotique
Diatomées fossiles A Métal A Bouée flotteur, embarcation A Composite Composite B Caoutchouc B Piles de pont B Epidendrophyton C Tissus cordages C Crêtes de barrage, seuil déversoirs C Bois morts D Bois morts D Sur animaux aquatiques D Sur animaux aquatiques E Hydrophytes submergés E Contenus stomacaux ou intestinaux E Contenus stomacaux ou intestinaux F Hydrophytes G Tourbieres E Carottages G Hélophytes H Zones ombragées H Algues flamenteuses H Zones ombragées J Macrophytes ou algues J Idem zone récemment inondée K Pierres + algues J Idem zone récemment inondée K Pierres + béton L Amont seuil barrage ou écluse M Pierres+mousses M Pierres+mousses P Pierres+mousses N Milieu canalisé ou artificialisé Q Pierres+mousses N Milieu canalisé ou artificialisé Q Pierres+mousses T Animaux aquatiques U Composite (tous supports) V Bactéries et champignons W Neige ou glace W Neige ou glace	6		9 Vете	9 Décrue	ou zone récemment exondée	9 Lentique +semi lentique
Composite B Caoutchouc B Piles de pont B Piles de pont Epidendrophyton C Tissus cordages C Crêtes de barrage, seuil déversoirs C Crêtes de barrage, seuil déversoirs C D Sur animaux aquatiques E Hydrophytes submergés E Hydrophytes émergés ou flottants E Contenus stomacaux ou intestinaux E Contenus stomacaux ou intestinaux F Hydrophytes émergés ou flottants F Carottages G Hélophytes H Zones oubragées H Algues filamenteuses H Zones oubragées J Macrophytes ou algues K Zone de marrage (sans précision) L Pierres+ algues K Zone de marrage ou écluse M Pierres+béton M Aval seuil barrage ou écluse M Pierres+mousses M Pierres+mousses P Pierres+mousses M Mylieu canalisé ou artificialisé Q Pierres+sédiments N Milieu canalisé ou artificialisé R Végétaux+sédiments N Milieu canalisé ou artificialisé S Amas d'algues flottantes T Animaux aquatiques U Composite (tous supports) V Bactéries et champignons W Neige ou glace W Neige ou glace	A		A Métal	A Bouée	flotteur, embarcation	A Semi lotique + semi lentique
Epidendrophyton C Tissus cordages C Crêtes de barrage, seuil déversoirs C B ois morts D Bois morts E Hydrophytes submergés ou flottants F Carottages G Hélophytes Hauves filamenteuses H Algues filamenteuses H Zones ombragées J Macrophytes ou algues K Pierres Hoton L Pierres Hoton M Pierres Hoton M Pierres Houses D Pierres Houses D Pierres Houses P Pierres Houses P Pierres Houses P Pierres Houses P Pierres Houses D Pierres Houses D Pierres Houses P Pierres Houses P Pierres Houses D Pierres Houses D Pierres Houses T A Animaux aquatiques U Composite (tous supports) V Bactéries et champignons W Neige ou glace W Neige ou glace	B	8	~	B Piles de	pont	B Marée montante
Bois morts Hydrophytes submergés Hydrophytes submergés ou flottants Hydrophytes émergés ou flottants Hydrophytes émergés ou flottants Hydrophytes émergés ou flottants Hydrophytes émergés ou flottants Helophytes Helophytes Helophytes Hydrophytes H	0		C Tissus cordages	C Crêtes	de barrage, seuil déversoirs	C Marée descendante
Hydrophytes submergės E Contenus stomacaux ou intestinaux E Hydrophytes emergés ou flottants F Carottages G Tourbières G Tourbières Algues filamenteuses H Zones ombragées H Zones ombragées H Zones ombragées H Zones ombragées Mousses I Aval barrage ou écluse zone exondée J Idem zone récemment inondée J Idem zone récemment J			=	D Sur ani	maux aquatiques	D Etal
Hydrophytes emergés ou flottants Hélophytes Hélophytes Algues filamenteuses Mousses Macrophytes ou algues Pierres + algues Pierres + béton Pierres + béton Pierres + béton Pierres + béton Pierres + hois mort Pierres + macrophytes Pierres + algues Pierres			-5	E Conten	us stomacaux ou intestinaux	E aucun courant (pas d'écoulement)
Hélophytes Algues filamenteuses Mousses Mousses I Macrophytes ou algues Pierres + algues Pierres + béton Pierres + béton Pierres + béton Pierres + mousses Pierres + mousses + algues Pierres + sédiments Végétaux + sédiment Amas d'algues flottantes Animaux aquatiques Composite (tous supports) Bactéries et champignons Neige ou glace			F Hydrophytes émergés ou flottants	F Carotta	sas	
Algues filamenteuses Mousses Macrophytes ou algues Pierres + algues Pierres + béton Pierres + béton Pierres + béton Pierres + mousses Pierres + mousses Pierres + mousses Pierres + diments Végétaux + sédiment Amas d'algues flottantes Animaux aquatiques Composite (tous supports) Bactéries et champignons Neige ou glace			G Hélophytes	G Tourbi	ores	
Mousses Macrophytes ou algues Jeierres + algues Repierres + béton Pierres + béton Merres + mousses Pierres + mousses Pierres + mousses Pierres + sédiments Pierres + sédiments Végétaux + sédiment Amas d'algues flottantes Animaux aquatiques Composite (tous supports) Bactéries et champignons Neige ou glace			-	H Zones	mbragées	
Macrophytes ou algues Pierres + algues R Pierres + béton Pierres + béton M Pierres + mousses Pierres + mousses Pierres + mousses + algues Pierres + diments Végétaux + sédiment Amas d'algues flottantes Animaux aquatiques Composite (tous supports) Bactèries et champignons Neige ou glace			I Mousses.	I Aval b	arrage ou écluse zone exondée	
Pierres + algues Pierres + beton Pierres + beton Pierres + beton Pierres + macrophytes Pierres + mousses Pierres + mousses + algues Pierres + sédiments Pierres + sédiment Amas d'algues flottantes Animaux aquatiques Composite (tous supports) Bactèries et champignons Neige ou glace			J Macrophytes ou algues	J Idem 20	one récemment inondée	
Pierres+ béton Pierres+bois mort Pierres+macrophytes Pierres+mousses Pierres+mousses+algues Pierres+sédiments Végétaux+sédiment Amas d'algues flottantes Animaux aquatiques Composite (tous supports) Bactéries et champignons Neige ou glace			K Pierres + algues	K Zone d	e marnage(sans précision)	
Pierres+bois mort Neierres+macrophytes N Pierres+mousses Pierres+mousses+algues Pierres+sédiments Végétaux+sédiment Amas d'algues flottantes Animaux aquatiques Composite (tous supports) Bactéries et champignons Neige ou glace			L Pierres+ béton	L Amont	seuil barrage ou écluse	
Pierres+macrophytes Pierres+mousses Pierres+mousses+algues Pierres+sédiments Végétaux+sédiment Amas d'algues flottantes Animaux aquatiques Composite (tous supports) Bactéries et champignons Neige ou glace				M Aval se	uil barrage ou écluse	
				N Milieu	canalisé ou artificialisé	
			P Pierres+mousses+algues			
C. A. Service Co.			65			
			T Animaux aquatiques			

8.7.6. Listes floristiques des diatomées de l'Hérault

COMPOSITION DES PEUPLEMENTS DE DIATOMEES DE L'HERAULT

Dates de prélèvements : été et automne 20

(abondances relatives en pourcentage

-					(apondance	es relatives e	m pourcenta	ige)								
Cours d'ea		Hérault	Hérault	Hérault	Hérault St Bauzille de	Hérault Causse de la	Hérault	Hérault	Hérault	Hérault	Hérault	Hérault Saint Pons de	Hérault	Hérault	Hérault	Hérault
Commune / Localisatio Code statio		Cazilhac H5	Laroque H6	Agones H7	Putois H8	Selle 1 H10	Puechabon H11	aint Jean-de-Fos H12	Gignac H14	Pouzols H15	Canet H16	Mauchien H18	Pézénas 1 H19	Pezenas 2 H20	Pézénas 3 H21	Agde 6 Bessan H23
Nat Achnanthidium delmontii Peres. Le Cohu et Barthes		19/07/2016 14,11	19/07/2016 4,43	21/07/2016 14,50	19/07/2016 7,71	21/07/2016 19,95	15/07/2016 62,56	08/11/2016 47,54	18/08/2016 16,30	08/11/2016 4,68	18/08/2016 27,45	13/07/2016 39,55	08/11/2016 48,18	12/07/2016 94,36	08/11/2016 24,88	12/07/2016 0,98
Achnanthidium atomoides Monnier, Lange-Bertalot & Ector Achnanthidium catenatum (Bily & Marvar) Lange-Bertalot	ADAM ADCT*	-	0,99	0,49	-	-	0.49	0,74	-	-	-	-	-	-	- 0,50	-
Achnanthidium druartii Rimet & Couté in Rimet & al.	ADRU		-	-	-	2,22	1,23	0,99	2,47	0,74	2,45	7,96		-	1,00	-
Achnanthidium eutrophilum (Lange-Bertalot)Lange-Bertalot ACHNANTHIDIUM F.T. Kützing	ADEU* ACHD		2,96	-	0,48	- 0,49	- 1,72	0,25 0,99	- 1,98	0,49	-	- 1,24	- 1,70	0,49	- 0,50	0,25
Achnanthidium latecephalum Kobayasi Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADLA* ADMI*	52,97	23,15	24,57	41,20	21,67	16,50	13,55	5,68 38,27	11,82	0,74 28,92	20,40	3,65	0,74	12,44	10,32
Achnanthidium pyrenaicum (Hustedt) Kobayasi Achnanthidium saprophilum (Kobayasi et Mayama) Round & Bukhtiyarova	ADPY* ADSA*	- 0,50	7,64	-	-	0,49	-	-	-	-	-	-	2,92	-	1,49	-
Achnanthidium straubianum (Lange-Bertalot)Lange-Bertalot Achnanthidium subatomus (Hustedt) Lange-Bertalot var. subatomus	ADSB* ADSU*	0,50	4,93	0,49 1,72	1,20	0,74	0,49	8,87	2,22	23,40	0,98	0,75	-	-	0,75	0,98
AMPHORA C.G. Ehrenberg ex F.T. Kützing	AMPH	-	-	-	-	-	-	-	0,49	<u> </u>	-	0,50	-	-	-	0,49
Amphora in distincta Levkov Amphora ovalis var. ovalis Lange-Bertalot	AMID* AOVA*	-	-	-	-	-	-	-	0,25 -	0,74	-	-	-	0,49	1,24 0,50	-
Amphora pediculus (Kützing) Grunow var. pediculus Bacillaria paxillifera (O.F. Müller) T.Marsson var. paxillifera	APED* BPAX*	0,74 -	-	0,49 -	-	0,49 -	0,49 -	2,96 -	10,12 -	25,86	0,49 -	7,21 -	6,81 -	0,98	17,91 -	14,00 0,25
Caloneis lancettula (Schulz) Lange-Bertalot & Witkowski CALONEIS P.T. Cleve	CLCT* CALO		-	- 0,25		0,49		-	-			1,00 -		-	0,25 -	2,95
COCCONEIS C.G. Ehrenberg Cocconeis euglypta Ehrenberg	COCO CEUG*	- 0,74	2.46	1,23	0,48 1,45	- 0.99	:		- 1,23	0,25	- 1,72	- 1,00	:	-	-	0,49
Cocconeis pediculus Ehrenberg Cocconeis placentula var. placentula Ehrenberg	CPED*	-	-	0,49	-	-	0,25	-	0,25 0,25	-		0,50	-	-	-	0,25
Cocconeis pseudolineata (Geitler) Lange-Bertalot	COPL*	-	-	0,49	-	-	0,49	-	-	0,25	-	-	-	-	-	-
Cyclotella atomus Hustedt var. atomus Cyclotella costei Druart & Straub	CATO*	-	-	-	-	-	-	-	-	0,25	-	-	-	-	-	0,49
Cydotella meduanae Germain CYMBELLA C.Agardh	CMED*	-	-	-	-	-	-	-	-	0,25	-	0,25	-	-	-	-
Cymbella affinis var. affinis Kützing Cymbella excisa var. excisa Kützing	CAFF* CAEX*	- 6.68	7.64	20.39	12.53	1.48	- 1.48	-	0.49	-	- 18.63	- 1,49	0,97	0.49	0,25	-
Cymbella excisiformis var. excisiformis Krammer Cymbella neocistula var. neocistula Krammer	CEXF CNCI*	0,50	-	-	-	-	-	-	-	-	-	0,50	-	-		-
Denticula tenuis Kützing var. tenuis	DTEN*	0,50	0,99	0,74	-	0,25	-	-	-	0,25	-	-		-	:	
Diatoma vulgaris Bory var. vulgaris DIATOMEE NON IDENTIFIEE (indéterminée)	DVUL*	1,98 -	1,72	1,97	0,72	0,25	0,49	0,99	-	:	2,94 -		0,73 0,24	1	0,50	
Diatomées non identifiées vue connectives Diploneis oculata (Brébisson in Desmazières) Cleve	VUCO DOCU*	0,50 -	0,49	-	-	-	0,49 -	0,99 -	-	-	-	0,50 -	0,49 -	-	1,00 -	1,47 0,49
Discostella pseudostelligera (Hustedt) Houk et Klee Encyonema cespitosum var. cespitosum Kützing	DPST* ECAE*	:		-	-	30,54 -	-	-	12,84	0,49 0,25	-	- 0,25	-	-	-	10,57
ENCYONEMA F.T. Kützing Encyonema minutum (Hilse in Rabh.) D.G. Mann in Round Crawford & Mann var. minutun	ENCY	- 0,25	- 1,23	- 0,98	-	-	-	-	-	-	-	0,25	-	-	-	-
Encyonema silesiacum (Bleisch in Rabh.) D.G. Mann var. silesiacum	ESLE*	1,24	2,22	0,49	0,48	-	0,25	-	-	-	-	-	-	-	-	-
Encyonema ventricosum (Kützing) Grunow in Schmidt & al. var. ventricosum ENCYONOPSIS Krammer	ENVE*	:	0,49		-	-	0,49 -		-		-					-
Encyonopsis minuta Krammer & Reichardt Eolimna minima Grunow) Lange-Bertalot	ECPM* EOMI*	-	0,49	-	-	-	0,25	0,99	0,99	6,65	0,49 0,49	-	1,22	-	- 5,97	6,39
Eolimna subminuscula (Manguin) Moser Lange-Bertalot & Metzeltin EPITHEMIA F.T. Kützing	ESBM* EPIT	-	-	-	-	-	-	-	-	0,49	-	-	-	-	0,50	-
Epithemia sorex Kützing var. sorex Fallacia mitis (Hustedt) D.G.Mann	ESOR* FMIT*	-	-	-	-	-	0,49	-	-	0,49	-	-	-	-	0,50	-
Fallacia sublucidula (Husledt) D.G. Mann Fistulifera saprophila (Lange-Bertalot & Bonik) Lange-Bertalot	FSLU* FSAP*	-	0,49	-	-	=	-,	=	=		- 0,49	-	- 0,73	-	-	-
FRAGILARIA H.C. Lyngbye	FRAG FCVA*	- 0,25	0,99	-	0,48	3,94	0,99	0,49 0.74	-	-	-	-	-	-	-	-
Fragilaria capucina var. vaucheriae (Kützing) Lange-Bertalot Fragilaria gracilis Østrup	FGRA*	-	0,49			3,94		- 0,74	-							-
Fragilaria pararumpens Lange-Bertalot, Hofmann & Werum in Hofmann & al. Fragilaria pinnata var. pinnata Ehrenberg	FPRU* FPIN*	0,50 -	3,45	0,74 -	0,48	-		1,72	-	3,45				-	0,50	-
Fragilaria rumpens (Kütz.) G.W.F. Carlson Geissleria decussis (Østrup) Lange-Bertalot & Metzeltin	FRUM* GDEC*	-	1,48 0,49	-	-	-	0,49 -	- 1,23	-	-	-	-	-	-	0,25 -	-
GOMPHONEMA C.G. Ehrenberg Gomphonema minutum f. minutum (Agardh) Agardh	GOMP GMIN*	-	0,49	0,49	-	-	-	0,99	0.99	-	- 0,49		-	-	-	1,47
Gomphonema parvulum var. parvulum f. parvulum (Kützing) Kützing Gomphonema tergestinum (Grunow in Van Heurck) Schmidt in Schmidt & al. var. tergestir	GPAR*	- 0,99	0,25	- 0,25	- 0,48	-	0,49	-	0,25	-	0,49	-	-	-	-	-
Gomphosphenia lingulatiformis (Lange-Bertalot & Reichardt) Lange-Bertalot Gyrosigma acuminatum (Kützing) Rabenhorst var. acuminatum	GPLI* GYAC*	-	-	-	-	-	-	-	-	-	-	-	-	- 0,25	-	22,60
Halamphora montana (Krasske) Levkov	HLMO* HVEN*	-	-	-	-	-	-	-	-	0,25 0,25	-	-	-	-	-	-
Halamphora veneta (Kützing) Levkov var. veneta Hippodonta capitata (Ehr.)Lange-Bert Metzeltin & Witkowski	HCAP*	0,50	-		-	-		-	-	-	-	-		-		-
Karayevia devei var. devei (Grunow) Bukhtiyarova KARAYEVIA Round & Bukhtiyarova	KCLE* KARA	-	-	-	-	-	-	-	-	1,97	-		-	-	-	1,47 0,25
Mayamaea permitis (Hustedt) Bruder & Medlin Melosira varians Agardh	MPMI* MVAR*	-	0,99 1,23	-	-	0,25 -	-	0,99	0,49	1,23	-	- :	1,46 0,24	-	2,99 -	-
NAVICULA J.B.M. Bory de St. Vincent Navicula antonii Lange-Bertalot	NAVI NANT*	- 0,25	-	-	-	0,25	-	0,74	-	0,49	-	-	1,46 0,73	-	1,00 -	0,49
Navicula capitatoradiata Germain Navicula cryptocephala Kützing var. cryptocephala	NCPR* NCRY*	-	-	-	-	-	-	-	-	0,49	- 0,49	-	0,97 -	0,49	-	-
Navicula cryptotenella Lange-Bertalot var. cryptotenella Navicula cryptotenelloides Lange-Bertalot var. cryptotenelloid	NCTE* NCTO*	-	-	-	-	1,48	3,45	2,22 0,49	-	0,99 0,49	3,68	8,21	4,87	-	2,74 0,50	0,49
Navicula menisculus var. menisculus Schumann Navicula reichardtiana var. reichardtiana Lange-Bertalot	NMEN* NRCH*	-	-	-	-	- 0,25	:	- 0,25	-	0,74	-	:	- 11,44	-	6,72	-
Navicula rostellata Kützing var. rostellata	NROS* NTPT*		-	-		-		-	-	:	0,25	-	-		0,50	-
Navicula tripunctata (O.F.Müller) Bory var. tripunctata Navicula vandamii var. vandamii Schoeman & Archibald	NVDA*			-		-			-	0,49		0,75	-		0,25	-
NITZSCHIA A.H. Hassall Nitzschia amphibia f. amphibia Grunow var. amphibia	NITZ NAMP*	-	2,96	-	2,89	-	-	0,25 -	-	0,49	0,49	0,75 -	0,49	-	1,24 -	2,21
Nitzschia archibaldii Lange-Bertalot Nitzschia costei Tudesque, Rimet & Ector	NIAR* NYCO	0,25 7,43	8,37	- 17,20	0,48 17,11	0,49	0,25	-	-	-	0,49	1,99	-	-	-	-
Nitzschia dissipata subsp. dissipata (Kützing) Grunow var. dissipata Nitzschia fonticola Grunow in Cleve et Möller var. fonticola	NDIS* NFON*	- 1,49	-	3,69	0,72	-	-	2,46 0,49	0,49	0,99	-	1,74 1,00	4,62 0,24	0,74	3,23	-
Nitzschia gracilis Hantzsch var. gracilis Nitzschia inconspicua Grunow	NIGR*	-	0,99	-	0,48	0,25	-	-	-	0,25	-	0,25	-	-	-	1,72
Nitzschia lacuum Lange-Bertalot Nitzschia microcephala Grunow in Cleve & Moller var. microcephala	NILA* NMIC*	-	-	-	0,48	-	-	-	-	0,49	-	-	-	-	- 0,50	
Nitzschia palea var. debilis (Kützing) Grunow in Cleve & Grunow	NPAD* NPAL*	- 0,50	0,25 0,99	0,98 2,95	- E 70	- 222	-	- 0,25	-	- 0.25	- 0.49	-	-	-	-	-
Nitzschia palea var. palea (Kützing) W.Smith Nitzschia paleacea (Grunow) Grunow in Van Heurckvar. paleacea	NPAE*	0,50 4,46	1,48	2,95 1,23	5,78 1,45	2,22 0,49	-	-	-	0,25 0,49	0,49		1,46	:	1,24 -	-
Nitzschia sociabilis Hustedt Nitzschia soratensis Morales & Vis	NSOC* NSTS*		-	-		-	:	0,25 -	-	0,25 0,74	0,49	1	- 0,97	1	1,24 3,48	0,25
Nitzschia species Nitzschia subacicularis Hustedt in A. Schmidt et al.	NZSS NSUA*		-	-	-	-	-	- 0,25	-	:	-		-	1	-	11,06 -
Nitzschia tabellaria (Grun.) Grun. in Cl. & Grun. Planothidium frequentissimum (Lange-Bertalot)Lange-Bertalot var. frequentissimum	NTAB* PLFR*	-	-	-	-	-	0,49 -	-	- 0,74	0,74	-	-	-	-	- 0,50	-
Planothidium granum (Hohn & Hellerman) Lange-Bertalot Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot var. lanceolatum	PGRN* PTLA*	:	0,49	- 0,98	-	-	-	-	- -	-	-	-	-	-	-	2,70
PLANOTHIBIUM Round & Buldhtyarova Reimeria sinuata (Gregory) Kociolek & Stoermer	PLTD RSIN*	0,50	0,49	-	0,48	0,49	-	-	0,49	0,74 0,25	-	-	0,24	-	-	0,49
Reimeria uniseriata Sala Guerrero & Ferrario	RUNI* RABB*	-	-	-	-	-		0,49	1,23	0,99	0,49	0,50	1,46	-	0,25	
Rhoicosphenia abbreviata (C. Agardh) Lange-Bertalot Sellaphora laevissima (Kützing) D. G. Mann var. laevissima	SELA*	-	-	0,25	-		-	-	0,49	-	0,98	0,50	0,24	0,49	-	2,21
Sellaphora pupula (Kützing) Mereschkowksy var. pupula Simon senia delognei Lange-Bertalot	SPUP* SIDE*		-		-	0,49 -			-	0,49	-		0,49	-	1,74	1,23
Staurosira brevistriata (Grunow) Grunow Staurosira construens Ehrenberg var. construens	SBRV* SCON*	0,25 -	-	0,49 -	-	-	1,23 -	3,94 -	-	0,49	0,98 -	0,25 -	0,49 -	-	0,25 -	- 0,98
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter Staurosirella ovata Morales	SSVE* STOV*	:	-	0,25	0,96	1,48 -	0,49	2,22 0.74	0,99	4,19	3,43	0,50	-	0,49	0,75 -	-
Staurosirella ovata Morales Staurosirella pinnata (Ehrenberg) Williams&Round var. pinnata ULNARIA Compère	SPIN* ULNA	-	0,49 3.94	-	0,48 0.96	0,99	3,69	-	-	-	0,98		0,49	-	-	-
Ulnaria ulna (Nitzsch) Compère var. ulna	UULN*	0,50	2,46	- 4.00	-	-		-	-	:		0,25				-
Ulnaria ulna var. acus (Kützing) Lange-Bertalot Richesse taxonomique globale	UUAC*	0,99 27	4,93 37	1,23 28	24	2,96 28	0,25 26	31	24	43	26	28	29	11	37	30
Richesse taxonomique IBD Diversité		23 2,63	26 4,27	21 3,27	16 2,9	21 3,11	20 2,17	22 3,05	19 2,99	34 3,63	22 2,99	18 2,99	24 3,05	9 0,5	28 3,8	20 3,72
E quitabilité Note IBD		0,55 18,2	0,82 18,7	0,68 18	0,63 18,1	0,65 16	0,46 18,1	0,62 17	0,65 17	0,67 16,2	0,64 18	0,62 17,5	0,63 16	0,14 16	0,73 14,9	0,76 12,2
Note IPS		16,9	16,4	15,2	14,9	15,3	16	14,8	16,4	13,3	15,9	16,1	14,7	15,2	13,7	8,9
Valeur EQR		0,94	1,03	0,99	0,99	0,87	0,99	0,93	0,93	88,0	0,99	0,96	0,87	0,87	0,81	0,65

^{*:} espèce retenue pour le calcul de l'IBD

IBD version 2016 : calculé avec OMNIDIA 6 base du 4 mars 2014 ; Norme NF T 90-354 Calcul de la note EQR selon arrété de juillet 2015 modifiant celui de janvier 2010

		Limites des classes d'état IBD en EQR (valeurs inférieures des limites de classes)									
Eléments de qualité	indice	Très bon / Bon	Bon / Moyen	Moyen / Médiocre	Médiocre / Mauvais	Mauvais					
Phytobenthos	IBD 2007	0,94	0,78	0,55	0,3	< 0,3					

8.7.7. Listes floristiques des diatomées des affluents de l'Hérault

COMPOSITION DES PEUPLEMENTS DE DIATOMEES DES AFFLUENTS DE L'HERAULT Dates de prélèvements: été 2016 (abondances relatives en pourcentage)

Cours January		Vis	Vi-	150	Paine	Division	1 20000	Calaman	Dayna	Davina	Tammia
Cours d'eau Commune / Localisation		Navacelles	Vis Gorniès	Vis St Laurent le	Foux Brissac	Buèges St Jean de	Lergue Lodève 2	Salagou Le Bosc	Boyne Cazoul	Peyne Roujan	Tongue Servian
Code station		VIS1	VIS2	Minier VIS3	F01	Buèges 2 BU1	LER2	SLG1	d'Hérault 2 BO1	P1	TH1
Date	ADAM	18/07/2016	18/07/2016	18/07/2016	13/07/2016	13/07/2016	20/07/2016	20/07/2016	24/06/2016	20/07/2016	24/06/2016
Achnanthidium atomoides Monnier, Lange-Bertalot & Ector Achnanthidium catenatum (Bily & Marvan) I ange-Bertalot	ADAM ADCT*	H	H	-	0,48	-	0,49	-	-	4	-
Achnanthidium delmontii Peres, Le Cohu et Barthes	ADMO	26,73	64,15	1,72	-	-	4,43	-	0,49	-	-
Achnanthidium druartii Rimet & Couté in Rimet & al. Achnanthidium eutrophilum (Lange-Bertalot)Lange-Bertalot	ADRU ADEU*	-	-	-	-	-	-	-	0,25	- 0,49	-
ACHNANTHIDIUM F.T. Kützing	ACHD	2,48	0,49	-	-	-	0,25	0,50	0,99	-	0,49
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum Achnanthidium pyrenaicum (Hustedt) Kobayasi	ADMI* ADPY*	44,55 12,38	7,80 4,88	80,59 2,21	23,86 39,28	49,26 23,51	43,35 0.49	0,74	18,47 1,97	3,95	1,72
Achnanthidium straubianum (Lange-Bertalot) Lange-Bertalot	ADSB*	2,97	-	0,25	- 39,20	-	0,99	-	2,96	0,74	-
AMPHORA C.G. Ehrenberg ex F.T. Kützing	AMPH	-	-	-	0,72	-	0,25	1,74	0,74	1,98	0,25
Amphora indistincta Levkov Amphora ovalis var. ovalis Lange-Bertalot	AMID* AOVA*	-	-	-	-	-	-	-	0,49	0,49 -	-
Amphora pediculus (Kützing) Grunow var. pediculus	APED*	2,23	-	-	5,30	-	-	57,32	14,04	52,10	9,07
Caloneis Iancettula (Schulz) Lange-Bertalot & Witkowski	CLCT*	- 1.49	0,49 1,22	0.49	1,93 3.61	- 0,25	- 4.43	- 15.63	1,23 2,96	0,99 3,21	0,49 10.05
Cocconeis euglypta Ehrenberg Cocconeis lineata Ehrenberg	CEUG* CLNT*	- 1,49	-	- 0,49	0,48	- 0,25	4,43	-	- 2,96	3,Z1 -	- 10,05
Cocconeis pediculus Ehrenberg	CPED*	-	-	-	-	0,74	5,42	-	0,25	0,49	8,09
Cocconeis placentula var. placentula Ehrenberg CYMBELLA C.Agardh	CPLA* CYMB	-	-	-	0,72	-	0,49	6,45	1,97 0,25	2,22	1,47
Cymbella excisa var. excisa Kützing	CAEX*	-	-	1,47	-	12,13	3,20	-	2,71	-	-
Cymbella excisiformis var. excisiformis Krammer Denticula tenuis Kützing var. tenuis	CEXF DTEN*	- 0,50	- 0,49	0,74	-	0,50	- 1,23	-	-	-	-
Diatoma tenue var. moniliformis (monoliforme) Kützing	DTMO*	-	-	-	-	-	0,49	-	-	-	-
Diatoma vulgaris Bory var. vulgaris	DVUL*	-	-	-	-	3,71		-	-	-	-
DIATOMEE NON IDENTIFIEE (indéterminée) Diatomées non identifiées vue connectives	VUCO	0,50	-	-	0,96	- 1,49	0,25 0,99	-	0,99	-	-
Diacornees non identifiées vue confréctives Diploneis oculata (Brébisson in Desmazières) Cleve	DOCU*	-	-		0,96	-	-	-	0,99	=	-
Diploneis separanda Lange-Bertalot	DSEP	-	-	-	0,72	-	-	-	- 0.40	=	-
Ellerbeckia arenaria (Moore ex Ralfs) Crawford ENCYONEMA F.T. Kützing	EARE* ENCY	-	-	0,74	-	-	-	-	0,49 -	-	-
Encyonema silesiacum (Bleisch in Rabh.) D.G. Mann var. silesiacum	ESLE*	-	-	-	0,24	-	-	-	-	-	-
Encyonema ventricosum (Kützing) Grunow in Schmidt & al. var. ventricosum Encyonopsis minuta Krammer & Reichardt	ENVE* ECPM*	0,50 -	1,22	0,74 0,49	0,96	0,50 2,72	0,74	0,50 -	- 3,45	-	0,49
Encyonopsis minuta Krammer & Reichardt Encyonopsis subminuta Krammer & Reichardt	ECPM* ESUM*	-	-	- 0,49	-	0,50	-	-	3,40	-	-
Eolimna minima Grunow) Lange-Bertalot	EOMI*	0,50	-	-	0,48	-	-	0,99	-	0,25	5,88
Eolimna subminuscula (Manguin) Moser Lange-Bertalot & Metzeltin Fallacia lenzii (Hustedt) Lange-Bertalot	ESBM* FLEN*	-	-	_	-	-	-	-	-	- 0,49	1,23
Fallacia subhamulata (Grunow in V. Heurck) D.G. Mann	FSBH*	-	-	-	- -	-	-	0,25	0,49	-	-
Fallacia sublucidula (Hustedt) D.G. Mann	FSLU*	-	-	-	0,48	-	-	-	-	-	-
Fistulifera saprophila (Lange-Bertalot & Bonik) Lange-Bertalot FRAGILARIA H.C. Lyngbye	FSAP* FRAG	-	-	-	0,96	-	3,69 0,49	-	- 0,99	-	-
Fragilaria rumpens (Kütz.) G.W.F.Carlson	FRUM*	-	-	-	-	2,72	-	-	-	-	0,98
GOMPHONEMA C.G. Ehrenberg	GOMP	2,48	3,90	1,47	1,69	0,50	0,99	-	1,48	-	0,98
Gomphonema cuneolus E. Reichardt Gomphonema minutum f. minutum (Agardh) Agardh	GCUN GMIN*	- 0.99	2,93	-	0,24 0,24	-	-	-	-	-	
Gomphonema olivaceum var. olivaceum (Hornemann) Brébisson	GO∐*	-	-	-	-	-	-	-	-	-	1,47
Gomphonema parvulum f. parvulum (Kützing) Kützing	GPAR*	-	-	-	-	-	1,97	-	-	-	1,47
Gomphonema pumilum var. rigidum Reichardt & Lange-Bertalot Gomphonema rhombicum M. Schmidt	GPRI* GRHB*	-	10,98 0,49	-	0,48	-	- 0,49	-	0,25 6,65	- 0,49	-
Gomphonema tergestinum (Grunow in Van Heurck) Schmidt in Schmidt & al. var. tergestinur		0,25	-	3,19	-	-	-	-	-	-	-
Gyrosigma sciotoense (Sullivan et Wormley) Cleve	GSCI*	-	-	-	-	-	-	0,50	0,49	1,98	-
Hippodonta capitata (Ehr.)Lange-Bert.Metzeltin & Witkowski Karayevia clevei var. clevei (Grunow) Bukhtiyarova	HCAP* KCLE*	-	-	-	-	-	-	-	-	0,25	0,49
Kolbesia gessneri (Hustedt) Aboal	KGES*	-	-	-	0,24	-	-	-	-	-	-
Mayamaea permitis (Hustedt) Bruder & Medlin	MPMI*	-	-	-	-	-	0,49	-	-	-	0,74
Melosira varians Agardh Meridion circulare var. circulare (Greville) C.A.Agardh	MVAR* MCIR*	-	-	-	0,24	-	0,25	-	-	-	12,75
Navicula antonii Lange-Bertalot	NANT*	-	-	-	-	-	-	-	0,25	-	2,94
Navicula capitatoradiata Germain	NCPR*	-	-	-	-	-	0,99	-	-	-	- 4 47
Navicula cryptotenella Lange-Bertalot var. cryptotenella NAVICULA J.B.M. Bory de St. Vincent	NCTE* NAVI	-	-	-	5,54 -	0,50	10,10 0,49	2,23	17,00 0,49	7 ,65	1,47 -
Navicula lanceolata (Agardh) Ehrenberg var. lanceolata	NLAN*	-	-	-	-	-	-	-	-	-	0,49
Navicula radiosa Kützing var. radiosa	NRAD*	-	-	-	-	-	-	-	0,25	-	- 0.00
Navicula reichardtiana var. reichardtiana Lange-Bertalot Navicula tripunctata (O.F.Müller) Bory var. tripunctata	NRCH* NTPT*	- 0,50	-	-	2,17	-	1,48 1,97	0,50 1,24	0,49 5,17	- 4,69	0,98 0,49
Navicula veneta Kützing	NVEN*	-	-	-	-	-	-	0,50	-	-	1,47
Navicula vilaplanii (Lange-Bert. & Sabater) Lange-Bertalot & Sabater NITZSCHIA A.H. Hassall	NVIP* NITZ	-	-	- 0,98	- 0,24	-	0,49 1,48	- 0,99	-	- 1,73	- 0,74
Nitzschia A.n. nassaii Nitzschia amphibia f. amphibia Grunow var. amphibia	NAMP*		<u> </u>	-	-		-	0,50	0,99	-	5,15
Nitzschia angustata (W.Smith) Grunow var. angustata	NIAN*	-	-	-	-	-	-	-	-	0,25	0,49
Nitzschia costei Tudesque, Rimet & Ector Nitzschia denticula Grunow in Cleve & Grunow var. denticula	NYCO NDEN*	-	-	-	-	-	0,99 -	-	- 0,49	-	0,49 -
Nitzschia dissipata subsp. dissipata (Kützing) Grunow var. dissipata	NDIS*	-	-	-	3,86	-	-	0,25	2,46	2,72	0,49
Nitzschia fonticola Grunow in Cleve et Möller var. fonticola	NFON*	-	-	-	-	-	-	-	0,25	-	-
Nitzschia linearis var. linearis (Agardh) W.M.Smith Nitzschia microcephala Grunow in Cleve & Moller var. microcephala	NLIN* NMIC*	-	-	-	0.48	-	-	0,50	0,49 -	-	- 0,25
Nitzschia niterocephala Grunow in Cleve a Nichel val. merocephala Nitzschia paleacea (Grunow) Grunow in Van Heurck var. paleacea	NPAE*	-	-	2,46	-,	-	1,72	-	-	-	0,49
Nitzschia palea var. palea (Kützing) W. Smith	NPAL*	0,99	0,49	2,21	- 0.70	-	0,99	- 0.25	-	- 0.70	1,72
Nitzschia sociabilis Hustedt Nitzschia soratensis Morales & Vis	NSOC* NSTS*	-	-	-	0,72 -	-	- 1,48	0,25 -	-	2,72 0,49	- 4,17
Planothidium frequentissimum (Lange-Bertalot)Lange-Bertalot var. frequentissimum	PLFR*	-	-	-	-	-	-	1,74	-	-	0,49
Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot var. lanceolatum	PTLA*	-	-	-	-	-	-	- 0,50	-	-	0,49
Platessa conspicua (A.Mayer) Lange-Bertalot Pseudostaurosira parasitica (W.Smith) Morales var. parasitica	PTCO* PPRS*	-	-	-	-	-	-	-	-	0,49	-
Reimeria sinuata (Gregory) Kociolek & Stoermer	RSIN*	-	-	0,25	-	-	-	-	-	, -	
Rhoicosphenia abbreviata (C.Agardh) Lange-Bertalot	RABB* SELL	-	0,49	-	0,72 0,48	-	-	5,21	3,94	7,65	18,14
SELLAPHORA C. Mereschkowsky Sellaphora pupula (Kützing) Mereschkowksy var. pupula	SELL SPUP*	-	-	-	- 0,48	-	-	-	-	0,25	-
Simonsenia delognei Lange-Bertalot	SIDE*	-	-	-	-	-	-	0,99	-	0,99	0,74
Staurosira brevistriata (Grunow) Grunow Staurosira venter (Ebrenberg) Clave & Moeller ven venter	SBRV* SSVE*	-	-	-	-	-	0,49	-	0,49 0,74	-	-
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter Surirella minuta Brébisson ex Kützing var. minuta	SSVE* SUMI*	-	- -	-	- -	-	- 0,49	-	- 0,74	- 0,25	- -
ULNARIA Compère	ULNA	-	-	-	-	0,99	1,48	-	-	-,	-
Ulnaria ulna (Nitzsch) Compère var. ulna Ulnaria ulna var. agus (Kützing) Lagga Bortolet	UULN*	-	-	-	0,48	-	-	-	- 0.40	-	- 0.25
Ulnaria ulna var. acus (Külzing) Lange-Bertalot Richesse taxonomique globale	UUAC*	16	14	16	32	15	36	23	0,49 40	27	0,25 38
Richesse taxonomique IBD		12	10	12	22	11	25	20	30	23	32
Diversité		2,37	1,97	1,4	3,1	2,24	3,49	2,38	4,08	2,89	4,16
Equitabilité		0,59	0,52	0,35	0,62	0,57	0,67	0,53	0,77	0,61	0,79
·		20	19.4	101	20	-)11	160	16.7	10	457	
Note IBD Note IPS		20 17,2	18,1 15,5	19,4 17,8	20 17,7	20 18,4	16,9 16	15,2 14,5	18 16,4	15,7 15	13,4 12,4

^{* :} espèce retenue pour le calcul de l'IBD

IBD version 2016 : calculé avec OMNIDIA 6 base du 4 mars 2014 ; Norme NFT 90-354 Calcul de la note EQR selon arrété de juillet 2015 modifiant celui de janvier 2010

		Limites des classes d'état IBD en EQR (valeurs inférieures des limites de classes)									
Eléments de qualité	indice	Très bon / Bon	Bon / Moyen	Moyen / Médiocre	Médiocre / Mauvais	Mauvais					
Phytobenthos	IBD 2007	0,94	0,78	0,55	0,3	< 0,3					